Properties

Label 315.4.d.c.64.4
Level $315$
Weight $4$
Character 315.64
Analytic conductor $18.586$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(64,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.64");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.4
Root \(-2.67516i\) of defining polynomial
Character \(\chi\) \(=\) 315.64
Dual form 315.4.d.c.64.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67516i q^{2} +5.19383 q^{4} +(-6.35505 - 9.19855i) q^{5} -7.00000i q^{7} -22.1018i q^{8} +(-15.4091 + 10.6457i) q^{10} +57.5880 q^{11} -45.5159i q^{13} -11.7261 q^{14} +4.52655 q^{16} +92.0051i q^{17} -125.177 q^{19} +(-33.0070 - 47.7757i) q^{20} -96.4692i q^{22} -158.496i q^{23} +(-44.2268 + 116.914i) q^{25} -76.2466 q^{26} -36.3568i q^{28} -40.1708 q^{29} +49.5590 q^{31} -184.397i q^{32} +154.123 q^{34} +(-64.3899 + 44.4853i) q^{35} -231.307i q^{37} +209.692i q^{38} +(-203.305 + 140.458i) q^{40} -169.556 q^{41} -147.428i q^{43} +299.102 q^{44} -265.507 q^{46} -67.0327i q^{47} -49.0000 q^{49} +(195.851 + 74.0870i) q^{50} -236.402i q^{52} -268.647i q^{53} +(-365.974 - 529.726i) q^{55} -154.713 q^{56} +67.2926i q^{58} -240.843 q^{59} +90.4579 q^{61} -83.0194i q^{62} -272.683 q^{64} +(-418.681 + 289.256i) q^{65} +406.498i q^{67} +477.859i q^{68} +(74.5201 + 107.863i) q^{70} -330.782 q^{71} +546.255i q^{73} -387.477 q^{74} -650.149 q^{76} -403.116i q^{77} +25.3087 q^{79} +(-28.7664 - 41.6377i) q^{80} +284.034i q^{82} -376.255i q^{83} +(846.314 - 584.697i) q^{85} -246.965 q^{86} -1272.80i q^{88} +1026.44 q^{89} -318.612 q^{91} -823.203i q^{92} -112.291 q^{94} +(795.506 + 1151.45i) q^{95} +942.660i q^{97} +82.0829i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} - 6 q^{5} - 16 q^{10} - 84 q^{11} + 56 q^{14} + 148 q^{16} + 72 q^{19} + 68 q^{20} - 362 q^{25} + 620 q^{26} - 88 q^{29} + 120 q^{31} + 964 q^{34} + 28 q^{35} + 1396 q^{40} + 852 q^{41}+ \cdots + 1628 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67516i 0.592259i −0.955148 0.296130i \(-0.904304\pi\)
0.955148 0.296130i \(-0.0956960\pi\)
\(3\) 0 0
\(4\) 5.19383 0.649229
\(5\) −6.35505 9.19855i −0.568413 0.822744i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 22.1018i 0.976771i
\(9\) 0 0
\(10\) −15.4091 + 10.6457i −0.487278 + 0.336648i
\(11\) 57.5880 1.57849 0.789247 0.614076i \(-0.210471\pi\)
0.789247 + 0.614076i \(0.210471\pi\)
\(12\) 0 0
\(13\) 45.5159i 0.971066i −0.874218 0.485533i \(-0.838626\pi\)
0.874218 0.485533i \(-0.161374\pi\)
\(14\) −11.7261 −0.223853
\(15\) 0 0
\(16\) 4.52655 0.0707273
\(17\) 92.0051i 1.31262i 0.754492 + 0.656309i \(0.227883\pi\)
−0.754492 + 0.656309i \(0.772117\pi\)
\(18\) 0 0
\(19\) −125.177 −1.51145 −0.755726 0.654888i \(-0.772716\pi\)
−0.755726 + 0.654888i \(0.772716\pi\)
\(20\) −33.0070 47.7757i −0.369030 0.534149i
\(21\) 0 0
\(22\) 96.4692i 0.934878i
\(23\) 158.496i 1.43690i −0.695578 0.718451i \(-0.744851\pi\)
0.695578 0.718451i \(-0.255149\pi\)
\(24\) 0 0
\(25\) −44.2268 + 116.914i −0.353814 + 0.935316i
\(26\) −76.2466 −0.575123
\(27\) 0 0
\(28\) 36.3568i 0.245386i
\(29\) −40.1708 −0.257225 −0.128613 0.991695i \(-0.541052\pi\)
−0.128613 + 0.991695i \(0.541052\pi\)
\(30\) 0 0
\(31\) 49.5590 0.287131 0.143566 0.989641i \(-0.454143\pi\)
0.143566 + 0.989641i \(0.454143\pi\)
\(32\) 184.397i 1.01866i
\(33\) 0 0
\(34\) 154.123 0.777410
\(35\) −64.3899 + 44.4853i −0.310968 + 0.214840i
\(36\) 0 0
\(37\) 231.307i 1.02775i −0.857866 0.513874i \(-0.828210\pi\)
0.857866 0.513874i \(-0.171790\pi\)
\(38\) 209.692i 0.895171i
\(39\) 0 0
\(40\) −203.305 + 140.458i −0.803632 + 0.555209i
\(41\) −169.556 −0.645859 −0.322929 0.946423i \(-0.604668\pi\)
−0.322929 + 0.946423i \(0.604668\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i −0.965224 0.261425i \(-0.915808\pi\)
0.965224 0.261425i \(-0.0841923\pi\)
\(44\) 299.102 1.02480
\(45\) 0 0
