Properties

Label 315.4.d.c.64.8
Level $315$
Weight $4$
Character 315.64
Analytic conductor $18.586$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(64,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.64");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.8
Root \(1.85474i\) of defining polynomial
Character \(\chi\) \(=\) 315.64
Dual form 315.4.d.c.64.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85474i q^{2} -0.149548 q^{4} +(-3.91321 - 10.4731i) q^{5} -7.00000i q^{7} +22.4110i q^{8} +(29.8981 - 11.1712i) q^{10} -37.4408 q^{11} +3.96370i q^{13} +19.9832 q^{14} -65.1740 q^{16} +51.6780i q^{17} -25.9323 q^{19} +(0.585214 + 1.56624i) q^{20} -106.884i q^{22} +173.454i q^{23} +(-94.3736 + 81.9673i) q^{25} -11.3154 q^{26} +1.04684i q^{28} -245.676 q^{29} -172.074 q^{31} -6.76690i q^{32} -147.527 q^{34} +(-73.3120 + 27.3925i) q^{35} +250.699i q^{37} -74.0300i q^{38} +(234.714 - 87.6990i) q^{40} +48.8649 q^{41} -143.612i q^{43} +5.59920 q^{44} -495.167 q^{46} -36.6415i q^{47} -49.0000 q^{49} +(-233.995 - 269.412i) q^{50} -0.592765i q^{52} -645.286i q^{53} +(146.514 + 392.123i) q^{55} +156.877 q^{56} -701.343i q^{58} +395.495 q^{59} +47.5130 q^{61} -491.228i q^{62} -502.074 q^{64} +(41.5125 - 15.5108i) q^{65} -263.189i q^{67} -7.72835i q^{68} +(-78.1984 - 209.287i) q^{70} +268.177 q^{71} +199.757i q^{73} -715.680 q^{74} +3.87813 q^{76} +262.085i q^{77} -473.640 q^{79} +(255.040 + 682.577i) q^{80} +139.497i q^{82} +72.7028i q^{83} +(541.231 - 202.227i) q^{85} +409.975 q^{86} -839.086i q^{88} -1552.25 q^{89} +27.7459 q^{91} -25.9398i q^{92} +104.602 q^{94} +(101.478 + 271.593i) q^{95} -243.338i q^{97} -139.882i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} - 6 q^{5} - 16 q^{10} - 84 q^{11} + 56 q^{14} + 148 q^{16} + 72 q^{19} + 68 q^{20} - 362 q^{25} + 620 q^{26} - 88 q^{29} + 120 q^{31} + 964 q^{34} + 28 q^{35} + 1396 q^{40} + 852 q^{41}+ \cdots + 1628 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.85474i 1.00930i 0.863323 + 0.504652i \(0.168379\pi\)
−0.863323 + 0.504652i \(0.831621\pi\)
\(3\) 0 0
\(4\) −0.149548 −0.0186935
\(5\) −3.91321 10.4731i −0.350008 0.936747i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 22.4110i 0.990436i
\(9\) 0 0
\(10\) 29.8981 11.1712i 0.945462 0.353265i
\(11\) −37.4408 −1.02626 −0.513128 0.858312i \(-0.671513\pi\)
−0.513128 + 0.858312i \(0.671513\pi\)
\(12\) 0 0
\(13\) 3.96370i 0.0845641i 0.999106 + 0.0422821i \(0.0134628\pi\)
−0.999106 + 0.0422821i \(0.986537\pi\)
\(14\) 19.9832 0.381481
\(15\) 0 0
\(16\) −65.1740 −1.01834
\(17\) 51.6780i 0.737279i 0.929572 + 0.368640i \(0.120176\pi\)
−0.929572 + 0.368640i \(0.879824\pi\)
\(18\) 0 0
\(19\) −25.9323 −0.313120 −0.156560 0.987668i \(-0.550040\pi\)
−0.156560 + 0.987668i \(0.550040\pi\)
\(20\) 0.585214 + 1.56624i 0.00654289 + 0.0175111i
\(21\) 0 0
\(22\) 106.884i 1.03580i
\(23\) 173.454i 1.57251i 0.617902 + 0.786255i \(0.287983\pi\)
−0.617902 + 0.786255i \(0.712017\pi\)
\(24\) 0 0
\(25\) −94.3736 + 81.9673i −0.754988 + 0.655738i
\(26\) −11.3154 −0.0853509
\(27\) 0 0
\(28\) 1.04684i 0.00706549i
\(29\) −245.676 −1.57314 −0.786568 0.617503i \(-0.788144\pi\)
−0.786568 + 0.617503i \(0.788144\pi\)
\(30\) 0 0
\(31\) −172.074 −0.996951 −0.498475 0.866904i \(-0.666107\pi\)
−0.498475 + 0.866904i \(0.666107\pi\)
\(32\) 6.76690i 0.0373822i
\(33\) 0 0
\(34\) −147.527 −0.744139
\(35\) −73.3120 + 27.3925i −0.354057 + 0.132291i
\(36\) 0 0
\(37\) 250.699i 1.11391i 0.830543 + 0.556954i \(0.188030\pi\)
−0.830543 + 0.556954i \(0.811970\pi\)
\(38\) 74.0300i 0.316033i
\(39\) 0 0
\(40\) 234.714 87.6990i 0.927788 0.346661i
\(41\) 48.8649 0.186132 0.0930661 0.995660i \(-0.470333\pi\)
0.0930661 + 0.995660i \(0.470333\pi\)
\(42\) 0 0
\(43\) 143.612i 0.509317i −0.967031 0.254658i \(-0.918037\pi\)
0.967031 0.254658i \(-0.0819630\pi\)
\(44\) 5.59920 0.0191844
\(45\) 0 0
\(46\) −495.167 −1.58714
