Properties

Label 315.4.j
Level $315$
Weight $4$
Character orbit 315.j
Rep. character $\chi_{315}(46,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $10$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 10 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(315, [\chi])\).

Total New Old
Modular forms 304 80 224
Cusp forms 272 80 192
Eisenstein series 32 0 32

Trace form

\( 80 q + 2 q^{2} - 170 q^{4} - 10 q^{5} + 20 q^{7} + 36 q^{8} + O(q^{10}) \) \( 80 q + 2 q^{2} - 170 q^{4} - 10 q^{5} + 20 q^{7} + 36 q^{8} + 20 q^{10} - 38 q^{11} - 352 q^{13} - 206 q^{14} - 718 q^{16} - 140 q^{17} - 154 q^{19} + 200 q^{20} - 368 q^{22} - 80 q^{23} - 1000 q^{25} - 438 q^{26} - 6 q^{28} - 692 q^{29} - 160 q^{31} - 882 q^{32} - 1576 q^{34} - 110 q^{35} - 468 q^{37} + 152 q^{38} + 240 q^{40} + 1400 q^{41} + 1712 q^{43} + 522 q^{44} - 22 q^{46} - 992 q^{47} - 390 q^{49} - 100 q^{50} + 1348 q^{52} - 2156 q^{53} - 1120 q^{55} + 876 q^{56} - 1530 q^{58} - 188 q^{59} + 910 q^{61} + 6000 q^{62} + 7444 q^{64} + 530 q^{65} + 216 q^{67} - 1708 q^{68} + 520 q^{70} - 944 q^{71} + 12 q^{73} - 3246 q^{74} + 4916 q^{76} - 1048 q^{77} + 1400 q^{79} - 960 q^{80} + 5486 q^{82} + 7568 q^{83} - 1280 q^{85} + 3324 q^{86} + 5176 q^{88} - 294 q^{89} - 2716 q^{91} + 6204 q^{92} - 6814 q^{94} - 300 q^{95} - 6576 q^{97} - 4486 q^{98} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
315.4.j.a 315.j 7.c $2$ $18.586$ \(\Q(\sqrt{-3}) \) None 105.4.i.a \(3\) \(0\) \(-5\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+3\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-5\zeta_{6}q^{5}+\cdots\)
315.4.j.b 315.j 7.c $2$ $18.586$ \(\Q(\sqrt{-3}) \) None 35.4.e.a \(3\) \(0\) \(5\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+3\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+5\zeta_{6}q^{5}+\cdots\)
315.4.j.c 315.j 7.c $4$ $18.586$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 35.4.e.b \(-6\) \(0\) \(10\) \(22\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+3\beta _{2}+\beta _{3})q^{2}+(-3-6\beta _{1}+\cdots)q^{4}+\cdots\)
315.4.j.d 315.j 7.c $4$ $18.586$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 105.4.i.b \(-4\) \(0\) \(-10\) \(50\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+2\beta _{2}-\beta _{3})q^{2}+(2+4\beta _{1}+\cdots)q^{4}+\cdots\)
315.4.j.e 315.j 7.c $6$ $18.586$ 6.0.646154928.2 None 105.4.i.c \(3\) \(0\) \(15\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1}-\beta _{2}-\beta _{3})q^{2}+(-\beta _{1}+\beta _{4}+\cdots)q^{4}+\cdots\)
315.4.j.f 315.j 7.c $10$ $18.586$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 105.4.i.e \(-1\) \(0\) \(-25\) \(56\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(\beta _{1}-\beta _{2}+\beta _{3}-4\beta _{4}+\beta _{8}+\cdots)q^{4}+\cdots\)
315.4.j.g 315.j 7.c $10$ $18.586$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 35.4.e.c \(1\) \(0\) \(-25\) \(-62\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-7-\beta _{4}+7\beta _{6}+\beta _{8})q^{4}+\cdots\)
315.4.j.h 315.j 7.c $10$ $18.586$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 105.4.i.d \(3\) \(0\) \(25\) \(-32\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{4})q^{2}+(-5-5\beta _{4}+\beta _{7}+\cdots)q^{4}+\cdots\)
315.4.j.i 315.j 7.c $16$ $18.586$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 315.4.j.i \(-4\) \(0\) \(40\) \(22\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{6})q^{2}+(-6-\beta _{1}+\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\)
315.4.j.j 315.j 7.c $16$ $18.586$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 315.4.j.i \(4\) \(0\) \(-40\) \(22\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{6})q^{2}+(-6-\beta _{1}+\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)