\(46\) −265.507 −0.851018
\(47\) 67.0327i 0.208037i −0.994575 0.104018i \(-0.966830\pi\)
0.994575 0.104018i \(-0.0331701\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 195.851 + 74.0870i 0.553949 + 0.209550i
\(51\) 0 0
\(52\) 236.402i 0.630444i
\(53\) 268.647i 0.696254i −0.937447 0.348127i \(-0.886818\pi\)
0.937447 0.348127i \(-0.113182\pi\)
\(54\) 0 0
\(55\) −365.974 529.726i −0.897236 1.29870i
\(56\) −154.713 −0.369185
\(57\) 0 0
\(58\) 67.2926i 0.152344i
\(59\) −240.843 −0.531442 −0.265721 0.964050i \(-0.585610\pi\)
−0.265721 + 0.964050i \(0.585610\pi\)
\(60\) 0 0
\(61\) 90.4579 0.189868 0.0949340 0.995484i \(-0.469736\pi\)
0.0949340 + 0.995484i \(0.469736\pi\)
\(62\) 83.0194i 0.170056i
\(63\) 0 0
\(64\) −272.683 −0.532583
\(65\) −418.681 + 289.256i −0.798938 + 0.551966i
\(66\) 0 0
\(67\) 406.498i 0.741218i 0.928789 + 0.370609i \(0.120851\pi\)
−0.928789 + 0.370609i \(0.879149\pi\)
\(68\) 477.859i 0.852190i
\(69\) 0 0
\(70\) 74.5201 + 107.863i 0.127241 + 0.184174i
\(71\) −330.782 −0.552910 −0.276455 0.961027i \(-0.589160\pi\)
−0.276455 + 0.961027i \(0.589160\pi\)
\(72\) 0 0
\(73\) 546.255i 0.875812i 0.899021 + 0.437906i \(0.144280\pi\)
−0.899021 + 0.437906i \(0.855720\pi\)
\(74\) −387.477 −0.608693
\(75\) 0 0
\(76\) −650.149 −0.981279
\(77\) 403.116i 0.596615i
\(78\) 0 0
\(79\) 25.3087 0.0360436 0.0180218 0.999838i \(-0.494263\pi\)
0.0180218 + 0.999838i \(0.494263\pi\)
\(80\) −28.7664 41.6377i −0.0402023 0.0581905i
\(81\) 0 0
\(82\) 284.034i 0.382516i
\(83\) 376.255i 0.497582i −0.968557 0.248791i \(-0.919967\pi\)
0.968557 0.248791i \(-0.0800333\pi\)
\(84\) 0 0
\(85\) 846.314 584.697i 1.07995 0.746109i
\(86\) −246.965 −0.309662
\(87\) 0 0
\(88\) 1272.80i 1.54183i
\(89\) 1026.44 1.22250 0.611248 0.791439i \(-0.290668\pi\)
0.611248 + 0.791439i \(0.290668\pi\)
\(90\) 0 0
\(91\) −318.612 −0.367028
\(92\) 823.203i 0.932878i
\(93\) 0 0
\(94\) −112.291 −0.123212
\(95\) 795.506 + 1151.45i 0.859128 + 1.24354i
\(96\) 0 0
\(97\) 942.660i 0.986728i 0.869823 + 0.493364i \(0.164233\pi\)
−0.869823 + 0.493364i \(0.835767\pi\)
\(98\) 82.0829i 0.0846085i
\(99\) 0 0
\(100\) −229.706 + 607.234i −0.229706 + 0.607234i
\(101\) 604.617 0.595659 0.297830 0.954619i \(-0.403737\pi\)
0.297830 + 0.954619i \(0.403737\pi\)
\(102\) 0 0
\(103\) 300.967i 0.287914i −0.989584 0.143957i \(-0.954017\pi\)
0.989584 0.143957i \(-0.0459828\pi\)
\(104\) −1005.98 −0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) 1511.66i 1.36577i 0.730525 + 0.682886i \(0.239276\pi\)
−0.730525 + 0.682886i \(0.760724\pi\)
\(108\) 0 0
\(109\) 1767.09 1.55281 0.776406 0.630233i \(-0.217041\pi\)
0.776406 + 0.630233i \(0.217041\pi\)
\(110\) −887.377 + 613.066i −0.769165 + 0.531396i
\(111\) 0 0
\(112\) 31.6858i 0.0267324i
\(113\) 1045.27i 0.870182i −0.900387 0.435091i \(-0.856716\pi\)
0.900387 0.435091i \(-0.143284\pi\)
\(114\) 0 0
\(115\) −1457.94 + 1007.25i −1.18220 + 0.816753i
\(116\) −208.640 −0.166998
\(117\) 0 0
\(118\) 403.451i 0.314751i
\(119\) 644.036 0.496123
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) 151.532i 0.112451i
\(123\) 0 0
\(124\) 257.401 0.186414
\(125\) 1356.51 336.174i 0.970638 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i −0.995843 0.0910857i \(-0.970966\pi\)
0.995843 0.0910857i \(-0.0290337\pi\)
\(128\) 1018.39i 0.703233i
\(129\) 0 0
\(130\) 484.551 + 701.358i 0.326907 + 0.473178i
\(131\) 723.522 0.482553 0.241276 0.970456i \(-0.422434\pi\)
0.241276 + 0.970456i \(0.422434\pi\)
\(132\) 0 0
\(133\) 876.240i 0.571275i
\(134\) 680.950 0.438993
\(135\) 0 0
\(136\) 2033.48 1.28213
\(137\) 773.693i 0.482490i 0.970464 + 0.241245i \(0.0775557\pi\)
−0.970464 + 0.241245i \(0.922444\pi\)
\(138\) 0 0
\(139\) 2952.97 1.80192 0.900961 0.433899i \(-0.142863\pi\)
0.900961 + 0.433899i \(0.142863\pi\)
\(140\) −334.430 + 231.049i −0.201889 + 0.139480i
\(141\) 0 0
\(142\) 554.114i 0.327466i