\(47\) 36.6415i 0.113717i −0.998382 0.0568587i \(-0.981892\pi\)
0.998382 0.0568587i \(-0.0181085\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) −233.995 269.412i −0.661839 0.762012i
\(51\) 0 0
\(52\) 0.592765i 0.00158080i
\(53\) 645.286i 1.67239i −0.548430 0.836196i \(-0.684774\pi\)
0.548430 0.836196i \(-0.315226\pi\)
\(54\) 0 0
\(55\) 146.514 + 392.123i 0.359198 + 0.961342i
\(56\) 156.877 0.374350
\(57\) 0 0
\(58\) 701.343i 1.58777i
\(59\) 395.495 0.872696 0.436348 0.899778i \(-0.356272\pi\)
0.436348 + 0.899778i \(0.356272\pi\)
\(60\) 0 0
\(61\) 47.5130 0.0997282 0.0498641 0.998756i \(-0.484121\pi\)
0.0498641 + 0.998756i \(0.484121\pi\)
\(62\) 491.228i 1.00623i
\(63\) 0 0
\(64\) −502.074 −0.980614
\(65\) 41.5125 15.5108i 0.0792152 0.0295981i
\(66\) 0 0
\(67\) 263.189i 0.479906i −0.970785 0.239953i \(-0.922868\pi\)
0.970785 0.239953i \(-0.0771320\pi\)
\(68\) 7.72835i 0.0137824i
\(69\) 0 0
\(70\) −78.1984 209.287i −0.133521 0.357351i
\(71\) 268.177 0.448264 0.224132 0.974559i \(-0.428045\pi\)
0.224132 + 0.974559i \(0.428045\pi\)
\(72\) 0 0
\(73\) 199.757i 0.320271i 0.987095 + 0.160136i \(0.0511931\pi\)
−0.987095 + 0.160136i \(0.948807\pi\)
\(74\) −715.680 −1.12427
\(75\) 0 0
\(76\) 3.87813 0.00585331
\(77\) 262.085i 0.387888i
\(78\) 0 0
\(79\) −473.640 −0.674540 −0.337270 0.941408i \(-0.609503\pi\)
−0.337270 + 0.941408i \(0.609503\pi\)
\(80\) 255.040 + 682.577i 0.356429 + 0.953930i
\(81\) 0 0
\(82\) 139.497i 0.187864i
\(83\) 72.7028i 0.0961466i 0.998844 + 0.0480733i \(0.0153081\pi\)
−0.998844 + 0.0480733i \(0.984692\pi\)
\(84\) 0 0
\(85\) 541.231 202.227i 0.690644 0.258054i
\(86\) 409.975 0.514055
\(87\) 0 0
\(88\) 839.086i 1.01644i
\(89\) −1552.25 −1.84874 −0.924369 0.381500i \(-0.875408\pi\)
−0.924369 + 0.381500i \(0.875408\pi\)
\(90\) 0 0
\(91\) 27.7459 0.0319622
\(92\) 25.9398i 0.0293958i
\(93\) 0 0
\(94\) 104.602 0.114775
\(95\) 101.478 + 271.593i 0.109594 + 0.293314i
\(96\) 0 0
\(97\) 243.338i 0.254714i −0.991857 0.127357i \(-0.959351\pi\)
0.991857 0.127357i \(-0.0406494\pi\)
\(98\) 139.882i 0.144186i
\(99\) 0 0
\(100\) 14.1134 12.2581i 0.0141134 0.0122581i
\(101\) 1539.34 1.51653 0.758265 0.651946i \(-0.226047\pi\)
0.758265 + 0.651946i \(0.226047\pi\)
\(102\) 0 0
\(103\) 948.628i 0.907486i 0.891133 + 0.453743i \(0.149912\pi\)
−0.891133 + 0.453743i \(0.850088\pi\)
\(104\) −88.8306 −0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) 863.983i 0.780602i 0.920687 + 0.390301i \(0.127629\pi\)
−0.920687 + 0.390301i \(0.872371\pi\)
\(108\) 0 0
\(109\) −886.319 −0.778844 −0.389422 0.921060i \(-0.627325\pi\)
−0.389422 + 0.921060i \(0.627325\pi\)
\(110\) −1119.41 + 418.259i −0.970286 + 0.362540i
\(111\) 0 0
\(112\) 456.218i 0.384898i
\(113\) 765.957i 0.637657i −0.947812 0.318828i \(-0.896711\pi\)
0.947812 0.318828i \(-0.103289\pi\)
\(114\) 0 0
\(115\) 1816.61 678.763i 1.47304 0.550391i
\(116\) 36.7405 0.0294075
\(117\) 0 0
\(118\) 1129.04i 0.880816i
\(119\) 361.746 0.278665
\(120\) 0 0
\(121\) 70.8116 0.0532018
\(122\) 135.637i 0.100656i
\(123\) 0 0
\(124\) 25.7334 0.0186365
\(125\) 1227.76 + 667.633i 0.878513 + 0.477719i
\(126\) 0 0
\(127\) 505.042i 0.352876i −0.984312 0.176438i \(-0.943543\pi\)
0.984312 0.176438i \(-0.0564575\pi\)
\(128\) 1487.43i 1.02712i
\(129\) 0 0
\(130\) 44.2794 + 118.507i 0.0298735 + 0.0799521i
\(131\) −672.930 −0.448811 −0.224405 0.974496i \(-0.572044\pi\)
−0.224405 + 0.974496i \(0.572044\pi\)
\(132\) 0 0
\(133\) 181.526i 0.118348i
\(134\) 751.337 0.484371
\(135\) 0 0
\(136\) −1158.16 −0.730228
\(137\) 1552.28i 0.968032i 0.875059 + 0.484016i \(0.160822\pi\)
−0.875059 + 0.484016i \(0.839178\pi\)
\(138\) 0 0
\(139\) 1072.02 0.654154 0.327077 0.944998i \(-0.393936\pi\)
0.327077 + 0.944998i \(0.393936\pi\)
\(140\) 10.9637 4.09650i 0.00661857 0.00247298i
\(141\) 0 0
\(142\) 765.575i 0.452434i
\(143\) 148.404i 0.0867845i
\(144\) 0 0
\(145\) 961.384 + 2573.00i 0.550611 + 1.47363i
