Properties

Label 315.4.d.c.64.10
Level $315$
Weight $4$
Character 315.64
Analytic conductor $18.586$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(64,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.64");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.10
Root \(4.31366i\) of defining polynomial
Character \(\chi\) \(=\) 315.64
Dual form 315.4.d.c.64.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.31366i q^{2} -20.2350 q^{4} +(2.32771 + 10.9353i) q^{5} -7.00000i q^{7} -65.0123i q^{8} +(-58.1067 + 12.3686i) q^{10} -25.5420 q^{11} -64.1014i q^{13} +37.1956 q^{14} +183.574 q^{16} -27.6952i q^{17} -0.792436 q^{19} +(-47.1011 - 221.276i) q^{20} -135.721i q^{22} -108.606i q^{23} +(-114.164 + 50.9086i) q^{25} +340.613 q^{26} +141.645i q^{28} -234.000 q^{29} +129.204 q^{31} +455.349i q^{32} +147.163 q^{34} +(76.5474 - 16.2940i) q^{35} -38.3108i q^{37} -4.21073i q^{38} +(710.932 - 151.330i) q^{40} +403.216 q^{41} +172.895i q^{43} +516.840 q^{44} +577.097 q^{46} +206.943i q^{47} -49.0000 q^{49} +(-270.511 - 606.626i) q^{50} +1297.09i q^{52} -144.031i q^{53} +(-59.4542 - 279.310i) q^{55} -455.086 q^{56} -1243.40i q^{58} -679.086 q^{59} -574.717 q^{61} +686.544i q^{62} -950.977 q^{64} +(700.971 - 149.209i) q^{65} -515.640i q^{67} +560.411i q^{68} +(86.5805 + 406.747i) q^{70} -556.612 q^{71} -173.243i q^{73} +203.571 q^{74} +16.0349 q^{76} +178.794i q^{77} -79.3290 q^{79} +(427.306 + 2007.44i) q^{80} +2142.55i q^{82} -1043.56i q^{83} +(302.856 - 64.4663i) q^{85} -918.703 q^{86} +1660.54i q^{88} +652.060 q^{89} -448.710 q^{91} +2197.65i q^{92} -1099.62 q^{94} +(-1.84456 - 8.66556i) q^{95} -515.714i q^{97} -260.369i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} - 6 q^{5} - 16 q^{10} - 84 q^{11} + 56 q^{14} + 148 q^{16} + 72 q^{19} + 68 q^{20} - 362 q^{25} + 620 q^{26} - 88 q^{29} + 120 q^{31} + 964 q^{34} + 28 q^{35} + 1396 q^{40} + 852 q^{41}+ \cdots + 1628 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.31366i 1.87866i 0.343013 + 0.939331i \(0.388553\pi\)
−0.343013 + 0.939331i \(0.611447\pi\)
\(3\) 0 0
\(4\) −20.2350 −2.52937
\(5\) 2.32771 + 10.9353i 0.208197 + 0.978087i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 65.0123i 2.87317i
\(9\) 0 0
\(10\) −58.1067 + 12.3686i −1.83749 + 0.391131i
\(11\) −25.5420 −0.700108 −0.350054 0.936730i \(-0.613837\pi\)
−0.350054 + 0.936730i \(0.613837\pi\)
\(12\) 0 0
\(13\) 64.1014i 1.36758i −0.729679 0.683790i \(-0.760330\pi\)
0.729679 0.683790i \(-0.239670\pi\)
\(14\) 37.1956 0.710067
\(15\) 0 0
\(16\) 183.574 2.86834
\(17\) 27.6952i 0.395122i −0.980291 0.197561i \(-0.936698\pi\)
0.980291 0.197561i \(-0.0633020\pi\)
\(18\) 0 0
\(19\) −0.792436 −0.00956828 −0.00478414 0.999989i \(-0.501523\pi\)
−0.00478414 + 0.999989i \(0.501523\pi\)
\(20\) −47.1011 221.276i −0.526606 2.47394i
\(21\) 0 0
\(22\) 135.721i 1.31527i
\(23\) 108.606i 0.984609i −0.870423 0.492305i \(-0.836155\pi\)
0.870423 0.492305i \(-0.163845\pi\)
\(24\) 0 0
\(25\) −114.164 + 50.9086i −0.913308 + 0.407269i
\(26\) 340.613 2.56922
\(27\) 0 0
\(28\) 141.645i 0.956012i
\(29\) −234.000 −1.49837 −0.749186 0.662360i \(-0.769555\pi\)
−0.749186 + 0.662360i \(0.769555\pi\)
\(30\) 0 0
\(31\) 129.204 0.748570 0.374285 0.927314i \(-0.377888\pi\)
0.374285 + 0.927314i \(0.377888\pi\)
\(32\) 455.349i 2.51547i
\(33\) 0 0
\(34\) 147.163 0.742300
\(35\) 76.5474 16.2940i 0.369682 0.0786909i
\(36\) 0 0
\(37\) 38.3108i 0.170223i −0.996371 0.0851116i \(-0.972875\pi\)
0.996371 0.0851116i \(-0.0271247\pi\)
\(38\) 4.21073i 0.0179756i
\(39\) 0 0
\(40\) 710.932 151.330i 2.81021 0.598183i
\(41\) 403.216 1.53590 0.767949 0.640511i \(-0.221278\pi\)
0.767949 + 0.640511i \(0.221278\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i 0.951844 + 0.306584i \(0.0991859\pi\)
−0.951844 + 0.306584i \(0.900814\pi\)
\(44\) 516.840 1.77083
