Properties

Label 315.4.j.b.46.1
Level $315$
Weight $4$
Character 315.46
Analytic conductor $18.586$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(46,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.46");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 315.46
Dual form 315.4.j.b.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.50000 + 4.33013i) q^{5} +(-14.0000 - 12.1244i) q^{7} +21.0000 q^{8} +O(q^{10})\) \(q+(1.50000 + 2.59808i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.50000 + 4.33013i) q^{5} +(-14.0000 - 12.1244i) q^{7} +21.0000 q^{8} +(-7.50000 + 12.9904i) q^{10} +(-22.5000 + 38.9711i) q^{11} +59.0000 q^{13} +(10.5000 - 54.5596i) q^{14} +(35.5000 + 61.4878i) q^{16} +(-27.0000 + 46.7654i) q^{17} +(60.5000 + 104.789i) q^{19} -5.00000 q^{20} -135.000 q^{22} +(34.5000 + 59.7558i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(88.5000 + 153.286i) q^{26} +(17.5000 - 6.06218i) q^{28} +162.000 q^{29} +(44.0000 - 76.2102i) q^{31} +(-22.5000 + 38.9711i) q^{32} -162.000 q^{34} +(17.5000 - 90.9327i) q^{35} +(129.500 + 224.301i) q^{37} +(-181.500 + 314.367i) q^{38} +(52.5000 + 90.9327i) q^{40} -195.000 q^{41} -286.000 q^{43} +(-22.5000 - 38.9711i) q^{44} +(-103.500 + 179.267i) q^{46} +(22.5000 + 38.9711i) q^{47} +(49.0000 + 339.482i) q^{49} -75.0000 q^{50} +(-29.5000 + 51.0955i) q^{52} +(298.500 - 517.017i) q^{53} -225.000 q^{55} +(-294.000 - 254.611i) q^{56} +(243.000 + 420.888i) q^{58} +(-180.000 + 311.769i) q^{59} +(-196.000 - 339.482i) q^{61} +264.000 q^{62} +433.000 q^{64} +(147.500 + 255.477i) q^{65} +(140.000 - 242.487i) q^{67} +(-27.0000 - 46.7654i) q^{68} +(262.500 - 90.9327i) q^{70} -48.0000 q^{71} +(-334.000 + 578.505i) q^{73} +(-388.500 + 672.902i) q^{74} -121.000 q^{76} +(787.500 - 272.798i) q^{77} +(-391.000 - 677.232i) q^{79} +(-177.500 + 307.439i) q^{80} +(-292.500 - 506.625i) q^{82} -768.000 q^{83} -270.000 q^{85} +(-429.000 - 743.050i) q^{86} +(-472.500 + 818.394i) q^{88} +(-597.000 - 1034.03i) q^{89} +(-826.000 - 715.337i) q^{91} -69.0000 q^{92} +(-67.5000 + 116.913i) q^{94} +(-302.500 + 523.945i) q^{95} +902.000 q^{97} +(-808.500 + 636.529i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - q^{4} + 5 q^{5} - 28 q^{7} + 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - q^{4} + 5 q^{5} - 28 q^{7} + 42 q^{8} - 15 q^{10} - 45 q^{11} + 118 q^{13} + 21 q^{14} + 71 q^{16} - 54 q^{17} + 121 q^{19} - 10 q^{20} - 270 q^{22} + 69 q^{23} - 25 q^{25} + 177 q^{26} + 35 q^{28} + 324 q^{29} + 88 q^{31} - 45 q^{32} - 324 q^{34} + 35 q^{35} + 259 q^{37} - 363 q^{38} + 105 q^{40} - 390 q^{41} - 572 q^{43} - 45 q^{44} - 207 q^{46} + 45 q^{47} + 98 q^{49} - 150 q^{50} - 59 q^{52} + 597 q^{53} - 450 q^{55} - 588 q^{56} + 486 q^{58} - 360 q^{59} - 392 q^{61} + 528 q^{62} + 866 q^{64} + 295 q^{65} + 280 q^{67} - 54 q^{68} + 525 q^{70} - 96 q^{71} - 668 q^{73} - 777 q^{74} - 242 q^{76} + 1575 q^{77} - 782 q^{79} - 355 q^{80} - 585 q^{82} - 1536 q^{83} - 540 q^{85} - 858 q^{86} - 945 q^{88} - 1194 q^{89} - 1652 q^{91} - 138 q^{92} - 135 q^{94} - 605 q^{95} + 1804 q^{97} - 1617 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 + 2.59808i 0.530330 + 0.918559i 0.999374 + 0.0353837i \(0.0112653\pi\)
−0.469044 + 0.883175i \(0.655401\pi\)
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −14.0000 12.1244i −0.755929 0.654654i
\(8\) 21.0000 0.928078
\(9\) 0 0
\(10\) −7.50000 + 12.9904i −0.237171 + 0.410792i
\(11\) −22.5000 + 38.9711i −0.616728 + 1.06820i 0.373351 + 0.927690i \(0.378209\pi\)
−0.990079 + 0.140514i \(0.955125\pi\)
\(12\) 0 0
\(13\) 59.0000 1.25874 0.629371 0.777105i \(-0.283312\pi\)
0.629371 + 0.777105i \(0.283312\pi\)
\(14\) 10.5000 54.5596i 0.200446 1.04155i
\(15\) 0 0
\(16\) 35.5000 + 61.4878i 0.554688 + 0.960747i
\(17\) −27.0000 + 46.7654i −0.385204 + 0.667192i −0.991797 0.127820i \(-0.959202\pi\)
0.606594 + 0.795012i \(0.292535\pi\)
\(18\) 0 0
\(19\) 60.5000 + 104.789i 0.730508 + 1.26528i 0.956666 + 0.291186i \(0.0940500\pi\)
−0.226158 + 0.974091i \(0.572617\pi\)
\(20\) −5.00000 −0.0559017
\(21\) 0 0
\(22\) −135.000 −1.30828
\(23\) 34.5000 + 59.7558i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 88.5000 + 153.286i 0.667549 + 1.15623i
\(27\) 0 0
\(28\) 17.5000 6.06218i 0.118114 0.0409159i
\(29\) 162.000 1.03733 0.518666 0.854977i \(-0.326429\pi\)
0.518666 + 0.854977i \(0.326429\pi\)
\(30\) 0 0
\(31\) 44.0000 76.2102i 0.254924 0.441541i −0.709951 0.704251i \(-0.751283\pi\)
0.964875 + 0.262710i \(0.0846163\pi\)
\(32\) −22.5000 + 38.9711i −0.124296 + 0.215287i
\(33\) 0 0
\(34\) −162.000 −0.817140
\(35\) 17.5000 90.9327i 0.0845154 0.439155i
\(36\) 0 0