\(146\) −570.255 −0.323251
\(147\) 0 0
\(148\) 37.4915i 0.0208229i
\(149\) 645.936 0.355149 0.177574 0.984107i \(-0.443175\pi\)
0.177574 + 0.984107i \(0.443175\pi\)
\(150\) 0 0
\(151\) 243.194 0.131065 0.0655326 0.997850i \(-0.479125\pi\)
0.0655326 + 0.997850i \(0.479125\pi\)
\(152\) 581.169i 0.310125i
\(153\) 0 0
\(154\) −748.186 −0.391497
\(155\) 673.363 + 1802.16i 0.348941 + 0.933890i
\(156\) 0 0
\(157\) 1552.56i 0.789223i 0.918848 + 0.394611i \(0.129121\pi\)
−0.918848 + 0.394611i \(0.870879\pi\)
\(158\) 1352.12i 0.680815i
\(159\) 0 0
\(160\) −70.8707 + 26.4803i −0.0350176 + 0.0130841i
\(161\) 1214.18 0.594353
\(162\) 0 0
\(163\) 2553.65i 1.22710i 0.789656 + 0.613550i \(0.210259\pi\)
−0.789656 + 0.613550i \(0.789741\pi\)
\(164\) −7.30766 −0.00347947
\(165\) 0 0
\(166\) −207.548 −0.0970411
\(167\) 3573.14i 1.65568i 0.560966 + 0.827839i \(0.310430\pi\)
−0.560966 + 0.827839i \(0.689570\pi\)
\(168\) 0 0
\(169\) 2181.29 0.992849
\(170\) 577.305 + 1545.07i 0.260455 + 0.697069i
\(171\) 0 0
\(172\) 21.4769i 0.00952093i
\(173\) 2234.71i 0.982090i −0.871134 0.491045i \(-0.836615\pi\)
0.871134 0.491045i \(-0.163385\pi\)
\(174\) 0 0
\(175\) 573.771 + 660.615i 0.247846 + 0.285359i
\(176\) 2440.17 1.04508
\(177\) 0 0
\(178\) 4431.26i 1.86594i
\(179\) −1830.53 −0.764361 −0.382180 0.924088i \(-0.624827\pi\)
−0.382180 + 0.924088i \(0.624827\pi\)
\(180\) 0 0
\(181\) 2437.22 1.00087 0.500433 0.865775i \(-0.333174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(182\) 79.2075i 0.0322596i
\(183\) 0 0
\(184\) −3887.29 −1.55747
\(185\) 2625.60 981.037i 1.04345 0.389877i
\(186\) 0 0
\(187\) 1934.86i 0.756638i
\(188\) 5.47968i 0.00212578i
\(189\) 0 0
\(190\) −775.327 + 289.695i −0.296043 + 0.110614i
\(191\) −5079.50 −1.92429 −0.962145 0.272538i \(-0.912137\pi\)
−0.962145 + 0.272538i \(0.912137\pi\)
\(192\) 0 0
\(193\) 2805.09i 1.04619i −0.852274 0.523095i \(-0.824777\pi\)
0.852274 0.523095i \(-0.175223\pi\)
\(194\) 694.667 0.257084
\(195\) 0 0
\(196\) 7.32786 0.00267050
\(197\) 3107.79i 1.12396i −0.827149 0.561982i \(-0.810039\pi\)
0.827149 0.561982i \(-0.189961\pi\)
\(198\) 0 0
\(199\) 2145.63 0.764321 0.382161 0.924096i \(-0.375180\pi\)
0.382161 + 0.924096i \(0.375180\pi\)
\(200\) −1836.97 2115.01i −0.649467 0.747768i
\(201\) 0 0
\(202\) 4394.41i 1.53064i
\(203\) 1719.73i 0.594590i
\(204\) 0 0
\(205\) −191.219 511.769i −0.0651478 0.174359i
\(206\) −2708.09 −0.915929
\(207\) 0 0
\(208\) 258.331i 0.0861154i
\(209\) 970.925 0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) 96.5013i 0.0312629i
\(213\) 0 0
\(214\) −2466.45 −0.787864
\(215\) −1504.07 + 561.984i −0.477101 + 0.178265i
\(216\) 0 0
\(217\) 1204.52i 0.376812i
\(218\) 2530.21i 0.786089i
\(219\) 0 0
\(220\) −21.9109 58.6413i −0.00671468 0.0179709i
\(221\) −204.836 −0.0623474
\(222\) 0 0
\(223\) 4741.40i 1.42380i −0.702280 0.711901i \(-0.747834\pi\)
0.702280 0.711901i \(-0.252166\pi\)
\(224\) −47.3683 −0.0141291
\(225\) 0 0
\(226\) 2186.61 0.643589
\(227\) 960.790i 0.280925i −0.990086 0.140462i \(-0.955141\pi\)
0.990086 0.140462i \(-0.0448589\pi\)
\(228\) 0 0
\(229\) −744.006 −0.214696 −0.107348 0.994222i \(-0.534236\pi\)
−0.107348 + 0.994222i \(0.534236\pi\)
\(230\) 1937.69 + 5185.96i 0.555512 + 1.48675i
\(231\) 0 0
\(232\) 5505.86i 1.55809i
\(233\) 1550.56i 0.435968i −0.975952 0.217984i \(-0.930052\pi\)
0.975952 0.217984i \(-0.0699480\pi\)
\(234\) 0 0
\(235\) −383.752 + 143.386i −0.106524 + 0.0398020i
\(236\) −59.1456 −0.0163138
\(237\) 0 0
\(238\) 1032.69i 0.281258i
\(239\) 2775.00 0.751045 0.375523 0.926813i \(-0.377463\pi\)
0.375523 + 0.926813i \(0.377463\pi\)
\(240\) 0 0
\(241\) −2550.20 −0.681630 −0.340815 0.940130i \(-0.610703\pi\)
−0.340815 + 0.940130i \(0.610703\pi\)
\(242\) 202.149i 0.0536968i
\(243\) 0 0
\(244\) −7.10549 −0.00186427
\(245\) 191.747 + 513.184i 0.0500012 + 0.133821i
\(246\) 0 0
\(247\) 102.788i 0.0264787i
\(248\) 3856.36i 0.987416i