\(45\) 0 0
\(46\) 577.097 1.84975
\(47\) 206.943i 0.642250i 0.947037 + 0.321125i \(0.104061\pi\)
−0.947037 + 0.321125i \(0.895939\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) −270.511 606.626i −0.765120 1.71580i
\(51\) 0 0
\(52\) 1297.09i 3.45911i
\(53\) 144.031i 0.373287i −0.982428 0.186643i \(-0.940239\pi\)
0.982428 0.186643i \(-0.0597609\pi\)
\(54\) 0 0
\(55\) −59.4542 279.310i −0.145760 0.684767i
\(56\) −455.086 −1.08595
\(57\) 0 0
\(58\) 1243.40i 2.81493i
\(59\) −679.086 −1.49846 −0.749232 0.662307i \(-0.769577\pi\)
−0.749232 + 0.662307i \(0.769577\pi\)
\(60\) 0 0
\(61\) −574.717 −1.20631 −0.603155 0.797624i \(-0.706090\pi\)
−0.603155 + 0.797624i \(0.706090\pi\)
\(62\) 686.544i 1.40631i
\(63\) 0 0
\(64\) −950.977 −1.85738
\(65\) 700.971 149.209i 1.33761 0.284725i
\(66\) 0 0
\(67\) 515.640i 0.940230i −0.882605 0.470115i \(-0.844212\pi\)
0.882605 0.470115i \(-0.155788\pi\)
\(68\) 560.411i 0.999409i
\(69\) 0 0
\(70\) 86.5805 + 406.747i 0.147834 + 0.694508i
\(71\) −556.612 −0.930391 −0.465195 0.885208i \(-0.654016\pi\)
−0.465195 + 0.885208i \(0.654016\pi\)
\(72\) 0 0
\(73\) 173.243i 0.277762i −0.990309 0.138881i \(-0.955650\pi\)
0.990309 0.138881i \(-0.0443505\pi\)
\(74\) 203.571 0.319792
\(75\) 0 0
\(76\) 16.0349 0.0242017
\(77\) 178.794i 0.264616i
\(78\) 0 0
\(79\) −79.3290 −0.112977 −0.0564887 0.998403i \(-0.517990\pi\)
−0.0564887 + 0.998403i \(0.517990\pi\)
\(80\) 427.306 + 2007.44i 0.597178 + 2.80548i
\(81\) 0 0
\(82\) 2142.55i 2.88543i
\(83\) 1043.56i 1.38007i −0.723777 0.690034i \(-0.757596\pi\)
0.723777 0.690034i \(-0.242404\pi\)
\(84\) 0 0
\(85\) 302.856 64.4663i 0.386463 0.0822630i
\(86\) −918.703 −1.15193
\(87\) 0 0
\(88\) 1660.54i 2.01153i
\(89\) 652.060 0.776609 0.388304 0.921531i \(-0.373061\pi\)
0.388304 + 0.921531i \(0.373061\pi\)
\(90\) 0 0
\(91\) −448.710 −0.516897
\(92\) 2197.65i 2.49044i
\(93\) 0 0
\(94\) −1099.62 −1.20657
\(95\) −1.84456 8.66556i −0.00199208 0.00935861i
\(96\) 0 0
\(97\) 515.714i 0.539823i −0.962885 0.269912i \(-0.913005\pi\)
0.962885 0.269912i \(-0.0869945\pi\)
\(98\) 260.369i 0.268380i
\(99\) 0 0
\(100\) 2310.09 1030.13i 2.31009 1.03013i
\(101\) 536.339 0.528394 0.264197 0.964469i \(-0.414893\pi\)
0.264197 + 0.964469i \(0.414893\pi\)
\(102\) 0 0
\(103\) 381.693i 0.365139i 0.983193 + 0.182570i \(0.0584415\pi\)
−0.983193 + 0.182570i \(0.941559\pi\)
\(104\) −4167.38 −3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) 1381.12i 1.24783i −0.781492 0.623915i \(-0.785541\pi\)
0.781492 0.623915i \(-0.214459\pi\)
\(108\) 0 0
\(109\) 390.582 0.343220 0.171610 0.985165i \(-0.445103\pi\)
0.171610 + 0.985165i \(0.445103\pi\)
\(110\) 1484.16 315.919i 1.28644 0.273834i
\(111\) 0 0
\(112\) 1285.02i 1.08413i
\(113\) 1643.15i 1.36792i −0.729521 0.683958i \(-0.760257\pi\)
0.729521 0.683958i \(-0.239743\pi\)
\(114\) 0 0
\(115\) 1187.65 252.804i 0.963033 0.204992i
\(116\) 4734.99 3.78994
\(117\) 0 0
\(118\) 3608.43i 2.81511i
\(119\) −193.866 −0.149342
\(120\) 0 0
\(121\) −678.609 −0.509849
\(122\) 3053.85i 2.26625i
\(123\) 0 0
\(124\) −2614.43 −1.89341
\(125\) −822.443 1129.92i −0.588492 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i 0.997747 + 0.0670869i \(0.0213705\pi\)
−0.997747 + 0.0670869i \(0.978630\pi\)
\(128\) 1410.38i 0.973914i
\(129\) 0 0
\(130\) 792.848 + 3724.72i 0.534903 + 2.51292i
\(131\) −2082.90 −1.38919 −0.694594 0.719402i \(-0.744416\pi\)
−0.694594 + 0.719402i \(0.744416\pi\)
\(132\) 0 0
\(133\) 5.54705i 0.00361647i
\(134\) 2739.93 1.76637
\(135\) 0 0
\(136\) −1800.53 −1.13525
\(137\) 78.1709i 0.0487488i −0.999703 0.0243744i \(-0.992241\pi\)
0.999703 0.0243744i \(-0.00775939\pi\)
\(138\) 0 0
\(139\) −1393.67 −0.850426 −0.425213 0.905093i \(-0.639801\pi\)
−0.425213 + 0.905093i \(0.639801\pi\)
\(140\) −1548.93 + 329.707i −0.935062 + 0.199038i
\(141\) 0 0