\(143\) 2621.17i 1.53282i
\(144\) 0 0
\(145\) 255.287 + 369.513i 0.146210 + 0.211630i
\(146\) 915.066 0.518708
\(147\) 0 0
\(148\) 1201.37i 0.667244i
\(149\) 2514.00 1.38225 0.691124 0.722736i \(-0.257116\pi\)
0.691124 + 0.722736i \(0.257116\pi\)
\(150\) 0 0
\(151\) 101.052 0.0544605 0.0272302 0.999629i \(-0.491331\pi\)
0.0272302 + 0.999629i \(0.491331\pi\)
\(152\) 2766.64i 1.47634i
\(153\) 0 0
\(154\) −675.285 −0.353351
\(155\) −314.950 455.872i −0.163209 0.236235i
\(156\) 0 0
\(157\) 2338.35i 1.18867i −0.804219 0.594333i \(-0.797416\pi\)
0.804219 0.594333i \(-0.202584\pi\)
\(158\) 42.3961i 0.0213472i
\(159\) 0 0
\(160\) −1696.19 + 1171.85i −0.838096 + 0.579019i
\(161\) −1109.47 −0.543098
\(162\) 0 0
\(163\) 1325.20i 0.636798i −0.947957 0.318399i \(-0.896855\pi\)
0.947957 0.318399i \(-0.103145\pi\)
\(164\) −880.646 −0.419310
\(165\) 0 0
\(166\) −630.288 −0.294698
\(167\) 2086.20i 0.966675i 0.875434 + 0.483338i \(0.160576\pi\)
−0.875434 + 0.483338i \(0.839424\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) −979.462 1417.71i −0.441890 0.639609i
\(171\) 0 0
\(172\) 765.715i 0.339449i
\(173\) 1918.19i 0.842990i −0.906831 0.421495i \(-0.861505\pi\)
0.906831 0.421495i \(-0.138495\pi\)
\(174\) 0 0
\(175\) 818.401 + 309.587i 0.353516 + 0.133729i
\(176\) 260.675 0.111643
\(177\) 0 0
\(178\) 1719.45i 0.724035i
\(179\) 629.046 0.262665 0.131333 0.991338i \(-0.458074\pi\)
0.131333 + 0.991338i \(0.458074\pi\)
\(180\) 0 0
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 533.726i 0.217376i
\(183\) 0 0
\(184\) −3503.05 −1.40352
\(185\) −2127.69 + 1469.97i −0.845573 + 0.584185i
\(186\) 0 0
\(187\) 5298.39i 2.07196i
\(188\) 348.157i 0.135063i
\(189\) 0 0
\(190\) 1928.86 1332.60i 0.736497 0.508827i
\(191\) −740.255 −0.280434 −0.140217 0.990121i \(-0.544780\pi\)
−0.140217 + 0.990121i \(0.544780\pi\)
\(192\) 0 0
\(193\) 4082.57i 1.52264i 0.648375 + 0.761321i \(0.275449\pi\)
−0.648375 + 0.761321i \(0.724551\pi\)
\(194\) 1579.11 0.584399
\(195\) 0 0
\(196\) −254.498 −0.0927470
\(197\) 3414.89i 1.23503i 0.786559 + 0.617515i \(0.211860\pi\)
−0.786559 + 0.617515i \(0.788140\pi\)
\(198\) 0 0
\(199\) 3392.44 1.20846 0.604231 0.796809i \(-0.293480\pi\)
0.604231 + 0.796809i \(0.293480\pi\)
\(200\) 2584.02 + 977.492i 0.913589 + 0.345596i
\(201\) 0 0
\(202\) 1012.83i 0.352785i
\(203\) 281.196i 0.0972220i
\(204\) 0 0
\(205\) 1077.54 + 1559.67i 0.367114 + 0.531376i
\(206\) −504.169 −0.170520
\(207\) 0 0
\(208\) 206.030i 0.0686809i
\(209\) −7208.70 −2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1395.31i 0.452029i
\(213\) 0 0
\(214\) 2532.28 0.808892
\(215\) −1356.12 + 936.910i −0.430171 + 0.297194i
\(216\) 0 0
\(217\) 346.913i 0.108525i
\(218\) 2960.16i 0.919667i
\(219\) 0 0
\(220\) −1900.81 2751.31i −0.582512 0.843151i
\(221\) 4187.70 1.27464
\(222\) 0 0
\(223\) 182.611i 0.0548365i 0.999624 + 0.0274183i \(0.00872860\pi\)
−0.999624 + 0.0274183i \(0.991271\pi\)
\(224\) −1290.78 −0.385017
\(225\) 0 0
\(226\) −1750.99 −0.515373
\(227\) 3152.33i 0.921707i −0.887476 0.460854i \(-0.847543\pi\)
0.887476 0.460854i \(-0.152457\pi\)
\(228\) 0 0
\(229\) −6012.35 −1.73497 −0.867483 0.497466i \(-0.834264\pi\)
−0.867483 + 0.497466i \(0.834264\pi\)
\(230\) 1687.31 + 2442.28i 0.483730 + 0.700170i
\(231\) 0 0
\(232\) 887.848i 0.251250i
\(233\) 940.660i 0.264484i 0.991217 + 0.132242i \(0.0422175\pi\)
−0.991217 + 0.132242i \(0.957782\pi\)
\(234\) 0 0
\(235\) −616.604 + 425.996i −0.171161 + 0.118251i
\(236\) −1250.90 −0.345027
\(237\) 0 0
\(238\) 1078.86i 0.293833i
\(239\) 5158.82 1.39622 0.698109 0.715991i \(-0.254025\pi\)
0.698109 + 0.715991i \(0.254025\pi\)
\(240\) 0 0
\(241\) −463.836 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(242\) 3325.83i 0.883440i
\(243\) 0 0
\(244\) 469.823 0.123268
\(245\) 311.397 + 450.729i 0.0812018 + 0.117535i
\(246\) 0 0
\(247\) 5697.55i 1.46772i