\(249\) 0 0
\(250\) −1905.92 + 3504.93i −0.482164 + 0.886686i
\(251\) 2933.00 0.737568 0.368784 0.929515i \(-0.379774\pi\)
0.368784 + 0.929515i \(0.379774\pi\)
\(252\) 0 0
\(253\) 6494.26i 1.61380i
\(254\) 1441.76 0.356159
\(255\) 0 0
\(256\) 229.626 0.0560611
\(257\) 2725.22i 0.661459i 0.943726 + 0.330729i \(0.107295\pi\)
−0.943726 + 0.330729i \(0.892705\pi\)
\(258\) 0 0
\(259\) 1754.89 0.421018
\(260\) −6.20811 + 2.31961i −0.00148081 + 0.000553294i
\(261\) 0 0
\(262\) 1921.04i 0.452986i
\(263\) 3027.26i 0.709767i −0.934910 0.354884i \(-0.884520\pi\)
0.934910 0.354884i \(-0.115480\pi\)
\(264\) 0 0
\(265\) −6758.17 + 2525.14i −1.56661 + 0.585351i
\(266\) −518.210 −0.119449
\(267\) 0 0
\(268\) 39.3595i 0.00897114i
\(269\) −1442.46 −0.326946 −0.163473 0.986548i \(-0.552270\pi\)
−0.163473 + 0.986548i \(0.552270\pi\)
\(270\) 0 0
\(271\) −6464.45 −1.44903 −0.724516 0.689258i \(-0.757937\pi\)
−0.724516 + 0.689258i \(0.757937\pi\)
\(272\) 3368.06i 0.750804i
\(273\) 0 0
\(274\) −4431.36 −0.977038
\(275\) 3533.42 3068.92i 0.774812 0.672955i
\(276\) 0 0
\(277\) 876.614i 0.190147i 0.995470 + 0.0950733i \(0.0303086\pi\)
−0.995470 + 0.0950733i \(0.969691\pi\)
\(278\) 3060.33i 0.660240i
\(279\) 0 0
\(280\) −613.893 1643.00i −0.131025 0.350671i
\(281\) −6252.19 −1.32731 −0.663655 0.748038i \(-0.730996\pi\)
−0.663655 + 0.748038i \(0.730996\pi\)
\(282\) 0 0
\(283\) 2250.07i 0.472625i −0.971677 0.236312i \(-0.924061\pi\)
0.971677 0.236312i \(-0.0759389\pi\)
\(284\) −40.1054 −0.00837963
\(285\) 0 0
\(286\) 423.655 0.0875919
\(287\) 342.054i 0.0703513i
\(288\) 0 0
\(289\) 2242.39 0.456419
\(290\) −7345.26 + 2744.50i −1.48734 + 0.555733i
\(291\) 0 0
\(292\) 29.8733i 0.00598700i
\(293\) 5917.86i 1.17995i −0.807422 0.589975i \(-0.799138\pi\)
0.807422 0.589975i \(-0.200862\pi\)
\(294\) 0 0
\(295\) −1547.66 4142.08i −0.305451 0.817495i
\(296\) −5618.41 −1.10325
\(297\) 0 0
\(298\) 1843.98i 0.358453i
\(299\) −687.522 −0.132978
\(300\) 0 0
\(301\) −1005.28 −0.192504
\(302\) 694.256i 0.132284i
\(303\) 0 0
\(304\) 1690.11 0.318864
\(305\) −185.929 497.611i −0.0349057 0.0934200i
\(306\) 0 0
\(307\) 9458.47i 1.75838i 0.476469 + 0.879191i \(0.341916\pi\)
−0.476469 + 0.879191i \(0.658084\pi\)
\(308\) 39.1944i 0.00725100i
\(309\) 0 0
\(310\) −5144.70 + 1922.28i −0.942579 + 0.352187i
\(311\) 7576.78 1.38148 0.690739 0.723104i \(-0.257285\pi\)
0.690739 + 0.723104i \(0.257285\pi\)
\(312\) 0 0
\(313\) 9172.41i 1.65641i 0.560427 + 0.828204i \(0.310637\pi\)
−0.560427 + 0.828204i \(0.689363\pi\)
\(314\) −4432.16 −0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) 3077.94i 0.545345i 0.962107 + 0.272672i \(0.0879075\pi\)
−0.962107 + 0.272672i \(0.912092\pi\)
\(318\) 0 0
\(319\) 9198.31 1.61444
\(320\) 1964.72 + 5258.30i 0.343223 + 0.918587i
\(321\) 0 0
\(322\) 3466.17i 0.599882i
\(323\) 1340.13i 0.230857i
\(324\) 0 0
\(325\) −324.894 374.069i −0.0554519 0.0638449i
\(326\) −7290.01 −1.23852
\(327\) 0 0
\(328\) 1095.11i 0.184352i
\(329\) −256.491 −0.0429811
\(330\) 0 0
\(331\) 3234.50 0.537113 0.268557 0.963264i \(-0.413453\pi\)
0.268557 + 0.963264i \(0.413453\pi\)
\(332\) 10.8726i 0.00179732i
\(333\) 0 0
\(334\) −10200.4 −1.67108
\(335\) −2756.42 + 1029.92i −0.449550 + 0.167971i
\(336\) 0 0
\(337\) 3777.84i 0.610658i −0.952247 0.305329i \(-0.901234\pi\)
0.952247 0.305329i \(-0.0987665\pi\)
\(338\) 6227.02i 1.00209i
\(339\) 0 0
\(340\) −80.9401 + 30.2427i −0.0129106 + 0.00482394i
\(341\) 6442.60 1.02313
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 3218.49 0.504446
\(345\) 0 0
\(346\) 6379.51 0.991227
\(347\) 8244.08i 1.27540i 0.770283 + 0.637702i \(0.220115\pi\)
−0.770283 + 0.637702i \(0.779885\pi\)
\(348\) 0 0
\(349\) −7173.78 −1.10030 −0.550148 0.835067i \(-0.685429\pi\)
−0.550148 + 0.835067i \(0.685429\pi\)
\(350\) −1885.88 + 1637.97i −0.288014 + 0.250152i
\(351\) 0 0
\(352\) 253.358i 0.0383637i