\(37\) 129.500 + 224.301i 0.575396 + 0.996616i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) −181.500 + 314.367i −0.774821 + 1.34203i
\(39\) 0 0
\(40\) 52.5000 + 90.9327i 0.207524 + 0.359443i
\(41\) −195.000 −0.742778 −0.371389 0.928477i \(-0.621118\pi\)
−0.371389 + 0.928477i \(0.621118\pi\)
\(42\) 0 0
\(43\) −286.000 −1.01429 −0.507146 0.861860i \(-0.669300\pi\)
−0.507146 + 0.861860i \(0.669300\pi\)
\(44\) −22.5000 38.9711i −0.0770910 0.133525i
\(45\) 0 0
\(46\) −103.500 + 179.267i −0.331744 + 0.574598i
\(47\) 22.5000 + 38.9711i 0.0698290 + 0.120947i 0.898826 0.438306i \(-0.144421\pi\)
−0.828997 + 0.559253i \(0.811088\pi\)
\(48\) 0 0
\(49\) 49.0000 + 339.482i 0.142857 + 0.989743i
\(50\) −75.0000 −0.212132
\(51\) 0 0
\(52\) −29.5000 + 51.0955i −0.0786714 + 0.136263i
\(53\) 298.500 517.017i 0.773625 1.33996i −0.161939 0.986801i \(-0.551775\pi\)
0.935564 0.353157i \(-0.114892\pi\)
\(54\) 0 0
\(55\) −225.000 −0.551618
\(56\) −294.000 254.611i −0.701561 0.607569i
\(57\) 0 0
\(58\) 243.000 + 420.888i 0.550129 + 0.952851i
\(59\) −180.000 + 311.769i −0.397187 + 0.687947i −0.993378 0.114895i \(-0.963347\pi\)
0.596191 + 0.802843i \(0.296680\pi\)
\(60\) 0 0
\(61\) −196.000 339.482i −0.411397 0.712561i 0.583646 0.812009i \(-0.301626\pi\)
−0.995043 + 0.0994477i \(0.968292\pi\)
\(62\) 264.000 0.540775
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) 147.500 + 255.477i 0.281463 + 0.487509i
\(66\) 0 0
\(67\) 140.000 242.487i 0.255279 0.442157i −0.709692 0.704512i \(-0.751166\pi\)
0.964971 + 0.262355i \(0.0844992\pi\)
\(68\) −27.0000 46.7654i −0.0481505 0.0833990i
\(69\) 0 0
\(70\) 262.500 90.9327i 0.448211 0.155265i
\(71\) −48.0000 −0.0802331 −0.0401166 0.999195i \(-0.512773\pi\)
−0.0401166 + 0.999195i \(0.512773\pi\)
\(72\) 0 0
\(73\) −334.000 + 578.505i −0.535503 + 0.927519i 0.463635 + 0.886026i \(0.346545\pi\)
−0.999139 + 0.0414929i \(0.986789\pi\)
\(74\) −388.500 + 672.902i −0.610300 + 1.05707i
\(75\) 0 0
\(76\) −121.000 −0.182627
\(77\) 787.500 272.798i 1.16551 0.403743i
\(78\) 0 0
\(79\) −391.000 677.232i −0.556847 0.964488i −0.997757 0.0669365i \(-0.978678\pi\)
0.440910 0.897551i \(-0.354656\pi\)
\(80\) −177.500 + 307.439i −0.248064 + 0.429659i
\(81\) 0 0
\(82\) −292.500 506.625i −0.393917 0.682285i
\(83\) −768.000 −1.01565 −0.507825 0.861460i \(-0.669550\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(84\) 0 0
\(85\) −270.000 −0.344537
\(86\) −429.000 743.050i −0.537910 0.931687i
\(87\) 0 0
\(88\) −472.500 + 818.394i −0.572371 + 0.991376i
\(89\) −597.000 1034.03i −0.711032 1.23154i −0.964470 0.264192i \(-0.914895\pi\)
0.253438 0.967352i \(-0.418439\pi\)
\(90\) 0 0
\(91\) −826.000 715.337i −0.951520 0.824041i
\(92\) −69.0000 −0.0781929
\(93\) 0 0
\(94\) −67.5000 + 116.913i −0.0740648 + 0.128284i
\(95\) −302.500 + 523.945i −0.326693 + 0.565849i
\(96\) 0 0
\(97\) 902.000 0.944167 0.472084 0.881554i \(-0.343502\pi\)
0.472084 + 0.881554i \(0.343502\pi\)
\(98\) −808.500 + 636.529i −0.833376 + 0.656113i
\(99\) 0 0
\(100\) −12.5000 21.6506i −0.0125000 0.0216506i
\(101\) 342.000 592.361i 0.336933 0.583586i −0.646921 0.762557i \(-0.723944\pi\)
0.983854 + 0.178971i \(0.0572769\pi\)
\(102\) 0 0
\(103\) 758.000 + 1312.89i 0.725126 + 1.25595i 0.958922 + 0.283669i \(0.0915518\pi\)
−0.233796 + 0.972286i \(0.575115\pi\)
\(104\) 1239.00 1.16821
\(105\) 0 0
\(106\) 1791.00 1.64111
\(107\) −366.000 633.931i −0.330678 0.572751i 0.651967 0.758247i \(-0.273944\pi\)
−0.982645 + 0.185496i \(0.940611\pi\)
\(108\) 0 0
\(109\) 800.000 1385.64i 0.702992 1.21762i −0.264420 0.964408i \(-0.585180\pi\)
0.967411 0.253210i \(-0.0814863\pi\)
\(110\) −337.500 584.567i −0.292540 0.506694i
\(111\) 0 0
\(112\) 248.500 1291.24i 0.209652 1.08938i
\(113\) 1392.00 1.15883 0.579417 0.815031i \(-0.303280\pi\)
0.579417 + 0.815031i \(0.303280\pi\)
\(114\) 0 0
\(115\) −172.500 + 298.779i −0.139876 + 0.242272i
\(116\) −81.0000 + 140.296i −0.0648333 + 0.112295i
\(117\) 0 0
\(118\) −1080.00 −0.842560
\(119\) 945.000 327.358i 0.727966 0.252175i
\(120\) 0 0
\(121\) −347.000 601.022i −0.260706 0.451556i
\(122\) 588.000 1018.45i 0.436353 0.755785i
\(123\) 0 0
\(124\) 44.0000 + 76.2102i 0.0318655 + 0.0551926i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 803.000 0.561061 0.280530 0.959845i \(-0.409490\pi\)
0.280530 + 0.959845i \(0.409490\pi\)
\(128\) 829.500 + 1436.74i 0.572798 + 0.992115i
\(129\) 0 0
\(130\) −442.500 + 766.432i −0.298537 + 0.517081i
\(131\) 1009.50 + 1748.51i 0.673286 + 1.16617i 0.976967 + 0.213391i \(0.0684509\pi\)
−0.303681 + 0.952774i \(0.598216\pi\)
\(132\) 0 0
\(133\) 423.500 2200.57i 0.276106 1.43469i
\(134\) 840.000 0.541529
\(135\) 0 0
\(136\) −567.000 + 982.073i −0.357499 + 0.619206i