\(248\) 1095.34i 0.280461i
\(249\) 0 0
\(250\) −563.146 2272.37i −0.142466 0.574869i
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) −436.760 −0.107893
\(255\) 0 0
\(256\) −3887.43 −0.949079
\(257\) 802.202i 0.194708i −0.995250 0.0973541i \(-0.968962\pi\)
0.995250 0.0973541i \(-0.0310379\pi\)
\(258\) 0 0
\(259\) −1619.15 −0.388452
\(260\) −2174.56 + 1502.35i −0.518694 + 0.358352i
\(261\) 0 0
\(262\) 1212.02i 0.285796i
\(263\) 286.978i 0.0672845i 0.999434 + 0.0336423i \(0.0107107\pi\)
−0.999434 + 0.0336423i \(0.989289\pi\)
\(264\) 0 0
\(265\) −2471.16 + 1707.26i −0.572839 + 0.395760i
\(266\) 1467.84 0.338343
\(267\) 0 0
\(268\) 2111.28i 0.481221i
\(269\) 3561.22 0.807180 0.403590 0.914940i \(-0.367762\pi\)
0.403590 + 0.914940i \(0.367762\pi\)
\(270\) 0 0
\(271\) 1928.81 0.432349 0.216175 0.976355i \(-0.430642\pi\)
0.216175 + 0.976355i \(0.430642\pi\)
\(272\) 416.466i 0.0928380i
\(273\) 0 0
\(274\) 1296.06 0.285759
\(275\) −2546.93 + 6732.87i −0.558494 + 1.47639i
\(276\) 0 0
\(277\) 6588.69i 1.42916i −0.699556 0.714578i \(-0.746619\pi\)
0.699556 0.714578i \(-0.253381\pi\)
\(278\) 4946.70i 1.06721i
\(279\) 0 0
\(280\) 983.206 + 1423.13i 0.209849 + 0.303744i
\(281\) −815.552 −0.173138 −0.0865689 0.996246i \(-0.527590\pi\)
−0.0865689 + 0.996246i \(0.527590\pi\)
\(282\) 0 0
\(283\) 6513.49i 1.36815i −0.729411 0.684076i \(-0.760206\pi\)
0.729411 0.684076i \(-0.239794\pi\)
\(284\) −1718.03 −0.358965
\(285\) 0 0
\(286\) −4390.89 −0.907828
\(287\) 1186.89i 0.244112i
\(288\) 0 0
\(289\) −3551.94 −0.722967
\(290\) 618.995 427.648i 0.125340 0.0865943i
\(291\) 0 0
\(292\) 2837.16i 0.568603i
\(293\) 435.520i 0.0868373i −0.999057 0.0434186i \(-0.986175\pi\)
0.999057 0.0434186i \(-0.0138249\pi\)
\(294\) 0 0
\(295\) 1530.57 + 2215.40i 0.302078 + 0.437240i
\(296\) −5112.31 −1.00387
\(297\) 0 0
\(298\) 4211.36i 0.818650i
\(299\) −7214.10 −1.39533
\(300\) 0 0
\(301\) −1031.99 −0.197618
\(302\) 169.279i 0.0322547i
\(303\) 0 0
\(304\) −566.620 −0.106901
\(305\) −574.864 832.082i −0.107923 0.156213i
\(306\) 0 0
\(307\) 4915.99i 0.913910i 0.889490 + 0.456955i \(0.151060\pi\)
−0.889490 + 0.456955i \(0.848940\pi\)
\(308\) 2093.72i 0.387340i
\(309\) 0 0
\(310\) −763.659 + 527.592i −0.139913 + 0.0966620i
\(311\) 1831.11 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(312\) 0 0
\(313\) 2442.96i 0.441163i −0.975369 0.220582i \(-0.929204\pi\)
0.975369 0.220582i \(-0.0707955\pi\)
\(314\) −3917.11 −0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) 1666.19i 0.295214i 0.989046 + 0.147607i \(0.0471570\pi\)
−0.989046 + 0.147607i \(0.952843\pi\)
\(318\) 0 0
\(319\) −2313.36 −0.406029
\(320\) 1732.91 + 2508.29i 0.302727 + 0.438180i
\(321\) 0 0
\(322\) 1858.55i 0.321655i
\(323\) 11516.9i 1.98396i
\(324\) 0 0
\(325\) 5321.47 + 2013.02i 0.908253 + 0.343577i
\(326\) −2219.93 −0.377149
\(327\) 0 0
\(328\) 3747.50i 0.630856i
\(329\) −469.229 −0.0786305
\(330\) 0 0
\(331\) −5466.38 −0.907732 −0.453866 0.891070i \(-0.649956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(332\) 1954.20i 0.323045i
\(333\) 0 0
\(334\) 3494.72 0.572522
\(335\) 3739.19 2583.31i 0.609833 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i −0.508970 0.860784i \(-0.669973\pi\)
0.508970 0.860784i \(-0.330027\pi\)
\(338\) 209.896i 0.0337776i
\(339\) 0 0
\(340\) 4395.61 3036.82i 0.701134 0.484395i
\(341\) 2854.01 0.453235
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) −3258.42 −0.510704
\(345\) 0 0
\(346\) −3213.28 −0.499269
\(347\) 4019.13i 0.621782i 0.950446 + 0.310891i \(0.100627\pi\)
−0.950446 + 0.310891i \(0.899373\pi\)
\(348\) 0 0
\(349\) −10544.9 −1.61735 −0.808674 0.588256i \(-0.799815\pi\)
−0.808674 + 0.588256i \(0.799815\pi\)
\(350\) 518.609 1370.95i 0.0792024 0.209373i
\(351\) 0 0
\(352\) 10619.1i 1.60795i
\(353\) 2959.98i 0.446300i −0.974784 0.223150i \(-0.928366\pi\)