\(142\) 2957.65i 1.74789i
\(143\) 1637.28i 0.957454i
\(144\) 0 0
\(145\) −544.685 2558.88i −0.311956 1.46554i
\(146\) 920.556 0.521820
\(147\) 0 0
\(148\) 775.217i 0.430557i
\(149\) 32.5002 0.0178693 0.00893463 0.999960i \(-0.497156\pi\)
0.00893463 + 0.999960i \(0.497156\pi\)
\(150\) 0 0
\(151\) 466.762 0.251553 0.125777 0.992059i \(-0.459858\pi\)
0.125777 + 0.992059i \(0.459858\pi\)
\(152\) 51.5181i 0.0274913i
\(153\) 0 0
\(154\) −950.048 −0.497124
\(155\) 300.749 + 1412.89i 0.155850 + 0.732167i
\(156\) 0 0
\(157\) 1673.50i 0.850701i −0.905029 0.425351i \(-0.860151\pi\)
0.905029 0.425351i \(-0.139849\pi\)
\(158\) 421.527i 0.212246i
\(159\) 0 0
\(160\) −4979.39 + 1059.92i −2.46035 + 0.523712i
\(161\) −760.245 −0.372147
\(162\) 0 0
\(163\) 1869.36i 0.898279i 0.893462 + 0.449139i \(0.148269\pi\)
−0.893462 + 0.449139i \(0.851731\pi\)
\(164\) −8159.06 −3.88485
\(165\) 0 0
\(166\) 5545.12 2.59268
\(167\) 46.5250i 0.0215581i 0.999942 + 0.0107791i \(0.00343115\pi\)
−0.999942 + 0.0107791i \(0.996569\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) 342.552 + 1609.28i 0.154544 + 0.726034i
\(171\) 0 0
\(172\) 3498.52i 1.55093i
\(173\) 2496.28i 1.09704i −0.836137 0.548521i \(-0.815191\pi\)
0.836137 0.548521i \(-0.184809\pi\)
\(174\) 0 0
\(175\) 356.360 + 799.145i 0.153933 + 0.345198i
\(176\) −4688.83 −2.00815
\(177\) 0 0
\(178\) 3464.82i 1.45898i
\(179\) 2975.70 1.24254 0.621269 0.783598i \(-0.286618\pi\)
0.621269 + 0.783598i \(0.286618\pi\)
\(180\) 0 0
\(181\) 966.273 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(182\) 2384.29i 0.971074i
\(183\) 0 0
\(184\) −7060.76 −2.82895
\(185\) 418.942 89.1764i 0.166493 0.0354399i
\(186\) 0 0
\(187\) 707.389i 0.276628i
\(188\) 4187.48i 1.62449i
\(189\) 0 0
\(190\) 46.0458 9.80136i 0.0175817 0.00374245i
\(191\) 1545.50 0.585488 0.292744 0.956191i \(-0.405432\pi\)
0.292744 + 0.956191i \(0.405432\pi\)
\(192\) 0 0
\(193\) 2304.05i 0.859322i −0.902990 0.429661i \(-0.858633\pi\)
0.902990 0.429661i \(-0.141367\pi\)
\(194\) 2740.33 1.01415
\(195\) 0 0
\(196\) 991.513 0.361338
\(197\) 222.021i 0.0802960i −0.999194 0.0401480i \(-0.987217\pi\)
0.999194 0.0401480i \(-0.0127829\pi\)
\(198\) 0 0
\(199\) −3580.56 −1.27547 −0.637736 0.770255i \(-0.720129\pi\)
−0.637736 + 0.770255i \(0.720129\pi\)
\(200\) 3309.69 + 7422.04i 1.17015 + 2.62409i
\(201\) 0 0
\(202\) 2849.92i 0.992673i
\(203\) 1638.00i 0.566331i
\(204\) 0 0
\(205\) 938.570 + 4409.31i 0.319769 + 1.50224i
\(206\) −2028.19 −0.685973
\(207\) 0 0
\(208\) 11767.3i 3.92268i
\(209\) 20.2404 0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) 2914.46i 0.944180i
\(213\) 0 0
\(214\) 7338.79 2.34425
\(215\) −1890.66 + 402.449i −0.599731 + 0.127659i
\(216\) 0 0
\(217\) 904.426i 0.282933i
\(218\) 2075.42i 0.644794i
\(219\) 0 0
\(220\) 1203.05 + 5651.83i 0.368681 + 1.73203i
\(221\) −1775.30 −0.540361
\(222\) 0 0
\(223\) 2361.52i 0.709145i 0.935028 + 0.354573i \(0.115374\pi\)
−0.935028 + 0.354573i \(0.884626\pi\)
\(224\) 3187.44 0.950758
\(225\) 0 0
\(226\) 8731.14 2.56985
\(227\) 586.877i 0.171596i 0.996313 + 0.0857982i \(0.0273440\pi\)
−0.996313 + 0.0857982i \(0.972656\pi\)
\(228\) 0 0
\(229\) 4619.55 1.33305 0.666526 0.745482i \(-0.267781\pi\)
0.666526 + 0.745482i \(0.267781\pi\)
\(230\) 1343.31 + 6310.76i 0.385111 + 1.80921i
\(231\) 0 0
\(232\) 15212.9i 4.30507i
\(233\) 5120.44i 1.43971i 0.694127 + 0.719853i \(0.255791\pi\)
−0.694127 + 0.719853i \(0.744209\pi\)
\(234\) 0 0
\(235\) −2262.99 + 481.703i −0.628176 + 0.133714i
\(236\) 13741.3 3.79017
\(237\) 0 0
\(238\) 1030.14i 0.280563i
\(239\) 1127.51 0.305158 0.152579 0.988291i \(-0.451242\pi\)
0.152579 + 0.988291i \(0.451242\pi\)
\(240\) 0 0
\(241\) −3549.53 −0.948736 −0.474368 0.880327i \(-0.657323\pi\)
−0.474368 + 0.880327i \(0.657323\pi\)
\(242\) 3605.89i 0.957833i
\(243\) 0 0