\(137\) 30.0000 51.9615i 0.0187086 0.0324042i −0.856520 0.516115i \(-0.827378\pi\)
0.875228 + 0.483710i \(0.160711\pi\)
\(138\) 0 0
\(139\) −1708.00 −1.04224 −0.521118 0.853485i \(-0.674485\pi\)
−0.521118 + 0.853485i \(0.674485\pi\)
\(140\) 70.0000 + 60.6218i 0.0422577 + 0.0365963i
\(141\) 0 0
\(142\) −72.0000 124.708i −0.0425500 0.0736988i
\(143\) −1327.50 + 2299.30i −0.776302 + 1.34459i
\(144\) 0 0
\(145\) 405.000 + 701.481i 0.231955 + 0.401757i
\(146\) −2004.00 −1.13597
\(147\) 0 0
\(148\) −259.000 −0.143849
\(149\) −543.000 940.504i −0.298552 0.517108i 0.677253 0.735751i \(-0.263170\pi\)
−0.975805 + 0.218643i \(0.929837\pi\)
\(150\) 0 0
\(151\) 1433.00 2482.03i 0.772291 1.33765i −0.164014 0.986458i \(-0.552444\pi\)
0.936305 0.351189i \(-0.114222\pi\)
\(152\) 1270.50 + 2200.57i 0.677968 + 1.17428i
\(153\) 0 0
\(154\) 1890.00 + 1636.79i 0.988965 + 0.856468i
\(155\) 440.000 0.228011
\(156\) 0 0
\(157\) 114.500 198.320i 0.0582044 0.100813i −0.835455 0.549559i \(-0.814796\pi\)
0.893659 + 0.448746i \(0.148129\pi\)
\(158\) 1173.00 2031.70i 0.590626 1.02299i
\(159\) 0 0
\(160\) −225.000 −0.111174
\(161\) 241.500 1254.87i 0.118217 0.614271i
\(162\) 0 0
\(163\) 614.000 + 1063.48i 0.295044 + 0.511031i 0.974995 0.222226i \(-0.0713323\pi\)
−0.679951 + 0.733258i \(0.737999\pi\)
\(164\) 97.5000 168.875i 0.0464236 0.0804080i
\(165\) 0 0
\(166\) −1152.00 1995.32i −0.538630 0.932934i
\(167\) 1929.00 0.893835 0.446918 0.894575i \(-0.352522\pi\)
0.446918 + 0.894575i \(0.352522\pi\)
\(168\) 0 0
\(169\) 1284.00 0.584433
\(170\) −405.000 701.481i −0.182718 0.316477i
\(171\) 0 0
\(172\) 143.000 247.683i 0.0633933 0.109800i
\(173\) −349.500 605.352i −0.153595 0.266035i 0.778951 0.627084i \(-0.215752\pi\)
−0.932547 + 0.361049i \(0.882419\pi\)
\(174\) 0 0
\(175\) 437.500 151.554i 0.188982 0.0654654i
\(176\) −3195.00 −1.36836
\(177\) 0 0
\(178\) 1791.00 3102.10i 0.754164 1.30625i
\(179\) 1558.50 2699.40i 0.650770 1.12717i −0.332167 0.943221i \(-0.607780\pi\)
0.982936 0.183945i \(-0.0588870\pi\)
\(180\) 0 0
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) 619.500 3219.02i 0.252310 1.31104i
\(183\) 0 0
\(184\) 724.500 + 1254.87i 0.290276 + 0.502773i
\(185\) −647.500 + 1121.50i −0.257325 + 0.445700i
\(186\) 0 0
\(187\) −1215.00 2104.44i −0.475132 0.822952i
\(188\) −45.0000 −0.0174572
\(189\) 0 0
\(190\) −1815.00 −0.693021
\(191\) −1194.00 2068.07i −0.452329 0.783457i 0.546201 0.837654i \(-0.316073\pi\)
−0.998530 + 0.0541974i \(0.982740\pi\)
\(192\) 0 0
\(193\) −136.000 + 235.559i −0.0507228 + 0.0878544i −0.890272 0.455429i \(-0.849486\pi\)
0.839549 + 0.543284i \(0.182819\pi\)
\(194\) 1353.00 + 2343.46i 0.500720 + 0.867273i
\(195\) 0 0
\(196\) −318.500 127.306i −0.116071 0.0463942i
\(197\) 2109.00 0.762741 0.381371 0.924422i \(-0.375452\pi\)
0.381371 + 0.924422i \(0.375452\pi\)
\(198\) 0 0
\(199\) −712.000 + 1233.22i −0.253630 + 0.439300i −0.964522 0.264001i \(-0.914958\pi\)
0.710893 + 0.703301i \(0.248291\pi\)
\(200\) −262.500 + 454.663i −0.0928078 + 0.160748i
\(201\) 0 0
\(202\) 2052.00 0.714744
\(203\) −2268.00 1964.15i −0.784150 0.679094i
\(204\) 0 0
\(205\) −487.500 844.375i −0.166090 0.287677i
\(206\) −2274.00 + 3938.68i −0.769112 + 1.33214i
\(207\) 0 0
\(208\) 2094.50 + 3627.78i 0.698209 + 1.20933i
\(209\) −5445.00 −1.80210
\(210\) 0 0
\(211\) −3625.00 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(212\) 298.500 + 517.017i 0.0967031 + 0.167495i
\(213\) 0 0
\(214\) 1098.00 1901.79i 0.350737 0.607494i
\(215\) −715.000 1238.42i −0.226803 0.392834i
\(216\) 0 0
\(217\) −1540.00 + 533.472i −0.481760 + 0.166887i
\(218\) 4800.00 1.49127
\(219\) 0 0
\(220\) 112.500 194.856i 0.0344761 0.0597144i
\(221\) −1593.00 + 2759.16i −0.484872 + 0.839823i
\(222\) 0 0
\(223\) −4960.00 −1.48944 −0.744722 0.667374i \(-0.767418\pi\)
−0.744722 + 0.667374i \(0.767418\pi\)
\(224\) 787.500 272.798i 0.234898 0.0813709i
\(225\) 0 0
\(226\) 2088.00 + 3616.52i 0.614565 + 1.06446i
\(227\) −750.000 + 1299.04i −0.219292 + 0.379825i −0.954592 0.297917i \(-0.903708\pi\)
0.735300 + 0.677742i \(0.237041\pi\)
\(228\) 0 0
\(229\) −3046.00 5275.83i −0.878975 1.52243i −0.852467 0.522781i \(-0.824894\pi\)
−0.0265085 0.999649i \(-0.508439\pi\)
\(230\) −1035.00 −0.296721
\(231\) 0 0
\(232\) 3402.00 0.962725
\(233\) 69.0000 + 119.512i 0.0194006 + 0.0336028i 0.875563 0.483104i \(-0.160491\pi\)
−0.856162 + 0.516707i \(0.827158\pi\)
\(234\) 0 0
\(235\) −112.500 + 194.856i −0.0312285 + 0.0540893i
\(236\) −180.000 311.769i −0.0496483 0.0859934i
\(237\) 0 0
\(238\) 2268.00 + 1964.15i 0.617700 + 0.534944i
\(239\) 5502.00 1.48910 0.744550 0.667567i \(-0.232664\pi\)
0.744550 + 0.667567i \(0.232664\pi\)
\(240\) 0 0