0.974784 0.223150i \(-0.0716340\pi\)
\(354\) 0 0
\(355\) 2102.14 + 3042.72i 0.314281 + 0.454903i
\(356\) 5331.14 0.793680
\(357\) 0 0
\(358\) 1053.75i 0.155566i
\(359\) 2170.17 0.319045 0.159523 0.987194i \(-0.449005\pi\)
0.159523 + 0.987194i \(0.449005\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) 4691.88i 0.681215i
\(363\) 0 0
\(364\) −1654.82 −0.238285
\(365\) 5024.76 3471.48i 0.720569 0.497823i
\(366\) 0 0
\(367\) 1252.20i 0.178105i 0.996027 + 0.0890523i \(0.0283838\pi\)
−0.996027 + 0.0890523i \(0.971616\pi\)
\(368\) 717.441i 0.101628i
\(369\) 0 0
\(370\) 2462.43 + 3564.23i 0.345989 + 0.500798i
\(371\) −1880.53 −0.263159
\(372\) 0 0
\(373\) 4646.02i 0.644938i 0.946580 + 0.322469i \(0.104513\pi\)
−0.946580 + 0.322469i \(0.895487\pi\)
\(374\) 8875.66 1.22714
\(375\) 0 0
\(376\) −1481.54 −0.203204
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) −1434.84 −0.194466 −0.0972331 0.995262i \(-0.530999\pi\)
−0.0972331 + 0.995262i \(0.530999\pi\)
\(380\) 4131.72 + 5980.43i 0.557771 + 0.807341i
\(381\) 0 0
\(382\) 1240.05i 0.166090i
\(383\) 13216.7i 1.76330i 0.471905 + 0.881649i \(0.343566\pi\)
−0.471905 + 0.881649i \(0.656434\pi\)
\(384\) 0 0
\(385\) −3708.08 + 2561.82i −0.490861 + 0.339123i
\(386\) 6838.97 0.901799
\(387\) 0 0
\(388\) 4896.02i 0.640612i
\(389\) −7755.01 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(390\) 0 0
\(391\) 14582.5 1.88610
\(392\) 1082.99i 0.139539i
\(393\) 0 0
\(394\) 5720.49 0.731457
\(395\) −160.838 232.803i −0.0204876 0.0296547i
\(396\) 0 0
\(397\) 3560.83i 0.450158i 0.974341 + 0.225079i \(0.0722640\pi\)
−0.974341 + 0.225079i \(0.927736\pi\)
\(398\) 5682.89i 0.715723i
\(399\) 0 0
\(400\) −200.195 + 529.219i −0.0250243 + 0.0661524i
\(401\) 5430.61 0.676288 0.338144 0.941094i \(-0.390201\pi\)
0.338144 + 0.941094i \(0.390201\pi\)
\(402\) 0 0
\(403\) 2255.73i 0.278823i
\(404\) 3140.28 0.386719
\(405\) 0 0
\(406\) 471.048 0.0575806
\(407\) 13320.5i 1.62229i
\(408\) 0 0
\(409\) 9698.79 1.17255 0.586277 0.810111i \(-0.300593\pi\)
0.586277 + 0.810111i \(0.300593\pi\)
\(410\) 2612.70 1805.05i 0.314713 0.217427i
\(411\) 0 0
\(412\) 1563.17i 0.186922i
\(413\) 1685.90i 0.200866i
\(414\) 0 0
\(415\) −3461.00 + 2391.12i −0.409383 + 0.282832i
\(416\) −8393.01 −0.989186
\(417\) 0 0
\(418\) 12075.7i 1.41302i
\(419\) 13830.9 1.61261 0.806307 0.591498i \(-0.201463\pi\)
0.806307 + 0.591498i \(0.201463\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 5692.26i 0.656623i
\(423\) 0 0
\(424\) −5937.58 −0.680081
\(425\) −10756.7 4069.09i −1.22771 0.464423i
\(426\) 0 0
\(427\) 633.205i 0.0717634i
\(428\) 7851.31i 0.886699i
\(429\) 0 0
\(430\) 1569.48 + 2271.72i 0.176016 + 0.254773i
\(431\) −8174.07 −0.913530 −0.456765 0.889588i \(-0.650992\pi\)
−0.456765 + 0.889588i \(0.650992\pi\)
\(432\) 0 0
\(433\) 14222.8i 1.57853i 0.614051 + 0.789267i \(0.289539\pi\)
−0.614051 + 0.789267i \(0.710461\pi\)
\(434\) −581.136 −0.0642752
\(435\) 0 0
\(436\) 9177.96 1.00813
\(437\) 19840.1i 2.17181i
\(438\) 0 0
\(439\) −5537.38 −0.602016 −0.301008 0.953622i \(-0.597323\pi\)
−0.301008 + 0.953622i \(0.597323\pi\)
\(440\) −11707.9 + 8088.70i −1.26853 + 0.876394i
\(441\) 0 0
\(442\) 7015.07i 0.754916i
\(443\) 3974.09i 0.426218i −0.977028 0.213109i \(-0.931641\pi\)
0.977028 0.213109i \(-0.0683589\pi\)
\(444\) 0 0
\(445\) −6523.06 9441.74i −0.694882 1.00580i
\(446\) 305.903 0.0324774
\(447\) 0 0
\(448\) 1908.78i 0.201298i
\(449\) −15243.1 −1.60216 −0.801078 0.598559i \(-0.795740\pi\)
−0.801078 + 0.598559i \(0.795740\pi\)
\(450\) 0 0
\(451\) −9764.40 −1.01948
\(452\) 5428.95i 0.564947i
\(453\) 0 0
\(454\) −5280.67 −0.545890
\(455\) 2024.79 + 2930.77i 0.208623 + 0.301970i
\(456\) 0 0
\(457\) 10768.9i 1.10229i 0.834410 + 0.551145i \(0.185809\pi\)
−0.834410 + 0.551145i \(0.814191\pi\)
\(458\) 10071.7i 1.02755i
\(459\) 0 0
\(460\) −7572.27 + 5231.49i −0.767520 + 0.530260i