\(244\) 11629.4 3.05120
\(245\) −114.058 535.832i −0.0297424 0.139727i
\(246\) 0 0
\(247\) 50.7963i 0.0130854i
\(248\) 8399.84i 2.15077i
\(249\) 0 0
\(250\) 6003.99 4370.18i 1.51890 1.10558i
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) −1020.39 −0.252067
\(255\) 0 0
\(256\) −113.552 −0.0277227
\(257\) 6260.31i 1.51948i 0.650224 + 0.759742i \(0.274675\pi\)
−0.650224 + 0.759742i \(0.725325\pi\)
\(258\) 0 0
\(259\) −268.176 −0.0643383
\(260\) −14184.1 + 3019.25i −3.38331 + 0.720176i
\(261\) 0 0
\(262\) 11067.8i 2.60981i
\(263\) 5753.04i 1.34885i 0.738344 + 0.674425i \(0.235608\pi\)
−0.738344 + 0.674425i \(0.764392\pi\)
\(264\) 0 0
\(265\) 1575.03 335.262i 0.365107 0.0777170i
\(266\) −29.4751 −0.00679412
\(267\) 0 0
\(268\) 10433.9i 2.37819i
\(269\) −7059.21 −1.60003 −0.800014 0.599982i \(-0.795174\pi\)
−0.800014 + 0.599982i \(0.795174\pi\)
\(270\) 0 0
\(271\) −8534.52 −1.91305 −0.956523 0.291658i \(-0.905793\pi\)
−0.956523 + 0.291658i \(0.905793\pi\)
\(272\) 5084.11i 1.13334i
\(273\) 0 0
\(274\) 415.373 0.0915826
\(275\) 2915.96 1300.30i 0.639415 0.285132i
\(276\) 0 0
\(277\) 1313.94i 0.285008i 0.989794 + 0.142504i \(0.0455154\pi\)
−0.989794 + 0.142504i \(0.954485\pi\)
\(278\) 7405.47i 1.59766i
\(279\) 0 0
\(280\) −1059.31 4976.53i −0.226092 1.06216i
\(281\) 247.229 0.0524856 0.0262428 0.999656i \(-0.491646\pi\)
0.0262428 + 0.999656i \(0.491646\pi\)
\(282\) 0 0
\(283\) 9074.90i 1.90617i −0.302697 0.953087i \(-0.597887\pi\)
0.302697 0.953087i \(-0.402113\pi\)
\(284\) 11263.0 2.35330
\(285\) 0 0
\(286\) −8699.92 −1.79873
\(287\) 2822.51i 0.580515i
\(288\) 0 0
\(289\) 4145.98 0.843879
\(290\) 13597.0 2894.27i 2.75325 0.586060i
\(291\) 0 0
\(292\) 3505.57i 0.702562i
\(293\) 2740.72i 0.546466i 0.961948 + 0.273233i \(0.0880930\pi\)
−0.961948 + 0.273233i \(0.911907\pi\)
\(294\) 0 0
\(295\) −1580.71 7426.04i −0.311975 1.46563i
\(296\) −2490.68 −0.489080
\(297\) 0 0
\(298\) 172.695i 0.0335703i
\(299\) −6961.83 −1.34653
\(300\) 0 0
\(301\) 1210.26 0.231755
\(302\) 2480.21i 0.472584i
\(303\) 0 0
\(304\) −145.470 −0.0274451
\(305\) −1337.77 6284.73i −0.251150 1.17988i
\(306\) 0 0
\(307\) 6985.46i 1.29864i 0.760517 + 0.649318i \(0.224946\pi\)
−0.760517 + 0.649318i \(0.775054\pi\)
\(308\) 3617.88i 0.669311i
\(309\) 0 0
\(310\) −7507.60 + 1598.08i −1.37549 + 0.292789i
\(311\) 356.841 0.0650630 0.0325315 0.999471i \(-0.489643\pi\)
0.0325315 + 0.999471i \(0.489643\pi\)
\(312\) 0 0
\(313\) 6630.12i 1.19731i 0.801009 + 0.598653i \(0.204297\pi\)
−0.801009 + 0.598653i \(0.795703\pi\)
\(314\) 8892.42 1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) 2494.05i 0.441891i 0.975286 + 0.220946i \(0.0709144\pi\)
−0.975286 + 0.220946i \(0.929086\pi\)
\(318\) 0 0
\(319\) 5976.83 1.04902
\(320\) −2213.60 10399.3i −0.386700 1.81668i
\(321\) 0 0
\(322\) 4039.68i 0.699139i
\(323\) 21.9467i 0.00378063i
\(324\) 0 0
\(325\) 3263.31 + 7318.05i 0.556973 + 1.24902i
\(326\) −9933.13 −1.68756
\(327\) 0 0
\(328\) 26214.0i 4.41289i
\(329\) 1448.60 0.242748
\(330\) 0 0
\(331\) −4682.47 −0.777558 −0.388779 0.921331i \(-0.627103\pi\)
−0.388779 + 0.921331i \(0.627103\pi\)
\(332\) 21116.4i 3.49070i
\(333\) 0 0
\(334\) −247.218 −0.0405005
\(335\) 5638.70 1200.26i 0.919627 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i 0.956820 + 0.290681i \(0.0938820\pi\)
−0.956820 + 0.290681i \(0.906118\pi\)
\(338\) 10159.7i 1.63495i
\(339\) 0 0
\(340\) −6128.28 + 1304.47i −0.977509 + 0.208073i
\(341\) −3300.12 −0.524080
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 11240.3 1.76173
\(345\) 0 0
\(346\) 13264.4 2.06097
\(347\) 1899.51i 0.293865i −0.989147 0.146932i \(-0.953060\pi\)
0.989147 0.146932i \(-0.0469400\pi\)
\(348\) 0 0
\(349\) 1037.55 0.159137 0.0795683 0.996829i \(-0.474646\pi\)
0.0795683 + 0.996829i \(0.474646\pi\)
\(350\) −4246.38 + 1893.58i −0.648510 + 0.289188i