\(241\) −1775.50 + 3075.26i −0.474564 + 0.821970i −0.999576 0.0291256i \(-0.990728\pi\)
0.525011 + 0.851095i \(0.324061\pi\)
\(242\) 1041.00 1803.06i 0.276521 0.478948i
\(243\) 0 0
\(244\) 392.000 0.102849
\(245\) −1347.50 + 1060.88i −0.351382 + 0.276642i
\(246\) 0 0
\(247\) 3569.50 + 6182.56i 0.919522 + 1.59266i
\(248\) 924.000 1600.41i 0.236589 0.409784i
\(249\) 0 0
\(250\) −187.500 324.760i −0.0474342 0.0821584i
\(251\) −7065.00 −1.77665 −0.888324 0.459216i \(-0.848130\pi\)
−0.888324 + 0.459216i \(0.848130\pi\)
\(252\) 0 0
\(253\) −3105.00 −0.771580
\(254\) 1204.50 + 2086.26i 0.297547 + 0.515367i
\(255\) 0 0
\(256\) −756.500 + 1310.30i −0.184692 + 0.319897i
\(257\) −2040.00 3533.38i −0.495143 0.857613i 0.504842 0.863212i \(-0.331551\pi\)
−0.999984 + 0.00559954i \(0.998218\pi\)
\(258\) 0 0
\(259\) 906.500 4710.31i 0.217479 1.13006i
\(260\) −295.000 −0.0703659
\(261\) 0 0
\(262\) −3028.50 + 5245.52i −0.714127 + 1.23690i
\(263\) −1644.00 + 2847.49i −0.385450 + 0.667619i −0.991832 0.127555i \(-0.959287\pi\)
0.606381 + 0.795174i \(0.292620\pi\)
\(264\) 0 0
\(265\) 2985.00 0.691951
\(266\) 6352.50 2200.57i 1.46427 0.507239i
\(267\) 0 0
\(268\) 140.000 + 242.487i 0.0319099 + 0.0552696i
\(269\) −1632.00 + 2826.71i −0.369906 + 0.640697i −0.989551 0.144186i \(-0.953944\pi\)
0.619644 + 0.784883i \(0.287277\pi\)
\(270\) 0 0
\(271\) 1376.00 + 2383.30i 0.308436 + 0.534226i 0.978020 0.208510i \(-0.0668612\pi\)
−0.669585 + 0.742736i \(0.733528\pi\)
\(272\) −3834.00 −0.854671
\(273\) 0 0
\(274\) 180.000 0.0396869
\(275\) −562.500 974.279i −0.123346 0.213641i
\(276\) 0 0
\(277\) 2345.00 4061.66i 0.508655 0.881016i −0.491295 0.870993i \(-0.663476\pi\)
0.999950 0.0100228i \(-0.00319040\pi\)
\(278\) −2562.00 4437.51i −0.552729 0.957354i
\(279\) 0 0
\(280\) 367.500 1909.59i 0.0784369 0.407570i
\(281\) −7821.00 −1.66036 −0.830181 0.557494i \(-0.811763\pi\)
−0.830181 + 0.557494i \(0.811763\pi\)
\(282\) 0 0
\(283\) 329.000 569.845i 0.0691061 0.119695i −0.829402 0.558652i \(-0.811319\pi\)
0.898508 + 0.438957i \(0.144652\pi\)
\(284\) 24.0000 41.5692i 0.00501457 0.00868549i
\(285\) 0 0
\(286\) −7965.00 −1.64678
\(287\) 2730.00 + 2364.25i 0.561487 + 0.486262i
\(288\) 0 0
\(289\) 998.500 + 1729.45i 0.203236 + 0.352016i
\(290\) −1215.00 + 2104.44i −0.246025 + 0.426128i
\(291\) 0 0
\(292\) −334.000 578.505i −0.0669379 0.115940i
\(293\) 5997.00 1.19573 0.597864 0.801597i \(-0.296016\pi\)
0.597864 + 0.801597i \(0.296016\pi\)
\(294\) 0 0
\(295\) −1800.00 −0.355254
\(296\) 2719.50 + 4710.31i 0.534013 + 0.924937i
\(297\) 0 0
\(298\) 1629.00 2821.51i 0.316663 0.548476i
\(299\) 2035.50 + 3525.59i 0.393699 + 0.681907i
\(300\) 0 0
\(301\) 4004.00 + 3467.57i 0.766733 + 0.664011i
\(302\) 8598.00 1.63828
\(303\) 0 0
\(304\) −4295.50 + 7440.02i −0.810407 + 1.40367i
\(305\) 980.000 1697.41i 0.183982 0.318667i
\(306\) 0 0
\(307\) −6226.00 −1.15745 −0.578724 0.815523i \(-0.696449\pi\)
−0.578724 + 0.815523i \(0.696449\pi\)
\(308\) −157.500 + 818.394i −0.0291376 + 0.151404i
\(309\) 0 0
\(310\) 660.000 + 1143.15i 0.120921 + 0.209441i
\(311\) 2340.00 4053.00i 0.426653 0.738985i −0.569920 0.821700i \(-0.693026\pi\)
0.996573 + 0.0827149i \(0.0263591\pi\)
\(312\) 0 0
\(313\) −514.000 890.274i −0.0928211 0.160771i 0.815876 0.578227i \(-0.196255\pi\)
−0.908697 + 0.417456i \(0.862922\pi\)
\(314\) 687.000 0.123470
\(315\) 0 0
\(316\) 782.000 0.139212
\(317\) 4311.00 + 7466.87i 0.763817 + 1.32297i 0.940870 + 0.338768i \(0.110010\pi\)
−0.177053 + 0.984201i \(0.556656\pi\)
\(318\) 0 0
\(319\) −3645.00 + 6313.33i −0.639752 + 1.10808i
\(320\) 1082.50 + 1874.94i 0.189105 + 0.327539i
\(321\) 0 0
\(322\) 3622.50 1254.87i 0.626938 0.217178i
\(323\) −6534.00 −1.12558
\(324\) 0 0
\(325\) −737.500 + 1277.39i −0.125874 + 0.218021i
\(326\) −1842.00 + 3190.44i −0.312942 + 0.542031i
\(327\) 0 0
\(328\) −4095.00 −0.689355
\(329\) 157.500 818.394i 0.0263929 0.137141i
\(330\) 0 0
\(331\) 999.500 + 1731.18i 0.165974 + 0.287476i 0.937001 0.349327i \(-0.113590\pi\)
−0.771027 + 0.636803i \(0.780256\pi\)
\(332\) 384.000 665.108i 0.0634781 0.109947i
\(333\) 0 0
\(334\) 2893.50 + 5011.69i 0.474028 + 0.821040i
\(335\) 1400.00 0.228329
\(336\) 0 0
\(337\) 5114.00 0.826639 0.413319 0.910586i \(-0.364369\pi\)
0.413319 + 0.910586i \(0.364369\pi\)
\(338\) 1926.00 + 3335.93i 0.309943 + 0.536836i
\(339\) 0 0
\(340\) 135.000 233.827i 0.0215335 0.0372972i
\(341\) 1980.00 + 3429.46i 0.314437 + 0.544621i
\(342\) 0 0
\(343\) 3430.00 5346.84i 0.539949 0.841698i
\(344\) −6006.00 −0.941342
\(345\) 0 0
\(346\) 1048.50 1816.06i 0.162912 0.282173i
\(347\) 2160.00 3741.23i 0.334164 0.578789i −0.649160 0.760652i \(-0.724879\pi\)