\(353\) 4191.51i 0.631987i −0.948761 0.315994i \(-0.897662\pi\)
0.948761 0.315994i \(-0.102338\pi\)
\(354\) 0 0
\(355\) −1049.43 2808.65i −0.156896 0.419910i
\(356\) 232.136 0.0345594
\(357\) 0 0
\(358\) 5225.70i 0.771472i
\(359\) −3136.29 −0.461078 −0.230539 0.973063i \(-0.574049\pi\)
−0.230539 + 0.973063i \(0.574049\pi\)
\(360\) 0 0
\(361\) −6186.52 −0.901956
\(362\) 6957.62i 1.01018i
\(363\) 0 0
\(364\) −4.14936 −0.000597487
\(365\) 2092.08 781.691i 0.300013 0.112098i
\(366\) 0 0
\(367\) 1723.30i 0.245110i 0.992462 + 0.122555i \(0.0391088\pi\)
−0.992462 + 0.122555i \(0.960891\pi\)
\(368\) 11304.7i 1.60136i
\(369\) 0 0
\(370\) 2800.61 + 7495.42i 0.393504 + 1.05316i
\(371\) −4517.00 −0.632105
\(372\) 0 0
\(373\) 2818.55i 0.391258i 0.980678 + 0.195629i \(0.0626748\pi\)
−0.980678 + 0.195629i \(0.937325\pi\)
\(374\) 5523.53 0.763677
\(375\) 0 0
\(376\) 821.174 0.112630
\(377\) 973.788i 0.133031i
\(378\) 0 0
\(379\) 10466.1 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(380\) −15.1759 40.6162i −0.00204871 0.00548307i
\(381\) 0 0
\(382\) 14500.6i 1.94219i
\(383\) 258.055i 0.0344282i 0.999852 + 0.0172141i \(0.00547969\pi\)
−0.999852 + 0.0172141i \(0.994520\pi\)
\(384\) 0 0
\(385\) 2744.86 1025.60i 0.363353 0.135764i
\(386\) 8007.81 1.05592
\(387\) 0 0
\(388\) 36.3908i 0.00476150i
\(389\) 4573.87 0.596156 0.298078 0.954542i \(-0.403654\pi\)
0.298078 + 0.954542i \(0.403654\pi\)
\(390\) 0 0
\(391\) −8963.77 −1.15938
\(392\) 1098.14i 0.141491i
\(393\) 0 0
\(394\) 8871.94 1.13442
\(395\) 1853.45 + 4960.50i 0.236094 + 0.631873i
\(396\) 0 0
\(397\) 3624.55i 0.458215i −0.973401 0.229107i \(-0.926419\pi\)
0.973401 0.229107i \(-0.0735807\pi\)
\(398\) 6125.23i 0.771432i
\(399\) 0 0
\(400\) 6150.70 5342.14i 0.768838 0.667767i
\(401\) −6358.32 −0.791819 −0.395910 0.918289i \(-0.629571\pi\)
−0.395910 + 0.918289i \(0.629571\pi\)
\(402\) 0 0
\(403\) 682.052i 0.0843063i
\(404\) −230.205 −0.0283493
\(405\) 0 0
\(406\) −4909.40 −0.600121
\(407\) 9386.35i 1.14316i
\(408\) 0 0
\(409\) 6536.39 0.790228 0.395114 0.918632i \(-0.370705\pi\)
0.395114 + 0.918632i \(0.370705\pi\)
\(410\) 1460.97 545.880i 0.175981 0.0657539i
\(411\) 0 0
\(412\) 141.866i 0.0169641i
\(413\) 2768.47i 0.329848i
\(414\) 0 0
\(415\) 761.427 284.501i 0.0900650 0.0336521i
\(416\) 26.8220 0.00316119
\(417\) 0 0
\(418\) 2771.74i 0.324331i
\(419\) 6333.56 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 8100.18i 0.934385i
\(423\) 0 0
\(424\) 14461.5 1.65640
\(425\) −4235.90 4877.03i −0.483462 0.556637i
\(426\) 0 0
\(427\) 332.591i 0.0376937i
\(428\) 129.207i 0.0145922i
\(429\) 0 0
\(430\) −1604.32 4293.73i −0.179924 0.481539i
\(431\) 14367.6 1.60571 0.802856 0.596173i \(-0.203313\pi\)
0.802856 + 0.596173i \(0.203313\pi\)
\(432\) 0 0
\(433\) 8399.05i 0.932176i −0.884738 0.466088i \(-0.845663\pi\)
0.884738 0.466088i \(-0.154337\pi\)
\(434\) −3438.59 −0.380318
\(435\) 0 0
\(436\) 132.547 0.0145593
\(437\) 4498.07i 0.492384i
\(438\) 0 0
\(439\) 17860.8 1.94180 0.970901 0.239482i \(-0.0769777\pi\)
0.970901 + 0.239482i \(0.0769777\pi\)
\(440\) −8787.87 + 3283.52i −0.952148 + 0.355763i
\(441\) 0 0
\(442\) 584.754i 0.0629274i
\(443\) 1901.57i 0.203942i −0.994787 0.101971i \(-0.967485\pi\)
0.994787 0.101971i \(-0.0325148\pi\)
\(444\) 0 0
\(445\) 6074.26 + 16256.9i 0.647074 + 1.73180i
\(446\) 13535.5 1.43705
\(447\) 0 0
\(448\) 3514.52i 0.370637i
\(449\) −5185.68 −0.545050 −0.272525 0.962149i \(-0.587859\pi\)
−0.272525 + 0.962149i \(0.587859\pi\)
\(450\) 0 0
\(451\) −1829.54 −0.191019
\(452\) 114.548i 0.0119201i
\(453\) 0 0
\(454\) 2742.81 0.283538
\(455\) −108.576 290.587i −0.0111870 0.0299405i
\(456\) 0 0
\(457\) 11198.8i 1.14630i 0.819451 + 0.573149i \(0.194278\pi\)
−0.819451 + 0.573149i \(0.805722\pi\)
\(458\) 2123.94i 0.216693i
\(459\) 0 0
\(460\) −271.671 + 101.508i −0.0275364 + 0.0102888i
\(461\) −17270.7 −1.74485 −0.872427 0.488744i \(-0.837455\pi\)