\(351\) 0 0
\(352\) 11630.5i 1.76110i
\(353\) 4087.08i 0.616242i −0.951347 0.308121i \(-0.900300\pi\)
0.951347 0.308121i \(-0.0997001\pi\)
\(354\) 0 0
\(355\) −1295.63 6086.75i −0.193704 0.910003i
\(356\) −13194.4 −1.96433
\(357\) 0 0
\(358\) 15811.8i 2.33431i
\(359\) 3472.67 0.510530 0.255265 0.966871i \(-0.417837\pi\)
0.255265 + 0.966871i \(0.417837\pi\)
\(360\) 0 0
\(361\) −6858.37 −0.999908
\(362\) 5134.44i 0.745470i
\(363\) 0 0
\(364\) 9079.63 1.30742
\(365\) 1894.48 403.260i 0.271675 0.0578290i
\(366\) 0 0
\(367\) 8769.14i 1.24726i 0.781719 + 0.623631i \(0.214343\pi\)
−0.781719 + 0.623631i \(0.785657\pi\)
\(368\) 19937.3i 2.82419i
\(369\) 0 0
\(370\) 473.853 + 2226.11i 0.0665796 + 0.312784i
\(371\) −1008.22 −0.141089
\(372\) 0 0
\(373\) 11368.9i 1.57817i −0.614284 0.789085i \(-0.710555\pi\)
0.614284 0.789085i \(-0.289445\pi\)
\(374\) −3758.82 −0.519690
\(375\) 0 0
\(376\) 13453.8 1.84529
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) 12137.4 1.64500 0.822501 0.568764i \(-0.192578\pi\)
0.822501 + 0.568764i \(0.192578\pi\)
\(380\) 37.3246 + 175.347i 0.00503871 + 0.0236714i
\(381\) 0 0
\(382\) 8212.24i 1.09993i
\(383\) 9869.61i 1.31675i −0.752692 0.658373i \(-0.771245\pi\)
0.752692 0.658373i \(-0.228755\pi\)
\(384\) 0 0
\(385\) −1955.17 + 416.180i −0.258817 + 0.0550921i
\(386\) 12242.9 1.61438
\(387\) 0 0
\(388\) 10435.5i 1.36541i
\(389\) 57.1166 0.00744454 0.00372227 0.999993i \(-0.498815\pi\)
0.00372227 + 0.999993i \(0.498815\pi\)
\(390\) 0 0
\(391\) −3007.88 −0.389041
\(392\) 3185.60i 0.410452i
\(393\) 0 0
\(394\) 1179.74 0.150849
\(395\) −184.655 867.490i −0.0235215 0.110502i
\(396\) 0 0
\(397\) 7436.17i 0.940078i −0.882646 0.470039i \(-0.844240\pi\)
0.882646 0.470039i \(-0.155760\pi\)
\(398\) 19025.8i 2.39618i
\(399\) 0 0
\(400\) −20957.4 + 9345.47i −2.61968 + 1.16818i
\(401\) 12465.0 1.55230 0.776149 0.630550i \(-0.217171\pi\)
0.776149 + 0.630550i \(0.217171\pi\)
\(402\) 0 0
\(403\) 8282.15i 1.02373i
\(404\) −10852.8 −1.33650
\(405\) 0 0
\(406\) −8703.79 −1.06394
\(407\) 978.533i 0.119175i
\(408\) 0 0
\(409\) 1708.72 0.206578 0.103289 0.994651i \(-0.467063\pi\)
0.103289 + 0.994651i \(0.467063\pi\)
\(410\) −23429.6 + 4987.24i −2.82220 + 0.600737i
\(411\) 0 0
\(412\) 7723.54i 0.923571i
\(413\) 4753.60i 0.566366i
\(414\) 0 0
\(415\) 11411.7 2429.10i 1.34983 0.287325i
\(416\) 29188.5 3.44011
\(417\) 0 0
\(418\) 107.550i 0.0125848i
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 22216.6i 2.56277i
\(423\) 0 0
\(424\) −9363.80 −1.07251
\(425\) 1409.92 + 3161.78i 0.160921 + 0.360868i
\(426\) 0 0
\(427\) 4023.02i 0.455943i
\(428\) 27946.9i 3.15622i
\(429\) 0 0
\(430\) −2138.47 10046.3i −0.239829 1.12669i
\(431\) −7918.20 −0.884934 −0.442467 0.896785i \(-0.645897\pi\)
−0.442467 + 0.896785i \(0.645897\pi\)
\(432\) 0 0
\(433\) 4433.34i 0.492038i 0.969265 + 0.246019i \(0.0791226\pi\)
−0.969265 + 0.246019i \(0.920877\pi\)
\(434\) 4805.81 0.531535
\(435\) 0 0
\(436\) −7903.40 −0.868129
\(437\) 86.0637i 0.00942102i
\(438\) 0 0
\(439\) −12958.4 −1.40882 −0.704408 0.709796i \(-0.748787\pi\)
−0.704408 + 0.709796i \(0.748787\pi\)
\(440\) −18158.6 + 3865.26i −1.96745 + 0.418793i
\(441\) 0 0
\(442\) 9433.34i 1.01515i
\(443\) 12040.4i 1.29133i 0.763621 + 0.645664i \(0.223420\pi\)
−0.763621 + 0.645664i \(0.776580\pi\)
\(444\) 0 0
\(445\) 1517.80 + 7130.50i 0.161687 + 0.759591i
\(446\) −12548.3 −1.33224
\(447\) 0 0
\(448\) 6656.84i 0.702023i
\(449\) 11586.3 1.21780 0.608899 0.793247i \(-0.291611\pi\)
0.608899 + 0.793247i \(0.291611\pi\)
\(450\) 0 0
\(451\) −10298.9 −1.07529
\(452\) 33249.1i 3.45997i
\(453\) 0 0
\(454\) −3118.46 −0.322371
\(455\) −1044.47 4906.80i −0.107616 0.505570i
\(456\) 0 0
\(457\) 9734.34i 0.996396i −0.867063 0.498198i \(-0.833995\pi\)
0.867063 0.498198i \(-0.166005\pi\)