0.983324 + 0.181863i \(0.0582128\pi\)
\(348\) 0 0
\(349\) 7922.00 1.21506 0.607529 0.794298i \(-0.292161\pi\)
0.607529 + 0.794298i \(0.292161\pi\)
\(350\) 1050.00 + 909.327i 0.160357 + 0.138873i
\(351\) 0 0
\(352\) −1012.50 1753.70i −0.153314 0.265547i
\(353\) 414.000 717.069i 0.0624221 0.108118i −0.833125 0.553084i \(-0.813451\pi\)
0.895548 + 0.444966i \(0.146784\pi\)
\(354\) 0 0
\(355\) −120.000 207.846i −0.0179407 0.0310742i
\(356\) 1194.00 0.177758
\(357\) 0 0
\(358\) 9351.00 1.38049
\(359\) −675.000 1169.13i −0.0992344 0.171879i 0.812134 0.583472i \(-0.198306\pi\)
−0.911368 + 0.411593i \(0.864973\pi\)
\(360\) 0 0
\(361\) −3891.00 + 6739.41i −0.567284 + 0.982564i
\(362\) −2697.00 4671.34i −0.391578 0.678233i
\(363\) 0 0
\(364\) 1032.50 357.668i 0.148675 0.0515025i
\(365\) −3340.00 −0.478969
\(366\) 0 0
\(367\) −1400.50 + 2425.74i −0.199198 + 0.345020i −0.948268 0.317470i \(-0.897167\pi\)
0.749071 + 0.662490i \(0.230500\pi\)
\(368\) −2449.50 + 4242.66i −0.346981 + 0.600989i
\(369\) 0 0
\(370\) −3885.00 −0.545869
\(371\) −10447.5 + 3619.12i −1.46201 + 0.506456i
\(372\) 0 0
\(373\) −3301.00 5717.50i −0.458229 0.793675i 0.540639 0.841255i \(-0.318183\pi\)
−0.998867 + 0.0475795i \(0.984849\pi\)
\(374\) 3645.00 6313.33i 0.503953 0.872872i
\(375\) 0 0
\(376\) 472.500 + 818.394i 0.0648067 + 0.112249i
\(377\) 9558.00 1.30573
\(378\) 0 0
\(379\) −8305.00 −1.12559 −0.562796 0.826596i \(-0.690274\pi\)
−0.562796 + 0.826596i \(0.690274\pi\)
\(380\) −302.500 523.945i −0.0408366 0.0707311i
\(381\) 0 0
\(382\) 3582.00 6204.21i 0.479767 0.830981i
\(383\) 472.500 + 818.394i 0.0630382 + 0.109185i 0.895822 0.444413i \(-0.146588\pi\)
−0.832784 + 0.553598i \(0.813254\pi\)
\(384\) 0 0
\(385\) 3150.00 + 2727.98i 0.416984 + 0.361119i
\(386\) −816.000 −0.107599
\(387\) 0 0
\(388\) −451.000 + 781.155i −0.0590105 + 0.102209i
\(389\) 6018.00 10423.5i 0.784382 1.35859i −0.144985 0.989434i \(-0.546313\pi\)
0.929367 0.369156i \(-0.120353\pi\)
\(390\) 0 0
\(391\) −3726.00 −0.481923
\(392\) 1029.00 + 7129.12i 0.132583 + 0.918559i
\(393\) 0 0
\(394\) 3163.50 + 5479.34i 0.404505 + 0.700623i
\(395\) 1955.00 3386.16i 0.249030 0.431332i
\(396\) 0 0
\(397\) 1349.00 + 2336.54i 0.170540 + 0.295384i 0.938609 0.344983i \(-0.112115\pi\)
−0.768069 + 0.640367i \(0.778782\pi\)
\(398\) −4272.00 −0.538030
\(399\) 0 0
\(400\) −1775.00 −0.221875
\(401\) 3526.50 + 6108.08i 0.439165 + 0.760655i 0.997625 0.0688756i \(-0.0219412\pi\)
−0.558461 + 0.829531i \(0.688608\pi\)
\(402\) 0 0
\(403\) 2596.00 4496.40i 0.320883 0.555786i
\(404\) 342.000 + 592.361i 0.0421167 + 0.0729482i
\(405\) 0 0
\(406\) 1701.00 8838.66i 0.207929 1.08043i
\(407\) −11655.0 −1.41945
\(408\) 0 0
\(409\) 5435.00 9413.70i 0.657074 1.13809i −0.324295 0.945956i \(-0.605127\pi\)
0.981369 0.192130i \(-0.0615396\pi\)
\(410\) 1462.50 2533.12i 0.176165 0.305127i
\(411\) 0 0
\(412\) −1516.00 −0.181281
\(413\) 6300.00 2182.38i 0.750612 0.260020i
\(414\) 0 0
\(415\) −1920.00 3325.54i −0.227106 0.393360i
\(416\) −1327.50 + 2299.30i −0.156457 + 0.270991i
\(417\) 0 0
\(418\) −8167.50 14146.5i −0.955707 1.65533i
\(419\) 9729.00 1.13435 0.567175 0.823597i \(-0.308036\pi\)
0.567175 + 0.823597i \(0.308036\pi\)
\(420\) 0 0
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) −5437.50 9418.03i −0.627235 1.08640i
\(423\) 0 0
\(424\) 6268.50 10857.4i 0.717984 1.24358i
\(425\) −675.000 1169.13i −0.0770407 0.133438i
\(426\) 0 0
\(427\) −1372.00 + 7129.12i −0.155494 + 0.807968i
\(428\) 732.000 0.0826695
\(429\) 0 0
\(430\) 2145.00 3715.25i 0.240561 0.416663i
\(431\) 1494.00 2587.68i 0.166969 0.289198i −0.770384 0.637580i \(-0.779935\pi\)
0.937353 + 0.348382i \(0.113269\pi\)
\(432\) 0 0
\(433\) 16616.0 1.84414 0.922072 0.387019i \(-0.126495\pi\)
0.922072 + 0.387019i \(0.126495\pi\)
\(434\) −3696.00 3200.83i −0.408787 0.354020i
\(435\) 0 0
\(436\) 800.000 + 1385.64i 0.0878740 + 0.152202i
\(437\) −4174.50 + 7230.45i −0.456964 + 0.791485i
\(438\) 0 0
\(439\) −3673.00 6361.82i −0.399323 0.691647i 0.594320 0.804229i \(-0.297421\pi\)
−0.993642 + 0.112581i \(0.964088\pi\)
\(440\) −4725.00 −0.511944
\(441\) 0 0
\(442\) −9558.00 −1.02857
\(443\) 6.00000 + 10.3923i 0.000643496 + 0.00111457i 0.866347 0.499443i \(-0.166462\pi\)
−0.865703 + 0.500557i \(0.833129\pi\)
\(444\) 0 0
\(445\) 2985.00 5170.17i 0.317983 0.550763i
\(446\) −7440.00 12886.5i −0.789897 1.36814i
\(447\) 0 0
\(448\) −6062.00 5249.85i −0.639291 0.553643i
\(449\) −9669.00 −1.01628 −0.508138 0.861275i \(-0.669666\pi\)
−0.508138 + 0.861275i \(0.669666\pi\)
\(450\) 0 0
\(451\) 4387.50 7599.37i 0.458092 0.793438i
\(452\) −696.000 + 1205.51i −0.0724272 + 0.125448i
\(453\) 0 0
\(454\) −4500.00 −0.465188
