Properties

Label 315.4.j.a
Level $315$
Weight $4$
Character orbit 315.j
Analytic conductor $18.586$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(46,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.46");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - 5 \zeta_{6} q^{5} + ( - 14 \zeta_{6} - 7) q^{7} + 21 q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + 3 \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - 5 \zeta_{6} q^{5} + ( - 14 \zeta_{6} - 7) q^{7} + 21 q^{8} + ( - 15 \zeta_{6} + 15) q^{10} + (45 \zeta_{6} - 45) q^{11} - 31 q^{13} + ( - 63 \zeta_{6} + 42) q^{14} + 71 \zeta_{6} q^{16} + ( - 96 \zeta_{6} + 96) q^{17} - 149 \zeta_{6} q^{19} + 5 q^{20} - 135 q^{22} - 141 \zeta_{6} q^{23} + (25 \zeta_{6} - 25) q^{25} - 93 \zeta_{6} q^{26} + ( - 7 \zeta_{6} + 21) q^{28} - 48 q^{29} + ( - 178 \zeta_{6} + 178) q^{31} + (45 \zeta_{6} - 45) q^{32} + 288 q^{34} + (105 \zeta_{6} - 70) q^{35} - 371 \zeta_{6} q^{37} + ( - 447 \zeta_{6} + 447) q^{38} - 105 \zeta_{6} q^{40} - 225 q^{41} + 344 q^{43} - 45 \zeta_{6} q^{44} + ( - 423 \zeta_{6} + 423) q^{46} + 375 \zeta_{6} q^{47} + (392 \zeta_{6} - 147) q^{49} - 75 q^{50} + ( - 31 \zeta_{6} + 31) q^{52} + (663 \zeta_{6} - 663) q^{53} + 225 q^{55} + ( - 294 \zeta_{6} - 147) q^{56} - 144 \zeta_{6} q^{58} + (60 \zeta_{6} - 60) q^{59} - 392 \zeta_{6} q^{61} + 534 q^{62} + 433 q^{64} + 155 \zeta_{6} q^{65} + ( - 280 \zeta_{6} + 280) q^{67} + 96 \zeta_{6} q^{68} + (105 \zeta_{6} - 315) q^{70} - 258 q^{71} + (578 \zeta_{6} - 578) q^{73} + ( - 1113 \zeta_{6} + 1113) q^{74} + 149 q^{76} + ( - 315 \zeta_{6} + 945) q^{77} - 152 \zeta_{6} q^{79} + ( - 355 \zeta_{6} + 355) q^{80} - 675 \zeta_{6} q^{82} + 432 q^{83} - 480 q^{85} + 1032 \zeta_{6} q^{86} + (945 \zeta_{6} - 945) q^{88} - 234 \zeta_{6} q^{89} + (434 \zeta_{6} + 217) q^{91} + 141 q^{92} + (1125 \zeta_{6} - 1125) q^{94} + (745 \zeta_{6} - 745) q^{95} + 1352 q^{97} + (735 \zeta_{6} - 1176) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - q^{4} - 5 q^{5} - 28 q^{7} + 42 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - q^{4} - 5 q^{5} - 28 q^{7} + 42 q^{8} + 15 q^{10} - 45 q^{11} - 62 q^{13} + 21 q^{14} + 71 q^{16} + 96 q^{17} - 149 q^{19} + 10 q^{20} - 270 q^{22} - 141 q^{23} - 25 q^{25} - 93 q^{26} + 35 q^{28} - 96 q^{29} + 178 q^{31} - 45 q^{32} + 576 q^{34} - 35 q^{35} - 371 q^{37} + 447 q^{38} - 105 q^{40} - 450 q^{41} + 688 q^{43} - 45 q^{44} + 423 q^{46} + 375 q^{47} + 98 q^{49} - 150 q^{50} + 31 q^{52} - 663 q^{53} + 450 q^{55} - 588 q^{56} - 144 q^{58} - 60 q^{59} - 392 q^{61} + 1068 q^{62} + 866 q^{64} + 155 q^{65} + 280 q^{67} + 96 q^{68} - 525 q^{70} - 516 q^{71} - 578 q^{73} + 1113 q^{74} + 298 q^{76} + 1575 q^{77} - 152 q^{79} + 355 q^{80} - 675 q^{82} + 864 q^{83} - 960 q^{85} + 1032 q^{86} - 945 q^{88} - 234 q^{89} + 868 q^{91} + 282 q^{92} - 1125 q^{94} - 745 q^{95} + 2704 q^{97} - 1617 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
46.1
0.500000 + 0.866025i
0.500000 0.866025i
1.50000 + 2.59808i 0 −0.500000 + 0.866025i −2.50000 4.33013i 0 −14.0000 12.1244i 21.0000 0 7.50000 12.9904i
226.1 1.50000 2.59808i 0 −0.500000 0.866025i −2.50000 + 4.33013i 0 −14.0000 + 12.1244i 21.0000 0 7.50000 + 12.9904i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.4.j.a 2
3.b odd 2 1 105.4.i.a 2
7.c even 3 1 inner 315.4.j.a 2
7.c even 3 1 2205.4.a.h 1
7.d odd 6 1 2205.4.a.d 1
21.g even 6 1 735.4.a.h 1
21.h odd 6 1 105.4.i.a 2
21.h odd 6 1 735.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.i.a 2 3.b odd 2 1
105.4.i.a 2 21.h odd 6 1
315.4.j.a 2 1.a even 1 1 trivial
315.4.j.a 2 7.c even 3 1 inner
735.4.a.g 1 21.h odd 6 1
735.4.a.h 1 21.g even 6 1
2205.4.a.d 1 7.d odd 6 1
2205.4.a.h 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(315, [\chi])\):

\( T_{2}^{2} - 3T_{2} + 9 \) Copy content Toggle raw display
\( T_{13} + 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} + 28T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} + 45T + 2025 \) Copy content Toggle raw display
$13$ \( (T + 31)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 96T + 9216 \) Copy content Toggle raw display
$19$ \( T^{2} + 149T + 22201 \) Copy content Toggle raw display
$23$ \( T^{2} + 141T + 19881 \) Copy content Toggle raw display
$29$ \( (T + 48)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 178T + 31684 \) Copy content Toggle raw display
$37$ \( T^{2} + 371T + 137641 \) Copy content Toggle raw display
$41$ \( (T + 225)^{2} \) Copy content Toggle raw display
$43$ \( (T - 344)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 375T + 140625 \) Copy content Toggle raw display
$53$ \( T^{2} + 663T + 439569 \) Copy content Toggle raw display
$59$ \( T^{2} + 60T + 3600 \) Copy content Toggle raw display
$61$ \( T^{2} + 392T + 153664 \) Copy content Toggle raw display
$67$ \( T^{2} - 280T + 78400 \) Copy content Toggle raw display
$71$ \( (T + 258)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 578T + 334084 \) Copy content Toggle raw display
$79$ \( T^{2} + 152T + 23104 \) Copy content Toggle raw display
$83$ \( (T - 432)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 234T + 54756 \) Copy content Toggle raw display
$97$ \( (T - 1352)^{2} \) Copy content Toggle raw display
show more
show less