\(461\) 332.605 0.0336029 0.0168015 0.999859i \(-0.494652\pi\)
0.0168015 + 0.999859i \(0.494652\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i −0.911270 0.411809i \(-0.864897\pi\)
0.911270 0.411809i \(-0.135103\pi\)
\(464\) −181.835 −0.0181929
\(465\) 0 0
\(466\) 1575.76 0.156643
\(467\) 167.628i 0.0166100i −0.999966 0.00830501i \(-0.997356\pi\)
0.999966 0.00830501i \(-0.00264360\pi\)
\(468\) 0 0
\(469\) 2845.49 0.280154
\(470\) 713.612 + 1032.91i 0.0700351 + 0.101372i
\(471\) 0 0
\(472\) 5323.06i 0.519097i
\(473\) 8490.07i 0.825315i
\(474\) 0 0
\(475\) 5536.18 14635.0i 0.534773 1.41368i
\(476\) 3345.01 0.322098
\(477\) 0 0
\(478\) 8641.86i 0.826924i
\(479\) 6628.58 0.632292 0.316146 0.948711i \(-0.397611\pi\)
0.316146 + 0.948711i \(0.397611\pi\)
\(480\) 0 0
\(481\) −10528.2 −0.998010
\(482\) 777.001i 0.0734262i
\(483\) 0 0
\(484\) 10311.7 0.968419
\(485\) 8671.11 5990.65i 0.811824 0.560868i
\(486\) 0 0
\(487\) 20641.6i 1.92065i 0.278875 + 0.960327i \(0.410039\pi\)
−0.278875 + 0.960327i \(0.589961\pi\)
\(488\) 1999.28i 0.185458i
\(489\) 0 0
\(490\) 755.044 521.641i 0.0696111 0.0480925i
\(491\) 16710.8 1.53594 0.767972 0.640484i \(-0.221266\pi\)
0.767972 + 0.640484i \(0.221266\pi\)
\(492\) 0 0
\(493\) 3695.92i 0.337639i
\(494\) 9544.32 0.869270
\(495\) 0 0
\(496\) 224.331 0.0203080
\(497\) 2315.47i 0.208980i
\(498\) 0 0
\(499\) 13728.7 1.23162 0.615812 0.787893i \(-0.288828\pi\)
0.615812 + 0.787893i \(0.288828\pi\)
\(500\) 7045.47 1746.03i 0.630166 0.156170i
\(501\) 0 0
\(502\) 3836.54i 0.341102i
\(503\) 19523.7i 1.73065i 0.501209 + 0.865326i \(0.332889\pi\)
−0.501209 + 0.865326i \(0.667111\pi\)
\(504\) 0 0
\(505\) −3842.37 5561.60i −0.338580 0.490075i
\(506\) −15290.0 −1.34333
\(507\) 0 0
\(508\) 1354.17i 0.118271i
\(509\) −8688.17 −0.756574 −0.378287 0.925688i \(-0.623487\pi\)
−0.378287 + 0.925688i \(0.623487\pi\)
\(510\) 0 0
\(511\) 3823.78 0.331026
\(512\) 1635.04i 0.141131i
\(513\) 0 0
\(514\) −1343.82 −0.115318
\(515\) −2768.46 + 1912.66i −0.236880 + 0.163654i
\(516\) 0 0
\(517\) 3860.28i 0.328385i
\(518\) 2712.34i 0.230064i
\(519\) 0 0
\(520\) 6393.08 + 9253.60i 0.539144 + 0.780380i
\(521\) −6771.36 −0.569402 −0.284701 0.958616i \(-0.591894\pi\)
−0.284701 + 0.958616i \(0.591894\pi\)
\(522\) 0 0
\(523\) 1365.89i 0.114200i −0.998368 0.0570998i \(-0.981815\pi\)
0.998368 0.0570998i \(-0.0181853\pi\)
\(524\) 3757.85 0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) 4559.68i 0.376894i
\(528\) 0 0
\(529\) −12954.0 −1.06469
\(530\) 2859.94 + 4139.60i 0.234392 + 0.339269i
\(531\) 0 0
\(532\) 4551.04i 0.370888i
\(533\) 7717.51i 0.627171i
\(534\) 0 0
\(535\) 13905.1 9606.67i 1.12368 0.776322i
\(536\) 8984.34 0.724001
\(537\) 0 0
\(538\) 5965.62i 0.478060i
\(539\) −2821.81 −0.225499
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) 3231.06i 0.256063i
\(543\) 0 0
\(544\) 16965.5 1.33711
\(545\) −11229.9 16254.7i −0.882638 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i 0.892263 + 0.451516i \(0.149117\pi\)
−0.892263 + 0.451516i \(0.850883\pi\)
\(548\) 4018.43i 0.313246i
\(549\) 0 0
\(550\) 11278.6 + 4266.52i 0.874406 + 0.330773i
\(551\) 5028.47 0.388784
\(552\) 0 0
\(553\) 177.161i 0.0136232i
\(554\) −11037.1 −0.846430
\(555\) 0 0
\(556\) 15337.2 1.16986
\(557\) 16406.2i 1.24803i −0.781413 0.624014i \(-0.785501\pi\)
0.781413 0.624014i \(-0.214499\pi\)
\(558\) 0 0
\(559\) −6710.31 −0.507721
\(560\) −291.464 + 201.365i −0.0219939 + 0.0151950i
\(561\) 0 0
\(562\) 1366.18i 0.102542i
\(563\) 13631.9i 1.02045i −0.860040 0.510227i \(-0.829561\pi\)
0.860040 0.510227i \(-0.170439\pi\)
\(564\) 0 0
\(565\) −9614.95 + 6642.72i −0.715936 + 0.494622i
\(566\) −10911.2 −0.810300
\(567\) 0 0
\(568\) 7310.88i 0.540067i
\(569\) −3086.83 −0.227428 −0.113714 0.993514i \(-0.536275\pi\)
−0.113714 + 0.993514i \(0.536275\pi\)
\(570\) 0 0