\(455\) 1032.50 5365.03i 0.106383 0.552783i
\(456\) 0 0
\(457\) 4817.00 + 8343.29i 0.493063 + 0.854010i 0.999968 0.00799181i \(-0.00254390\pi\)
−0.506905 + 0.862002i \(0.669211\pi\)
\(458\) 9138.00 15827.5i 0.932294 1.61478i
\(459\) 0 0
\(460\) −172.500 298.779i −0.0174845 0.0302840i
\(461\) 342.000 0.0345521 0.0172761 0.999851i \(-0.494501\pi\)
0.0172761 + 0.999851i \(0.494501\pi\)
\(462\) 0 0
\(463\) 2411.00 0.242006 0.121003 0.992652i \(-0.461389\pi\)
0.121003 + 0.992652i \(0.461389\pi\)
\(464\) 5751.00 + 9961.02i 0.575395 + 0.996614i
\(465\) 0 0
\(466\) −207.000 + 358.535i −0.0205774 + 0.0356412i
\(467\) −603.000 1044.43i −0.0597506 0.103491i 0.834603 0.550852i \(-0.185697\pi\)
−0.894353 + 0.447361i \(0.852364\pi\)
\(468\) 0 0
\(469\) −4900.00 + 1697.41i −0.482433 + 0.167120i
\(470\) −675.000 −0.0662456
\(471\) 0 0
\(472\) −3780.00 + 6547.15i −0.368620 + 0.638468i
\(473\) 6435.00 11145.7i 0.625543 1.08347i
\(474\) 0 0
\(475\) −3025.00 −0.292203
\(476\) −189.000 + 982.073i −0.0181992 + 0.0945656i
\(477\) 0 0
\(478\) 8253.00 + 14294.6i 0.789714 + 1.36783i
\(479\) −216.000 + 374.123i −0.0206039 + 0.0356871i −0.876144 0.482050i \(-0.839892\pi\)
0.855540 + 0.517737i \(0.173226\pi\)
\(480\) 0 0
\(481\) 7640.50 + 13233.7i 0.724276 + 1.25448i
\(482\) −10653.0 −1.00670
\(483\) 0 0
\(484\) 694.000 0.0651766
\(485\) 2255.00 + 3905.77i 0.211122 + 0.365674i
\(486\) 0 0
\(487\) 5948.00 10302.2i 0.553449 0.958602i −0.444574 0.895742i \(-0.646645\pi\)
0.998022 0.0628592i \(-0.0200219\pi\)
\(488\) −4116.00 7129.12i −0.381809 0.661312i
\(489\) 0 0
\(490\) −4777.50 1909.59i −0.440460 0.176054i
\(491\) 12276.0 1.12833 0.564163 0.825663i \(-0.309199\pi\)
0.564163 + 0.825663i \(0.309199\pi\)
\(492\) 0 0
\(493\) −4374.00 + 7575.99i −0.399584 + 0.692100i
\(494\) −10708.5 + 18547.7i −0.975300 + 1.68927i
\(495\) 0 0
\(496\) 6248.00 0.565612
\(497\) 672.000 + 581.969i 0.0606505 + 0.0525249i
\(498\) 0 0
\(499\) 5438.00 + 9418.89i 0.487852 + 0.844985i 0.999902 0.0139706i \(-0.00444712\pi\)
−0.512050 + 0.858956i \(0.671114\pi\)
\(500\) 62.5000 108.253i 0.00559017 0.00968246i
\(501\) 0 0
\(502\) −10597.5 18355.4i −0.942210 1.63196i
\(503\) −12000.0 −1.06372 −0.531862 0.846831i \(-0.678508\pi\)
−0.531862 + 0.846831i \(0.678508\pi\)
\(504\) 0 0
\(505\) 3420.00 0.301362
\(506\) −4657.50 8067.03i −0.409192 0.708741i
\(507\) 0 0
\(508\) −401.500 + 695.418i −0.0350663 + 0.0607366i
\(509\) −5841.00 10116.9i −0.508640 0.880990i −0.999950 0.0100055i \(-0.996815\pi\)
0.491310 0.870985i \(-0.336518\pi\)
\(510\) 0 0
\(511\) 11690.0 4049.53i 1.01201 0.350569i
\(512\) 8733.00 0.753804
\(513\) 0 0
\(514\) 6120.00 10600.2i 0.525178 0.909635i
\(515\) −3790.00 + 6564.47i −0.324286 + 0.561680i
\(516\) 0 0
\(517\) −2025.00 −0.172262
\(518\) 13597.5 4710.31i 1.15336 0.399535i
\(519\) 0 0
\(520\) 3097.50 + 5365.03i 0.261220 + 0.452446i
\(521\) 4804.50 8321.64i 0.404010 0.699765i −0.590196 0.807260i \(-0.700950\pi\)
0.994206 + 0.107495i \(0.0342829\pi\)
\(522\) 0 0
\(523\) −10594.0 18349.3i −0.885742 1.53415i −0.844860 0.534987i \(-0.820317\pi\)
−0.0408820 0.999164i \(-0.513017\pi\)
\(524\) −2019.00 −0.168321
\(525\) 0 0
\(526\) −9864.00 −0.817663
\(527\) 2376.00 + 4115.35i 0.196395 + 0.340166i
\(528\) 0 0
\(529\) 3703.00 6413.78i 0.304348 0.527146i
\(530\) 4477.50 + 7755.26i 0.366963 + 0.635598i
\(531\) 0 0
\(532\) 1694.00 + 1467.05i 0.138053 + 0.119557i
\(533\) −11505.0 −0.934966
\(534\) 0 0
\(535\) 1830.00 3169.65i 0.147884 0.256142i
\(536\) 2940.00 5092.23i 0.236919 0.410356i
\(537\) 0 0
\(538\) −9792.00 −0.784690
\(539\) −14332.5 5728.76i −1.14535 0.457802i
\(540\) 0 0
\(541\) −4036.00 6990.56i −0.320742 0.555541i 0.659900 0.751354i \(-0.270599\pi\)
−0.980641 + 0.195813i \(0.937265\pi\)
\(542\) −4128.00 + 7149.91i −0.327145 + 0.566632i
\(543\) 0 0
\(544\) −1215.00 2104.44i −0.0957586 0.165859i
\(545\) 8000.00 0.628775
\(546\) 0 0
\(547\) 344.000 0.0268892 0.0134446 0.999910i \(-0.495720\pi\)
0.0134446 + 0.999910i \(0.495720\pi\)
\(548\) 30.0000 + 51.9615i 0.00233857 + 0.00405052i
\(549\) 0 0
\(550\) 1687.50 2922.84i 0.130828 0.226600i
\(551\) 9801.00 + 16975.8i 0.757780 + 1.31251i
\(552\) 0 0
\(553\) −2737.00 + 14221.9i −0.210468 + 1.09363i
\(554\) 14070.0 1.07902
\(555\) 0 0
\(556\) 854.000 1479.17i 0.0651397 0.112825i
\(557\) 9181.50 15902.8i 0.698443 1.20974i −0.270563 0.962702i \(-0.587210\pi\)
0.969006 0.247036i \(-0.0794567\pi\)
\(558\) 0 0
\(559\) −16874.0 −1.27673
\(560\) 6212.50 2152.07i 0.468797 0.162396i
\(561\) 0 0
\(562\) −11731.5 20319.6i −0.880540 1.52514i
\(563\) −3147.00 + 5450.76i −0.235578 + 0.408033i −0.959440 0.281912i \(-0.909032\pi\)
0.723863 + 0.689944i \(0.242365\pi\)