−0.872427 + 0.488744i \(0.837455\pi\)
\(462\) 0 0
\(463\) 385.660i 0.0387109i 0.999813 + 0.0193554i \(0.00616141\pi\)
−0.999813 + 0.0193554i \(0.993839\pi\)
\(464\) 16011.7 1.60199
\(465\) 0 0
\(466\) 4426.44 0.440024
\(467\) 5035.36i 0.498947i 0.968382 + 0.249474i \(0.0802576\pi\)
−0.968382 + 0.249474i \(0.919742\pi\)
\(468\) 0 0
\(469\) −1842.33 −0.181387
\(470\) −409.330 1095.51i −0.0401723 0.107515i
\(471\) 0 0
\(472\) 8863.45i 0.864350i
\(473\) 5376.94i 0.522689i
\(474\) 0 0
\(475\) 2447.32 2125.60i 0.236402 0.205324i
\(476\) −54.0985 −0.00520924
\(477\) 0 0
\(478\) 7921.91i 0.758033i
\(479\) −8681.99 −0.828163 −0.414082 0.910240i \(-0.635897\pi\)
−0.414082 + 0.910240i \(0.635897\pi\)
\(480\) 0 0
\(481\) −993.695 −0.0941967
\(482\) 7280.16i 0.687972i
\(483\) 0 0
\(484\) −10.5898 −0.000994530
\(485\) −2548.51 + 952.233i −0.238602 + 0.0891519i
\(486\) 0 0
\(487\) 890.476i 0.0828569i −0.999141 0.0414284i \(-0.986809\pi\)
0.999141 0.0414284i \(-0.0131909\pi\)
\(488\) 1064.81i 0.0987744i
\(489\) 0 0
\(490\) −1465.01 + 547.389i −0.135066 + 0.0504664i
\(491\) −1562.48 −0.143613 −0.0718063 0.997419i \(-0.522876\pi\)
−0.0718063 + 0.997419i \(0.522876\pi\)
\(492\) 0 0
\(493\) 12696.1i 1.15984i
\(494\) 293.433 0.0267250
\(495\) 0 0
\(496\) 11214.8 1.01524
\(497\) 1877.24i 0.169428i
\(498\) 0 0
\(499\) −8234.33 −0.738716 −0.369358 0.929287i \(-0.620422\pi\)
−0.369358 + 0.929287i \(0.620422\pi\)
\(500\) −183.609 99.8433i −0.0164225 0.00893026i
\(501\) 0 0
\(502\) 8372.97i 0.744430i
\(503\) 72.5340i 0.00642969i −0.999995 0.00321484i \(-0.998977\pi\)
0.999995 0.00321484i \(-0.00102332\pi\)
\(504\) 0 0
\(505\) −6023.75 16121.7i −0.530798 1.42061i
\(506\) 18539.4 1.62881
\(507\) 0 0
\(508\) 75.5281i 0.00659649i
\(509\) 7793.44 0.678660 0.339330 0.940667i \(-0.389800\pi\)
0.339330 + 0.940667i \(0.389800\pi\)
\(510\) 0 0
\(511\) 1398.30 0.121051
\(512\) 11243.9i 0.970537i
\(513\) 0 0
\(514\) −7779.81 −0.667612
\(515\) 9935.12 3712.18i 0.850084 0.317628i
\(516\) 0 0
\(517\) 1371.89i 0.116703i
\(518\) 5009.76i 0.424935i
\(519\) 0 0
\(520\) 347.613 + 930.336i 0.0293151 + 0.0784576i
\(521\) −4645.42 −0.390633 −0.195316 0.980740i \(-0.562573\pi\)
−0.195316 + 0.980740i \(0.562573\pi\)
\(522\) 0 0
\(523\) 8783.88i 0.734402i 0.930142 + 0.367201i \(0.119684\pi\)
−0.930142 + 0.367201i \(0.880316\pi\)
\(524\) 100.636 0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) 8892.46i 0.735031i
\(528\) 0 0
\(529\) −17919.4 −1.47279
\(530\) −7208.62 19292.8i −0.590797 1.58118i
\(531\) 0 0
\(532\) 27.1469i 0.00221234i
\(533\) 193.686i 0.0157401i
\(534\) 0 0
\(535\) 9048.62 3380.95i 0.731226 0.273217i
\(536\) 5898.34 0.475316
\(537\) 0 0
\(538\) 4117.86i 0.329988i
\(539\) 1834.60 0.146608
\(540\) 0 0
\(541\) −7054.13 −0.560593 −0.280296 0.959913i \(-0.590433\pi\)
−0.280296 + 0.959913i \(0.590433\pi\)
\(542\) 18454.3i 1.46251i
\(543\) 0 0
\(544\) 349.700 0.0275611
\(545\) 3468.35 + 9282.55i 0.272602 + 0.729579i
\(546\) 0 0
\(547\) 5776.83i 0.451553i 0.974179 + 0.225776i \(0.0724919\pi\)
−0.974179 + 0.225776i \(0.927508\pi\)
\(548\) 232.141i 0.0180959i
\(549\) 0 0
\(550\) 8760.97 + 10087.0i 0.679216 + 0.782020i
\(551\) 6370.95 0.492580
\(552\) 0 0
\(553\) 3315.48i 0.254952i
\(554\) −2502.51 −0.191916
\(555\) 0 0
\(556\) −160.318 −0.0122284
\(557\) 20562.6i 1.56421i 0.623145 + 0.782106i \(0.285854\pi\)
−0.623145 + 0.782106i \(0.714146\pi\)
\(558\) 0 0
\(559\) 569.235 0.0430699
\(560\) 4778.04 1785.28i 0.360552 0.134717i
\(561\) 0 0
\(562\) 17848.4i 1.33966i
\(563\) 24009.5i 1.79730i 0.438666 + 0.898650i \(0.355451\pi\)
−0.438666 + 0.898650i \(0.644549\pi\)
\(564\) 0 0
\(565\) −8021.98 + 2997.35i −0.597323 + 0.223185i
\(566\) 6423.37 0.477022
\(567\) 0 0
\(568\) 6010.11i 0.443977i
\(569\) −24157.5 −1.77985 −0.889925 0.456107i \(-0.849243\pi\)
−0.889925 + 0.456107i \(0.849243\pi\)
\(570\) 0 0
\(571\) −706.993 −0.0518157 −0.0259078 0.999664i \(-0.508248\pi\)