\(571\) −3258.06 −0.238784 −0.119392 0.992847i \(-0.538095\pi\)
−0.119392 + 0.992847i \(0.538095\pi\)
\(572\) 13613.9i 0.995152i
\(573\) 0 0
\(574\) 1988.24 0.144577
\(575\) 18530.5 + 7009.78i 1.34396 + 0.508396i
\(576\) 0 0
\(577\) 23758.4i 1.71417i −0.515178 0.857083i \(-0.672274\pi\)
0.515178 0.857083i \(-0.327726\pi\)
\(578\) 5950.07i 0.428184i
\(579\) 0 0
\(580\) 1325.92 + 1919.19i 0.0949238 + 0.137397i
\(581\) −2633.78 −0.188068
\(582\) 0 0
\(583\) 15470.8i 1.09903i
\(584\) 12073.2 0.855468
\(585\) 0 0
\(586\) −729.566 −0.0514302
\(587\) 596.893i 0.0419701i 0.999780 + 0.0209850i \(0.00668023\pi\)
−0.999780 + 0.0209850i \(0.993320\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) 3711.16 2563.95i 0.258960 0.178909i
\(591\) 0 0
\(592\) 1047.02i 0.0726898i
\(593\) 19496.3i 1.35012i −0.737765 0.675058i \(-0.764119\pi\)
0.737765 0.675058i \(-0.235881\pi\)
\(594\) 0 0
\(595\) −4092.88 5924.20i −0.282003 0.408182i
\(596\) 13057.3 0.897396
\(597\) 0 0
\(598\) 12084.8i 0.826395i
\(599\) 3797.02 0.259001 0.129501 0.991579i \(-0.458663\pi\)
0.129501 + 0.991579i \(0.458663\pi\)
\(600\) 0 0
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 1728.76i 0.117041i
\(603\) 0 0
\(604\) 524.850 0.0353573
\(605\) −12617.2 18262.6i −0.847869 1.22724i
\(606\) 0 0
\(607\) 18536.4i 1.23949i −0.784803 0.619745i \(-0.787236\pi\)
0.784803 0.619745i \(-0.212764\pi\)
\(608\) 23082.3i 1.53966i
\(609\) 0 0
\(610\) −1393.87 + 962.991i −0.0925184 + 0.0639186i
\(611\) −3051.06 −0.202017
\(612\) 0 0
\(613\) 2163.47i 0.142548i 0.997457 + 0.0712738i \(0.0227064\pi\)
−0.997457 + 0.0712738i \(0.977294\pi\)
\(614\) 8235.08 0.541272
\(615\) 0 0
\(616\) −8909.59 −0.582756
\(617\) 22964.9i 1.49843i 0.662327 + 0.749215i \(0.269569\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(618\) 0 0
\(619\) 1386.67 0.0900401 0.0450200 0.998986i \(-0.485665\pi\)
0.0450200 + 0.998986i \(0.485665\pi\)
\(620\) −1635.80 2367.72i −0.105960 0.153371i
\(621\) 0 0
\(622\) 3067.41i 0.197736i
\(623\) 7185.06i 0.462060i
\(624\) 0 0
\(625\) −11713.0 10341.5i −0.749631 0.661856i
\(626\) −4092.35 −0.261283
\(627\) 0 0
\(628\) 12145.0i 0.771716i
\(629\) 21281.4 1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 559.367i 0.0352064i
\(633\) 0 0
\(634\) 2791.14 0.174843
\(635\) −2398.31 + 1656.93i −0.149880 + 0.103548i
\(636\) 0 0
\(637\) 2230.28i 0.138724i
\(638\) 3875.25i 0.240474i
\(639\) 0 0
\(640\) −9367.71 + 6471.91i −0.578580 + 0.399726i
\(641\) −30367.1 −1.87118 −0.935592 0.353084i \(-0.885133\pi\)
−0.935592 + 0.353084i \(0.885133\pi\)
\(642\) 0 0
\(643\) 28592.2i 1.75360i 0.480851 + 0.876802i \(0.340328\pi\)
−0.480851 + 0.876802i \(0.659672\pi\)
\(644\) −5762.42 −0.352595
\(645\) 0 0
\(646\) −19292.7 −1.17502
\(647\) 14507.9i 0.881555i −0.897616 0.440778i \(-0.854703\pi\)
0.897616 0.440778i \(-0.145297\pi\)
\(648\) 0 0
\(649\) −13869.7 −0.838877
\(650\) 3372.14 8914.33i 0.203487 0.537921i
\(651\) 0 0
\(652\) 6882.89i 0.413428i
\(653\) 6999.85i 0.419488i −0.977756 0.209744i \(-0.932737\pi\)
0.977756 0.209744i \(-0.0672630\pi\)
\(654\) 0 0
\(655\) −4598.01 6655.35i −0.274289 0.397017i
\(656\) −767.504 −0.0456799
\(657\) 0 0
\(658\) 786.035i 0.0465696i
\(659\) 7308.92 0.432041 0.216020 0.976389i \(-0.430692\pi\)
0.216020 + 0.976389i \(0.430692\pi\)
\(660\) 0 0
\(661\) −30097.2 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(662\) 9157.07i 0.537613i
\(663\) 0 0
\(664\) −8315.91 −0.486024
\(665\) 8060.14 5568.54i 0.470013 0.324720i
\(666\) 0 0
\(667\) 6366.92i 0.369608i
\(668\) 10835.4i 0.627594i
\(669\) 0 0
\(670\) −4327.47 6263.76i −0.249529 0.361179i
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i −0.987969 0.154654i \(-0.950574\pi\)
0.987969 0.154654i \(-0.0494264\pi\)
\(674\) −17841.3 −1.01962
\(675\) 0 0
\(676\) 650.781 0.0370267
\(677\) 6431.09i 0.365091i 0.983197 + 0.182546i \(0.0584338\pi\)