\(564\) 0 0
\(565\) 3480.00 + 6027.54i 0.259123 + 0.448815i
\(566\) 1974.00 0.146596
\(567\) 0 0
\(568\) −1008.00 −0.0744626
\(569\) 5866.50 + 10161.1i 0.432226 + 0.748637i 0.997065 0.0765642i \(-0.0243950\pi\)
−0.564839 + 0.825201i \(0.691062\pi\)
\(570\) 0 0
\(571\) −526.000 + 911.059i −0.0385506 + 0.0667717i −0.884657 0.466242i \(-0.845607\pi\)
0.846106 + 0.533014i \(0.178941\pi\)
\(572\) −1327.50 2299.30i −0.0970377 0.168074i
\(573\) 0 0
\(574\) −2047.50 + 10639.1i −0.148887 + 0.773638i
\(575\) −1725.00 −0.125109
\(576\) 0 0
\(577\) 6578.00 11393.4i 0.474603 0.822036i −0.524974 0.851118i \(-0.675925\pi\)
0.999577 + 0.0290821i \(0.00925844\pi\)
\(578\) −2995.50 + 5188.36i −0.215565 + 0.373369i
\(579\) 0 0
\(580\) −810.000 −0.0579887
\(581\) 10752.0 + 9311.51i 0.767759 + 0.664899i
\(582\) 0 0
\(583\) 13432.5 + 23265.8i 0.954232 + 1.65278i
\(584\) −7014.00 + 12148.6i −0.496989 + 0.860810i
\(585\) 0 0
\(586\) 8995.50 + 15580.7i 0.634131 + 1.09835i
\(587\) 13368.0 0.939960 0.469980 0.882677i \(-0.344261\pi\)
0.469980 + 0.882677i \(0.344261\pi\)
\(588\) 0 0
\(589\) 10648.0 0.744895
\(590\) −2700.00 4676.54i −0.188402 0.326322i
\(591\) 0 0
\(592\) −9194.50 + 15925.3i −0.638330 + 1.10562i
\(593\) 13332.0 + 23091.7i 0.923237 + 1.59909i 0.794372 + 0.607431i \(0.207800\pi\)
0.128865 + 0.991662i \(0.458867\pi\)
\(594\) 0 0
\(595\) 3780.00 + 3273.58i 0.260445 + 0.225552i
\(596\) 1086.00 0.0746381
\(597\) 0 0
\(598\) −6106.50 + 10576.8i −0.417581 + 0.723271i
\(599\) 3807.00 6593.92i 0.259682 0.449783i −0.706474 0.707739i \(-0.749715\pi\)
0.966157 + 0.257955i \(0.0830488\pi\)
\(600\) 0 0
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) −3003.00 + 15604.0i −0.203311 + 1.05643i
\(603\) 0 0
\(604\) 1433.00 + 2482.03i 0.0965363 + 0.167206i
\(605\) 1735.00 3005.11i 0.116591 0.201942i
\(606\) 0 0
\(607\) 10734.5 + 18592.7i 0.717792 + 1.24325i 0.961873 + 0.273498i \(0.0881806\pi\)
−0.244080 + 0.969755i \(0.578486\pi\)
\(608\) −5445.00 −0.363197
\(609\) 0 0
\(610\) 5880.00 0.390286
\(611\) 1327.50 + 2299.30i 0.0878967 + 0.152242i
\(612\) 0 0
\(613\) −1868.50 + 3236.34i −0.123113 + 0.213237i −0.920994 0.389578i \(-0.872621\pi\)
0.797881 + 0.602815i \(0.205954\pi\)
\(614\) −9339.00 16175.6i −0.613830 1.06318i
\(615\) 0 0
\(616\) 16537.5 5728.76i 1.08168 0.374705i
\(617\) −18078.0 −1.17957 −0.589784 0.807561i \(-0.700787\pi\)
−0.589784 + 0.807561i \(0.700787\pi\)
\(618\) 0 0
\(619\) −6143.50 + 10640.9i −0.398915 + 0.690940i −0.993592 0.113024i \(-0.963946\pi\)
0.594678 + 0.803964i \(0.297280\pi\)
\(620\) −220.000 + 381.051i −0.0142507 + 0.0246829i
\(621\) 0 0
\(622\) 14040.0 0.905069
\(623\) −4179.00 + 21714.7i −0.268745 + 1.39644i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 1542.00 2670.82i 0.0984516 0.170523i
\(627\) 0 0
\(628\) 114.500 + 198.320i 0.00727555 + 0.0126016i
\(629\) −13986.0 −0.886579
\(630\) 0 0
\(631\) −9580.00 −0.604396 −0.302198 0.953245i \(-0.597720\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(632\) −8211.00 14221.9i −0.516798 0.895120i
\(633\) 0 0
\(634\) −12933.0 + 22400.6i −0.810150 + 1.40322i
\(635\) 2007.50 + 3477.09i 0.125457 + 0.217298i
\(636\) 0 0
\(637\) 2891.00 + 20029.4i 0.179820 + 1.24583i
\(638\) −21870.0 −1.35712
\(639\) 0 0
\(640\) −4147.50 + 7183.68i −0.256163 + 0.443687i
\(641\) 5389.50 9334.89i 0.332094 0.575204i −0.650828 0.759225i \(-0.725578\pi\)
0.982922 + 0.184021i \(0.0589114\pi\)
\(642\) 0 0
\(643\) 8882.00 0.544746 0.272373 0.962192i \(-0.412191\pi\)
0.272373 + 0.962192i \(0.412191\pi\)
\(644\) 966.000 + 836.581i 0.0591083 + 0.0511893i
\(645\) 0 0
\(646\) −9801.00 16975.8i −0.596928 1.03391i
\(647\) −5509.50 + 9542.73i −0.334777 + 0.579851i −0.983442 0.181223i \(-0.941994\pi\)
0.648665 + 0.761074i \(0.275328\pi\)
\(648\) 0 0
\(649\) −8100.00 14029.6i −0.489912 0.848552i
\(650\) −4425.00 −0.267020
\(651\) 0 0
\(652\) −1228.00 −0.0737610
\(653\) 11161.5 + 19332.3i 0.668887 + 1.15855i 0.978216 + 0.207591i \(0.0665624\pi\)
−0.309329 + 0.950955i \(0.600104\pi\)
\(654\) 0 0
\(655\) −5047.50 + 8742.53i −0.301103 + 0.521525i
\(656\) −6922.50 11990.1i −0.412009 0.713621i
\(657\) 0 0
\(658\) 2362.50 818.394i 0.139969 0.0484868i
\(659\) 11856.0 0.700826 0.350413 0.936595i \(-0.386041\pi\)
0.350413 + 0.936595i \(0.386041\pi\)
\(660\) 0 0
\(661\) 16622.0 28790.1i 0.978095 1.69411i 0.308777 0.951134i \(-0.400080\pi\)
0.669318 0.742976i \(-0.266586\pi\)
\(662\) −2998.50 + 5193.55i −0.176042 + 0.304914i
\(663\) 0 0
\(664\) −16128.0 −0.942602
\(665\) 10587.5 3667.62i 0.617392 0.213871i
\(666\) 0 0
\(667\) 5589.00 + 9680.43i 0.324448 + 0.561961i
\(668\) −964.500 + 1670.56i −0.0558647 + 0.0967605i
\(669\) 0 0