−0.0259078 + 0.999664i \(0.508248\pi\)
\(572\) 22.1936i 0.00162231i
\(573\) 0 0
\(574\) 976.477 0.0710059
\(575\) −14217.6 16369.5i −1.03115 1.18723i
\(576\) 0 0
\(577\) 16057.2i 1.15853i −0.815139 0.579265i \(-0.803340\pi\)
0.815139 0.579265i \(-0.196660\pi\)
\(578\) 6401.44i 0.460665i
\(579\) 0 0
\(580\) −143.773 384.788i −0.0102929 0.0275474i
\(581\) 508.919 0.0363400
\(582\) 0 0
\(583\) 24160.0i 1.71630i
\(584\) −4476.76 −0.317208
\(585\) 0 0
\(586\) 16894.0 1.19093
\(587\) 8605.63i 0.605098i 0.953134 + 0.302549i \(0.0978376\pi\)
−0.953134 + 0.302549i \(0.902162\pi\)
\(588\) 0 0
\(589\) 4462.28 0.312165
\(590\) 11824.6 4418.16i 0.825101 0.308293i
\(591\) 0 0
\(592\) 16339.0i 1.13434i
\(593\) 20355.6i 1.40962i 0.709397 + 0.704809i \(0.248967\pi\)
−0.709397 + 0.704809i \(0.751033\pi\)
\(594\) 0 0
\(595\) −1415.59 3788.62i −0.0975352 0.261039i
\(596\) −96.5986 −0.00663898
\(597\) 0 0
\(598\) 1962.70i 0.134215i
\(599\) 22635.7 1.54402 0.772010 0.635610i \(-0.219251\pi\)
0.772010 + 0.635610i \(0.219251\pi\)
\(600\) 0 0
\(601\) −22553.8 −1.53077 −0.765383 0.643575i \(-0.777450\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(602\) 2869.83i 0.194295i
\(603\) 0 0
\(604\) −36.3692 −0.00245007
\(605\) −277.101 741.620i −0.0186211 0.0498366i
\(606\) 0 0
\(607\) 17534.2i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(608\) 175.481i 0.0117051i
\(609\) 0 0
\(610\) 1420.55 530.778i 0.0942892 0.0352304i
\(611\) 145.236 0.00961641
\(612\) 0 0
\(613\) 10445.5i 0.688238i −0.938926 0.344119i \(-0.888178\pi\)
0.938926 0.344119i \(-0.111822\pi\)
\(614\) −27001.5 −1.77474
\(615\) 0 0
\(616\) −5873.60 −0.384179
\(617\) 13218.9i 0.862516i 0.902229 + 0.431258i \(0.141930\pi\)
−0.902229 + 0.431258i \(0.858070\pi\)
\(618\) 0 0
\(619\) −23438.9 −1.52195 −0.760976 0.648780i \(-0.775280\pi\)
−0.760976 + 0.648780i \(0.775280\pi\)
\(620\) −100.700 269.510i −0.00652294 0.0174577i
\(621\) 0 0
\(622\) 21629.8i 1.39433i
\(623\) 10865.7i 0.698757i
\(624\) 0 0
\(625\) 2187.74 15471.1i 0.140015 0.990149i
\(626\) −26184.9 −1.67182
\(627\) 0 0
\(628\) 232.183i 0.0147534i
\(629\) −12955.6 −0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) 10614.7i 0.668089i
\(633\) 0 0
\(634\) −8786.72 −0.550419
\(635\) −5289.38 + 1976.34i −0.330555 + 0.123509i
\(636\) 0 0
\(637\) 194.222i 0.0120806i
\(638\) 26258.8i 1.62946i
\(639\) 0 0
\(640\) −15578.0 + 5820.62i −0.962151 + 0.359500i
\(641\) −23977.0 −1.47743 −0.738715 0.674017i \(-0.764567\pi\)
−0.738715 + 0.674017i \(0.764567\pi\)
\(642\) 0 0
\(643\) 27698.0i 1.69876i −0.527782 0.849380i \(-0.676976\pi\)
0.527782 0.849380i \(-0.323024\pi\)
\(644\) −181.579 −0.0111106
\(645\) 0 0
\(646\) 3825.72 0.233004
\(647\) 10965.1i 0.666282i −0.942877 0.333141i \(-0.891891\pi\)
0.942877 0.333141i \(-0.108109\pi\)
\(648\) 0 0
\(649\) −14807.6 −0.895610
\(650\) 1067.87 927.488i 0.0644389 0.0559678i
\(651\) 0 0
\(652\) 381.894i 0.0229388i
\(653\) 12336.2i 0.739285i 0.929174 + 0.369642i \(0.120520\pi\)
−0.929174 + 0.369642i \(0.879480\pi\)
\(654\) 0 0
\(655\) 2633.32 + 7047.70i 0.157087 + 0.420422i
\(656\) −3184.72 −0.189547
\(657\) 0 0
\(658\) 732.215i 0.0433810i
\(659\) −25275.6 −1.49408 −0.747040 0.664779i \(-0.768526\pi\)
−0.747040 + 0.664779i \(0.768526\pi\)
\(660\) 0 0
\(661\) −4447.92 −0.261731 −0.130865 0.991400i \(-0.541776\pi\)
−0.130865 + 0.991400i \(0.541776\pi\)
\(662\) 9233.67i 0.542110i
\(663\) 0 0
\(664\) −1629.34 −0.0952270
\(665\) 1901.15 710.349i 0.110862 0.0414228i
\(666\) 0 0
\(667\) 42613.6i 2.47377i
\(668\) 534.357i 0.0309505i
\(669\) 0 0
\(670\) −2940.14 7868.87i −0.169534 0.453733i
\(671\) −1778.92 −0.102347
\(672\) 0 0
\(673\) 30358.9i 1.73885i 0.494061 + 0.869427i \(0.335512\pi\)
−0.494061 + 0.869427i \(0.664488\pi\)
\(674\) 10784.7 0.616340
\(675\) 0 0
\(676\) −326.208 −0.0185599
\(677\) 6916.48i 0.392647i 0.980539 + 0.196324i \(0.0629003\pi\)