−0.983197 + 0.182546i \(0.941566\pi\)
\(678\) 0 0
\(679\) 6598.62 0.372948
\(680\) −12922.9 18705.1i −0.728778 1.05486i
\(681\) 0 0
\(682\) 4780.92i 0.268433i
\(683\) 20865.8i 1.16897i 0.811404 + 0.584486i \(0.198704\pi\)
−0.811404 + 0.584486i \(0.801296\pi\)
\(684\) 0 0
\(685\) 7116.86 4916.86i 0.396965 0.274253i
\(686\) 574.581 0.0319790
\(687\) 0 0
\(688\) 667.339i 0.0369797i
\(689\) −12227.7 −0.676109
\(690\) 0 0
\(691\) 18450.3 1.01575 0.507873 0.861432i \(-0.330432\pi\)
0.507873 + 0.861432i \(0.330432\pi\)
\(692\) 9962.76i 0.547294i
\(693\) 0 0
\(694\) 6732.70 0.368256
\(695\) −18766.2 27163.0i −1.02424 1.48252i
\(696\) 0 0
\(697\) 15600.0i 0.847766i
\(698\) 17664.4i 0.957890i
\(699\) 0 0
\(700\) 4250.64 + 1607.95i 0.229513 + 0.0868209i
\(701\) −12639.3 −0.680996 −0.340498 0.940245i \(-0.610596\pi\)
−0.340498 + 0.940245i \(0.610596\pi\)
\(702\) 0 0
\(703\) 28954.4i 1.55339i
\(704\) −15703.3 −0.840680
\(705\) 0 0
\(706\) −4958.45 −0.264325
\(707\) 4232.32i 0.225138i
\(708\) 0 0
\(709\) 23126.8 1.22503 0.612514 0.790460i \(-0.290158\pi\)
0.612514 + 0.790460i \(0.290158\pi\)
\(710\) 5097.04 3521.42i 0.269421 0.186136i
\(711\) 0 0
\(712\) 22686.1i 1.19410i
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) −24111.0 + 16657.7i −1.26112 + 0.871275i
\(716\) 3267.16 0.170530
\(717\) 0 0
\(718\) 3635.39i 0.188957i
\(719\) −24093.1 −1.24968 −0.624841 0.780752i \(-0.714836\pi\)
−0.624841 + 0.780752i \(0.714836\pi\)
\(720\) 0 0
\(721\) −2106.77 −0.108821
\(722\) 14758.7i 0.760750i
\(723\) 0 0
\(724\) −14547.2 −0.746741
\(725\) 1776.63 4696.55i 0.0910100 0.240587i
\(726\) 0 0
\(727\) 35983.4i 1.83570i −0.396931 0.917849i \(-0.629925\pi\)
0.396931 0.917849i \(-0.370075\pi\)
\(728\) 7041.89i 0.358503i
\(729\) 0 0
\(730\) −5815.28 8417.28i −0.294840 0.426764i
\(731\) 13564.1 0.686302
\(732\) 0 0
\(733\) 1451.50i 0.0731413i −0.999331 0.0365706i \(-0.988357\pi\)
0.999331 0.0365706i \(-0.0116434\pi\)
\(734\) 2097.64 0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) 23409.4i 1.17001i
\(738\) 0 0
\(739\) 5891.67 0.293273 0.146636 0.989190i \(-0.453155\pi\)
0.146636 + 0.989190i \(0.453155\pi\)
\(740\) −11050.9 + 7634.77i −0.548970 + 0.379270i
\(741\) 0 0
\(742\) 3150.19i 0.155859i
\(743\) 7438.65i 0.367292i −0.982992 0.183646i \(-0.941210\pi\)
0.982992 0.183646i \(-0.0587900\pi\)
\(744\) 0 0
\(745\) −15976.6 23125.2i −0.785688 1.13724i
\(746\) 7782.84 0.381970
\(747\) 0 0
\(748\) 27518.9i 1.34518i
\(749\) 10581.6 0.516214
\(750\) 0 0
\(751\) 20272.4 0.985018 0.492509 0.870307i \(-0.336080\pi\)
0.492509 + 0.870307i \(0.336080\pi\)
\(752\) 303.427i 0.0147139i
\(753\) 0 0
\(754\) 3062.89 0.147936
\(755\) −642.193 929.537i −0.0309560 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i 0.969595 + 0.244716i \(0.0786947\pi\)
−0.969595 + 0.244716i \(0.921305\pi\)
\(758\) 2403.59i 0.115174i
\(759\) 0 0
\(760\) 25449.1 17582.1i 1.21465 0.839172i
\(761\) 41117.6 1.95862 0.979311 0.202362i \(-0.0648618\pi\)
0.979311 + 0.202362i \(0.0648618\pi\)
\(762\) 0 0
\(763\) 12369.6i 0.586908i
\(764\) −3844.76 −0.182066
\(765\) 0 0
\(766\) 22140.2 1.04433
\(767\) 10962.2i 0.516065i
\(768\) 0 0
\(769\) −11486.6 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(770\) 4291.47 + 6211.64i 0.200849 + 0.290717i
\(771\) 0 0
\(772\) 21204.2i 0.988544i
\(773\) 21799.2i 1.01431i 0.861854 + 0.507156i \(0.169303\pi\)
−0.861854 + 0.507156i \(0.830697\pi\)
\(774\) 0 0
\(775\) −2191.84 + 5794.17i −0.101591 + 0.268558i
\(776\) 20834.5 0.963807
\(777\) 0 0
\(778\) 12990.9i 0.598645i
\(779\) 21224.5 0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) 24428.0i 1.11706i
\(783\) 0 0
\(784\) −221.801 −0.0101039
\(785\) −21509.4 + 14860.3i −0.977967 + 0.675652i
\(786\) 0 0
\(787\) 24080.3i 1.09068i 0.838214 + 0.545342i \(0.183600\pi\)
−0.838214 + 0.545342i \(0.816400\pi\)
\(788\) 17736.4i