\(458\) 24546.7i 2.50435i
\(459\) 0 0
\(460\) −24032.0 + 5115.48i −2.43587 + 0.518501i
\(461\) 1343.41 0.135724 0.0678621 0.997695i \(-0.478382\pi\)
0.0678621 + 0.997695i \(0.478382\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i −0.943305 0.331929i \(-0.892301\pi\)
0.943305 0.331929i \(-0.107699\pi\)
\(464\) −42956.3 −4.29784
\(465\) 0 0
\(466\) −27208.3 −2.70472
\(467\) 14688.9i 1.45551i −0.685838 0.727755i \(-0.740564\pi\)
0.685838 0.727755i \(-0.259436\pi\)
\(468\) 0 0
\(469\) −3609.48 −0.355374
\(470\) −2559.60 12024.8i −0.251204 1.18013i
\(471\) 0 0
\(472\) 44148.9i 4.30534i
\(473\) 4416.07i 0.429283i
\(474\) 0 0
\(475\) 90.4673 40.3418i 0.00873879 0.00389686i
\(476\) 3922.88 0.377741
\(477\) 0 0
\(478\) 5991.22i 0.573288i
\(479\) −15298.6 −1.45931 −0.729657 0.683813i \(-0.760320\pi\)
−0.729657 + 0.683813i \(0.760320\pi\)
\(480\) 0 0
\(481\) −2455.78 −0.232794
\(482\) 18861.0i 1.78235i
\(483\) 0 0
\(484\) 13731.6 1.28960
\(485\) 5639.52 1200.43i 0.527994 0.112389i
\(486\) 0 0
\(487\) 9653.80i 0.898266i 0.893465 + 0.449133i \(0.148267\pi\)
−0.893465 + 0.449133i \(0.851733\pi\)
\(488\) 37363.7i 3.46593i
\(489\) 0 0
\(490\) 2847.23 606.064i 0.262499 0.0558758i
\(491\) −20142.6 −1.85137 −0.925684 0.378297i \(-0.876510\pi\)
−0.925684 + 0.378297i \(0.876510\pi\)
\(492\) 0 0
\(493\) 6480.69i 0.592039i
\(494\) −269.914 −0.0245830
\(495\) 0 0
\(496\) 23718.4 2.14715
\(497\) 3896.29i 0.351655i
\(498\) 0 0
\(499\) 1309.29 0.117459 0.0587293 0.998274i \(-0.481295\pi\)
0.0587293 + 0.998274i \(0.481295\pi\)
\(500\) 16642.1 + 22863.8i 1.48851 + 2.04500i
\(501\) 0 0
\(502\) 25065.5i 2.22855i
\(503\) 2186.17i 0.193791i −0.995295 0.0968953i \(-0.969109\pi\)
0.995295 0.0968953i \(-0.0308912\pi\)
\(504\) 0 0
\(505\) 1248.44 + 5865.06i 0.110010 + 0.516815i
\(506\) −14740.2 −1.29502
\(507\) 0 0
\(508\) 3885.76i 0.339375i
\(509\) 3591.11 0.312718 0.156359 0.987700i \(-0.450024\pi\)
0.156359 + 0.987700i \(0.450024\pi\)
\(510\) 0 0
\(511\) −1212.70 −0.104984
\(512\) 11886.4i 1.02600i
\(513\) 0 0
\(514\) −33265.2 −2.85460
\(515\) −4173.94 + 888.470i −0.357138 + 0.0760207i
\(516\) 0 0
\(517\) 5285.73i 0.449644i
\(518\) 1424.99i 0.120870i
\(519\) 0 0
\(520\) −9700.46 45571.8i −0.818064 3.84318i
\(521\) 8605.34 0.723621 0.361811 0.932252i \(-0.382159\pi\)
0.361811 + 0.932252i \(0.382159\pi\)
\(522\) 0 0
\(523\) 22536.4i 1.88423i 0.335297 + 0.942113i \(0.391163\pi\)
−0.335297 + 0.942113i \(0.608837\pi\)
\(524\) 42147.3 3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) 3578.32i 0.295776i
\(528\) 0 0
\(529\) 371.637 0.0305447
\(530\) 1781.47 + 8369.17i 0.146004 + 0.685912i
\(531\) 0 0
\(532\) 112.244i 0.00914738i
\(533\) 25846.7i 2.10046i
\(534\) 0 0
\(535\) 15103.0 3214.84i 1.22049 0.259794i
\(536\) −33522.9 −2.70144
\(537\) 0 0
\(538\) 37510.2i 3.00591i
\(539\) 1251.56 0.100015
\(540\) 0 0
\(541\) 8782.44 0.697942 0.348971 0.937134i \(-0.386531\pi\)
0.348971 + 0.937134i \(0.386531\pi\)
\(542\) 45349.5i 3.59396i
\(543\) 0 0
\(544\) 12611.0 0.993917
\(545\) 909.161 + 4271.15i 0.0714572 + 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i −0.469366 0.883004i \(-0.655518\pi\)
0.469366 0.883004i \(-0.344482\pi\)
\(548\) 1581.78i 0.123304i
\(549\) 0 0
\(550\) 6909.37 + 15494.4i 0.535667 + 1.20124i
\(551\) 185.430 0.0143368
\(552\) 0 0
\(553\) 555.303i 0.0427014i
\(554\) −6981.84 −0.535433
\(555\) 0 0
\(556\) 28200.8 2.15104
\(557\) 7264.13i 0.552587i −0.961073 0.276294i \(-0.910894\pi\)
0.961073 0.276294i \(-0.0891062\pi\)
\(558\) 0 0
\(559\) 11082.8 0.838555
\(560\) 14052.1 2991.14i 1.06037 0.225712i
\(561\) 0 0
\(562\) 1313.69i 0.0986027i
\(563\) 3851.42i 0.288309i −0.989555 0.144154i \(-0.953954\pi\)
0.989555 0.144154i \(-0.0460462\pi\)
\(564\) 0 0
\(565\) 17968.4 3824.78i 1.33794 0.284796i
\(566\) 48220.9 3.58105
\(567\) 0 0