−0.980539 + 0.196324i \(0.937100\pi\)
\(678\) 0 0
\(679\) −1703.37 −0.0962728
\(680\) 4532.11 + 12129.5i 0.255586 + 0.684039i
\(681\) 0 0
\(682\) 18392.0i 1.03265i
\(683\) 4532.72i 0.253938i −0.991907 0.126969i \(-0.959475\pi\)
0.991907 0.126969i \(-0.0405249\pi\)
\(684\) 0 0
\(685\) 16257.3 6074.40i 0.906800 0.338819i
\(686\) −979.176 −0.0544973
\(687\) 0 0
\(688\) 9359.77i 0.518660i
\(689\) 2557.72 0.141424
\(690\) 0 0
\(691\) 27235.2 1.49939 0.749694 0.661785i \(-0.230201\pi\)
0.749694 + 0.661785i \(0.230201\pi\)
\(692\) 334.197i 0.0183587i
\(693\) 0 0
\(694\) −23534.7 −1.28727
\(695\) −4195.03 11227.4i −0.228959 0.612776i
\(696\) 0 0
\(697\) 2525.24i 0.137231i
\(698\) 20479.3i 1.11053i
\(699\) 0 0
\(700\) −85.8064 98.7938i −0.00463311 0.00533436i
\(701\) 17144.3 0.923726 0.461863 0.886951i \(-0.347181\pi\)
0.461863 + 0.886951i \(0.347181\pi\)
\(702\) 0 0
\(703\) 6501.19i 0.348787i
\(704\) 18798.1 1.00636
\(705\) 0 0
\(706\) 11965.7 0.637867
\(707\) 10775.3i 0.573195i
\(708\) 0 0
\(709\) −16724.1 −0.885877 −0.442939 0.896552i \(-0.646064\pi\)
−0.442939 + 0.896552i \(0.646064\pi\)
\(710\) 8017.98 2995.86i 0.423816 0.158356i
\(711\) 0 0
\(712\) 34787.4i 1.83106i
\(713\) 29847.0i 1.56771i
\(714\) 0 0
\(715\) −1554.26 + 580.737i −0.0812951 + 0.0303753i
\(716\) 273.753 0.0142886
\(717\) 0 0
\(718\) 8953.30i 0.465368i
\(719\) 4308.66 0.223485 0.111743 0.993737i \(-0.464357\pi\)
0.111743 + 0.993737i \(0.464357\pi\)
\(720\) 0 0
\(721\) 6640.39 0.342997
\(722\) 17660.9i 0.910347i
\(723\) 0 0
\(724\) −364.481 −0.0187097
\(725\) 23185.4 20137.4i 1.18770 1.03157i
\(726\) 0 0
\(727\) 29435.6i 1.50166i 0.660496 + 0.750830i \(0.270346\pi\)
−0.660496 + 0.750830i \(0.729654\pi\)
\(728\) 621.814i 0.0316566i
\(729\) 0 0
\(730\) 2231.53 + 5972.36i 0.113140 + 0.302804i
\(731\) 7421.58 0.375509
\(732\) 0 0
\(733\) 6587.69i 0.331954i −0.986130 0.165977i \(-0.946922\pi\)
0.986130 0.165977i \(-0.0530777\pi\)
\(734\) −4919.57 −0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) 9854.01i 0.492506i
\(738\) 0 0
\(739\) −3684.46 −0.183404 −0.0917018 0.995787i \(-0.529231\pi\)
−0.0917018 + 0.995787i \(0.529231\pi\)
\(740\) −392.654 + 146.712i −0.0195058 + 0.00728818i
\(741\) 0 0
\(742\) 12894.9i 0.637986i
\(743\) 12271.9i 0.605940i −0.953000 0.302970i \(-0.902022\pi\)
0.953000 0.302970i \(-0.0979783\pi\)
\(744\) 0 0
\(745\) −2527.68 6764.98i −0.124305 0.332684i
\(746\) −8046.24 −0.394898
\(747\) 0 0
\(748\) 289.355i 0.0141442i
\(749\) 6047.88 0.295040
\(750\) 0 0
\(751\) −30871.0 −1.50000 −0.749999 0.661439i \(-0.769946\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(752\) 2388.08i 0.115803i
\(753\) 0 0
\(754\) 2779.91 0.134269
\(755\) −951.669 2547.00i −0.0458739 0.122775i
\(756\) 0 0
\(757\) 11442.1i 0.549368i −0.961535 0.274684i \(-0.911427\pi\)
0.961535 0.274684i \(-0.0885732\pi\)
\(758\) 29878.1i 1.43169i
\(759\) 0 0
\(760\) −6086.66 + 2274.24i −0.290509 + 0.108546i
\(761\) −14423.3 −0.687048 −0.343524 0.939144i \(-0.611621\pi\)
−0.343524 + 0.939144i \(0.611621\pi\)
\(762\) 0 0
\(763\) 6204.23i 0.294375i
\(764\) 759.630 0.0359718
\(765\) 0 0
\(766\) −736.681 −0.0347485
\(767\) 1567.63i 0.0737988i
\(768\) 0 0
\(769\) −26772.8 −1.25546 −0.627731 0.778430i \(-0.716016\pi\)
−0.627731 + 0.778430i \(0.716016\pi\)
\(770\) 2927.81 + 7835.86i 0.137027 + 0.366734i
\(771\) 0 0
\(772\) 419.496i 0.0195570i
\(773\) 27669.3i 1.28745i −0.765258 0.643724i \(-0.777389\pi\)
0.765258 0.643724i \(-0.222611\pi\)
\(774\) 0 0
\(775\) 16239.3 14104.5i 0.752686 0.653739i
\(776\) 5453.45 0.252278
\(777\) 0 0
\(778\) 13057.2i 0.601702i
\(779\) −1267.18 −0.0582816
\(780\) 0 0
\(781\) −10040.7 −0.460034
\(782\) 25589.2i 1.17017i
\(783\) 0 0
\(784\) 3193.53 0.145478
\(785\) 16260.2 6075.51i 0.739302 0.276235i
\(786\) 0 0
\(787\) 10934.5i 0.495263i 0.968854 + 0.247632i \(0.0796523\pi\)
−0.968854 + 0.247632i \(0.920348\pi\)
\(788\)