\(670\) 2100.00 + 3637.31i 0.121090 + 0.209733i
\(671\) 17640.0 1.01488
\(672\) 0 0
\(673\) −12322.0 −0.705763 −0.352881 0.935668i \(-0.614798\pi\)
−0.352881 + 0.935668i \(0.614798\pi\)
\(674\) 7671.00 + 13286.6i 0.438392 + 0.759316i
\(675\) 0 0
\(676\) −642.000 + 1111.98i −0.0365271 + 0.0632668i
\(677\) −6298.50 10909.3i −0.357564 0.619320i 0.629989 0.776604i \(-0.283059\pi\)
−0.987553 + 0.157285i \(0.949726\pi\)
\(678\) 0 0
\(679\) −12628.0 10936.2i −0.713723 0.618103i
\(680\) −5670.00 −0.319757
\(681\) 0 0
\(682\) −5940.00 + 10288.4i −0.333511 + 0.577658i
\(683\) −4170.00 + 7222.65i −0.233617 + 0.404637i −0.958870 0.283846i \(-0.908390\pi\)
0.725253 + 0.688483i \(0.241723\pi\)
\(684\) 0 0
\(685\) 300.000 0.0167334
\(686\) 19036.5 + 891.140i 1.05950 + 0.0495975i
\(687\) 0 0
\(688\) −10153.0 17585.5i −0.562616 0.974479i
\(689\) 17611.5 30504.0i 0.973795 1.68666i
\(690\) 0 0
\(691\) 10100.0 + 17493.7i 0.556038 + 0.963086i 0.997822 + 0.0659643i \(0.0210124\pi\)
−0.441784 + 0.897121i \(0.645654\pi\)
\(692\) 699.000 0.0383988
\(693\) 0 0
\(694\) 12960.0 0.708869
\(695\) −4270.00 7395.86i −0.233051 0.403656i
\(696\) 0 0
\(697\) 5265.00 9119.25i 0.286121 0.495576i
\(698\) 11883.0 + 20582.0i 0.644381 + 1.11610i
\(699\) 0 0
\(700\) −87.5000 + 454.663i −0.00472456 + 0.0245495i
\(701\) −474.000 −0.0255388 −0.0127694 0.999918i \(-0.504065\pi\)
−0.0127694 + 0.999918i \(0.504065\pi\)
\(702\) 0 0
\(703\) −15669.5 + 27140.4i −0.840663 + 1.45607i
\(704\) −9742.50 + 16874.5i −0.521569 + 0.903383i
\(705\) 0 0
\(706\) 2484.00 0.132417
\(707\) −11970.0 + 4146.53i −0.636744 + 0.220575i
\(708\) 0 0
\(709\) 12563.0 + 21759.8i 0.665463 + 1.15262i 0.979160 + 0.203093i \(0.0650993\pi\)
−0.313696 + 0.949523i \(0.601567\pi\)
\(710\) 360.000 623.538i 0.0190290 0.0329591i
\(711\) 0 0
\(712\) −12537.0 21714.7i −0.659893 1.14297i
\(713\) 6072.00 0.318932
\(714\) 0 0
\(715\) −13275.0 −0.694345
\(716\) 1558.50 + 2699.40i 0.0813462 + 0.140896i
\(717\) 0 0
\(718\) 2025.00 3507.40i 0.105254 0.182305i
\(719\) −3648.00 6318.52i −0.189218 0.327734i 0.755772 0.654835i \(-0.227262\pi\)
−0.944990 + 0.327100i \(0.893928\pi\)
\(720\) 0 0
\(721\) 5306.00 27570.8i 0.274072 1.42412i
\(722\) −23346.0 −1.20339
\(723\) 0 0
\(724\) 899.000 1557.11i 0.0461479 0.0799305i
\(725\) −2025.00 + 3507.40i −0.103733 + 0.179671i
\(726\) 0 0
\(727\) −15421.0 −0.786703 −0.393352 0.919388i \(-0.628684\pi\)
−0.393352 + 0.919388i \(0.628684\pi\)
\(728\) −17346.0 15022.1i −0.883085 0.764774i
\(729\) 0 0
\(730\) −5010.00 8677.57i −0.254012 0.439961i
\(731\) 7722.00 13374.9i 0.390709 0.676728i
\(732\) 0 0
\(733\) 14583.5 + 25259.4i 0.734862 + 1.27282i 0.954784 + 0.297301i \(0.0960864\pi\)
−0.219922 + 0.975517i \(0.570580\pi\)
\(734\) −8403.00 −0.422562
\(735\) 0 0
\(736\) −3105.00 −0.155505
\(737\) 6300.00 + 10911.9i 0.314876 + 0.545381i
\(738\) 0 0
\(739\) 6690.50 11588.3i 0.333037 0.576836i −0.650069 0.759875i \(-0.725260\pi\)
0.983106 + 0.183039i \(0.0585934\pi\)
\(740\) −647.500 1121.50i −0.0321656 0.0557125i
\(741\) 0 0
\(742\) −25074.0 21714.7i −1.24056 1.07436i
\(743\) −5487.00 −0.270927 −0.135463 0.990782i \(-0.543252\pi\)
−0.135463 + 0.990782i \(0.543252\pi\)
\(744\) 0 0
\(745\) 2715.00 4702.52i 0.133517 0.231258i
\(746\) 9903.00 17152.5i 0.486025 0.841820i
\(747\) 0 0
\(748\) 2430.00 0.118783
\(749\) −2562.00 + 13312.5i −0.124985 + 0.649439i
\(750\) 0 0
\(751\) −3319.00 5748.68i −0.161268 0.279324i 0.774056 0.633117i \(-0.218225\pi\)
−0.935324 + 0.353793i \(0.884892\pi\)
\(752\) −1597.50 + 2766.95i −0.0774665 + 0.134176i
\(753\) 0 0
\(754\) 14337.0 + 24832.4i 0.692470 + 1.19939i
\(755\) 14330.0 0.690758
\(756\) 0 0
\(757\) 14846.0 0.712797 0.356398 0.934334i \(-0.384005\pi\)
0.356398 + 0.934334i \(0.384005\pi\)
\(758\) −12457.5 21577.0i −0.596935 1.03392i
\(759\) 0 0
\(760\) −6352.50 + 11002.9i −0.303197 + 0.525152i
\(761\) −1825.50 3161.86i −0.0869571 0.150614i 0.819266 0.573413i \(-0.194381\pi\)
−0.906223 + 0.422799i \(0.861048\pi\)
\(762\) 0 0
\(763\) −28000.0 + 9699.48i −1.32853 + 0.460216i
\(764\) 2388.00 0.113082
\(765\) 0 0
\(766\) −1417.50 + 2455.18i −0.0668621 + 0.115809i
\(767\) −10620.0 + 18394.4i −0.499956 + 0.865949i
\(768\) 0 0
\(769\) 29855.0 1.40000 0.699999 0.714144i \(-0.253184\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(770\) −2362.50 + 12275.9i −0.110570 + 0.574536i
\(771\) 0 0
\(772\) −136.000 235.559i −0.00634035 0.0109818i
\(773\) −3259.50 + 5645.62i −0.151664 + 0.262689i −0.931839 0.362871i \(-0.881796\pi\)
0.780175 + 0.625561i \(0.215130\pi\)
\(774\) 0 0
\(775\) 1100.00 + 1905.26i 0.0509847 + 0.0883081i
\(776\) 18942.0 0.876261
\(777\) 0 0
\(778\) 36108.0 1.66393