\(568\) 36186.7i 2.67317i
\(569\) 16580.3 1.22158 0.610792 0.791791i \(-0.290851\pi\)
0.610792 + 0.791791i \(0.290851\pi\)
\(570\) 0 0
\(571\) 6385.86 0.468021 0.234010 0.972234i \(-0.424815\pi\)
0.234010 + 0.972234i \(0.424815\pi\)
\(572\) 33130.2i 2.42175i
\(573\) 0 0
\(574\) 14997.9 1.09059
\(575\) 5529.00 + 12398.9i 0.401001 + 0.899252i
\(576\) 0 0
\(577\) 11059.1i 0.797912i 0.916970 + 0.398956i \(0.130627\pi\)
−0.916970 + 0.398956i \(0.869373\pi\)
\(578\) 22030.3i 1.58536i
\(579\) 0 0
\(580\) 11021.7 + 51778.7i 0.789052 + 3.70689i
\(581\) −7304.92 −0.521617
\(582\) 0 0
\(583\) 3678.84i 0.261341i
\(584\) −11263.0 −0.798055
\(585\) 0 0
\(586\) −14563.2 −1.02662
\(587\) 7871.25i 0.553461i −0.960948 0.276730i \(-0.910749\pi\)
0.960948 0.276730i \(-0.0892509\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) 39459.4 8399.37i 2.75342 0.586096i
\(591\) 0 0
\(592\) 7032.85i 0.488258i
\(593\) 2018.06i 0.139750i 0.997556 + 0.0698750i \(0.0222600\pi\)
−0.997556 + 0.0698750i \(0.977740\pi\)
\(594\) 0 0
\(595\) −451.264 2120.00i −0.0310925 0.146069i
\(596\) −657.640 −0.0451980
\(597\) 0 0
\(598\) 36992.8i 2.52968i
\(599\) −1356.67 −0.0925409 −0.0462705 0.998929i \(-0.514734\pi\)
−0.0462705 + 0.998929i \(0.514734\pi\)
\(600\) 0 0
\(601\) 11178.7 0.758715 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(602\) 6430.92i 0.435390i
\(603\) 0 0
\(604\) −9444.91 −0.636272
\(605\) −1579.60 7420.82i −0.106149 0.498676i
\(606\) 0 0
\(607\) 9404.67i 0.628870i −0.949279 0.314435i \(-0.898185\pi\)
0.949279 0.314435i \(-0.101815\pi\)
\(608\) 360.835i 0.0240687i
\(609\) 0 0
\(610\) 33394.9 7108.47i 2.21659 0.471825i
\(611\) 13265.3 0.878328
\(612\) 0 0
\(613\) 18938.0i 1.24779i −0.781507 0.623897i \(-0.785548\pi\)
0.781507 0.623897i \(-0.214452\pi\)
\(614\) −37118.4 −2.43970
\(615\) 0 0
\(616\) 11623.8 0.760286
\(617\) 17716.9i 1.15600i 0.816036 + 0.578001i \(0.196167\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(618\) 0 0
\(619\) 6240.33 0.405202 0.202601 0.979261i \(-0.435061\pi\)
0.202601 + 0.979261i \(0.435061\pi\)
\(620\) −6085.63 28589.7i −0.394202 1.85192i
\(621\) 0 0
\(622\) 1896.13i 0.122231i
\(623\) 4564.42i 0.293531i
\(624\) 0 0
\(625\) 10441.6 11623.8i 0.668264 0.743924i
\(626\) −35230.2 −2.24933
\(627\) 0 0
\(628\) 33863.2i 2.15174i
\(629\) −1061.03 −0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) 5157.37i 0.324603i
\(633\) 0 0
\(634\) −13252.5 −0.830165
\(635\) −2099.94 + 446.994i −0.131234 + 0.0279345i
\(636\) 0 0
\(637\) 3140.97i 0.195369i
\(638\) 31758.8i 1.97076i
\(639\) 0 0
\(640\) 15423.0 3282.95i 0.952573 0.202766i
\(641\) −18798.4 −1.15834 −0.579168 0.815208i \(-0.696622\pi\)
−0.579168 + 0.815208i \(0.696622\pi\)
\(642\) 0 0
\(643\) 2287.70i 0.140308i −0.997536 0.0701541i \(-0.977651\pi\)
0.997536 0.0701541i \(-0.0223491\pi\)
\(644\) 15383.5 0.941298
\(645\) 0 0
\(646\) −116.617 −0.00710253
\(647\) 1769.31i 0.107510i 0.998554 + 0.0537548i \(0.0171189\pi\)
−0.998554 + 0.0537548i \(0.982881\pi\)
\(648\) 0 0
\(649\) 17345.2 1.04909
\(650\) −38885.6 + 17340.1i −2.34649 + 1.04636i
\(651\) 0 0
\(652\) 37826.4i 2.27208i
\(653\) 3891.48i 0.233209i −0.993178 0.116604i \(-0.962799\pi\)
0.993178 0.116604i \(-0.0372010\pi\)
\(654\) 0 0
\(655\) −4848.38 22777.2i −0.289224 1.35875i
\(656\) 74019.8 4.40547
\(657\) 0 0
\(658\) 7697.37i 0.456040i
\(659\) 20097.6 1.18800 0.594001 0.804465i \(-0.297548\pi\)
0.594001 + 0.804465i \(0.297548\pi\)
\(660\) 0 0
\(661\) −27167.9 −1.59865 −0.799326 0.600898i \(-0.794810\pi\)
−0.799326 + 0.600898i \(0.794810\pi\)
\(662\) 24881.0i 1.46077i
\(663\) 0 0
\(664\) −67844.3 −3.96516
\(665\) −60.6589 + 12.9119i −0.00353722 + 0.000752937i
\(666\) 0 0
\(667\) 25414.0i 1.47531i
\(668\) 941.430i 0.0545285i
\(669\) 0 0
\(670\) 6377.77 + 29962.1i 0.367753 + 1.72767i
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i 0.670389 + 0.742010i \(0.266127\pi\)
−0.670389 + 0.742010i \(0.733873\pi\)
\(674\) −19111.1 −1.09218
\(675\) 0 0
\(676\) 38689.1 2.20125
\(677\) 4359.22i 0.247472i 0.992315 + 0.123736i \(0.0394875\pi\)
−0.992315 + 0.123736i \(0.960512\pi\)
\(678\) 0 0
\(679\) −3610.00 −0.204034
\(680\) −4191.11 19689.4i −0.236355 1.11037i
\(681\) 0 0
\(682\) 17535.7i 0.984569i
\(683\) 29721.9i 1.66512i −0.553937 0.832559i \(-0.686875\pi\)
0.553937 0.832559i \(-0.313125\pi\)
\(684\) 0 0
\(685\) 854.826 181.959i 0.0476806 0.0101493i
\(686\) −1822.58 −0.101438
\(687\) 0 0
\(688\) 31738.9i 1.75877i
\(689\) −9232.60 −0.510499
\(690\) 0 0
\(691\) −4929.13 −0.271365 −0.135682 0.990752i \(-0.543323\pi\)
−0.135682 + 0.990752i \(0.543323\pi\)
\(692\) 50512.0i 2.77482i
\(693\) 0 0
\(694\) 10093.4 0.552073
\(695\) −3244.05 15240.2i −0.177056 0.831791i
\(696\) 0 0
\(697\) 11167.1i 0.606866i
\(698\) 5513.18i 0.298964i
\(699\) 0 0
\(700\) −7210.93 16170.7i −0.389354 0.873133i
\(701\) 19358.8 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(702\) 0 0
\(703\) 30.3589i 0.00162874i
\(704\) 24289.8 1.30036
\(705\) 0 0
\(706\) 21717.3 1.15771
\(707\) 3754.38i 0.199714i
\(708\) 0 0
\(709\) 17186.3 0.910359 0.455180 0.890400i \(-0.349575\pi\)
0.455180 + 0.890400i \(0.349575\pi\)
\(710\) 32342.9 6884.54i 1.70959 0.363905i
\(711\) 0 0
\(712\) 42391.9i 2.23133i
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) −17904.2 + 3811.10i −0.936473 + 0.199339i
\(716\) −60213.1 −3.14284
\(717\) 0 0
\(718\) 18452.6i 0.959113i
\(719\) −15107.3 −0.783598 −0.391799 0.920051i \(-0.628147\pi\)
−0.391799 + 0.920051i \(0.628147\pi\)
\(720\) 0 0
\(721\) 2671.85 0.138010
\(722\) 36443.0i 1.87849i
\(723\) 0 0
\(724\) −19552.5 −1.00368
\(725\) 26714.3 11912.6i 1.36848 0.610240i
\(726\) 0 0
\(727\) 15840.9i 0.808124i 0.914732 + 0.404062i \(0.132402\pi\)
−0.914732 + 0.404062i \(0.867598\pi\)
\(728\) 29171.7i 1.48513i
\(729\) 0 0
\(730\) 2142.79 + 10066.6i 0.108641 + 0.510385i
\(731\) 4788.35 0.242276
\(732\) 0 0
\(733\) 27639.7i 1.39276i −0.717671 0.696382i \(-0.754792\pi\)
0.717671 0.696382i \(-0.245208\pi\)
\(734\) −46596.2 −2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) 13170.4i 0.658263i
\(738\) 0 0
\(739\) −34874.4 −1.73596 −0.867982 0.496597i \(-0.834583\pi\)
−0.867982 + 0.496597i \(0.834583\pi\)
\(740\) −8477.27 + 1804.48i −0.421123 + 0.0896406i
\(741\) 0 0
\(742\) 5357.32i 0.265059i
\(743\) 27686.7i 1.36706i 0.729922 + 0.683530i \(0.239556\pi\)
−0.729922 + 0.683530i \(0.760444\pi\)
\(744\) 0 0
\(745\) 75.6510 + 355.401i 0.00372032 + 0.0174777i
\(746\) 60410.2 2.96485
\(747\) 0 0
\(748\) 14314.0i 0.699694i
\(749\) −9667.83 −0.471635
\(750\) 0 0
\(751\) 4806.85 0.233561 0.116781 0.993158i \(-0.462743\pi\)
0.116781 + 0.993158i \(0.462743\pi\)
\(752\) 37989.3i 1.84219i
\(753\) 0 0
\(754\) −79703.6 −3.84965
\(755\) 1086.49 + 5104.21i 0.0523726 + 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i 0.264983 + 0.964253i \(0.414634\pi\)
−0.264983 + 0.964253i \(0.585366\pi\)
\(758\) 64493.9i 3.09040i
\(759\) 0 0
\(760\) −563.368 + 119.919i −0.0268888 + 0.00572359i
\(761\) −25912.3 −1.23432 −0.617162 0.786836i \(-0.711718\pi\)
−0.617162 + 0.786836i \(0.711718\pi\)
\(762\) 0 0
\(763\) 2734.07i 0.129725i
\(764\) −31273.1 −1.48092
\(765\) 0 0
\(766\) 52443.7 2.47372
\(767\) 43530.4i 2.04927i
\(768\) 0 0
\(769\) 23231.3 1.08939 0.544697 0.838633i \(-0.316645\pi\)
0.544697 + 0.838633i \(0.316645\pi\)
\(770\) −2211.44 10389.1i −0.103499 0.486230i
\(771\) 0 0
\(772\) 46622.4i 2.17354i
\(773\) 836.306i 0.0389131i −0.999811 0.0194566i \(-0.993806\pi\)
0.999811 0.0194566i \(-0.00619360\pi\)
\(774\) 0 0
\(775\) −14750.4 + 6577.58i −0.683675 + 0.304869i
\(776\) −33527.8 −1.55100
\(777\) 0 0
\(778\) 303.498i 0.0139858i
\(779\) −319.523 −0.0146959
\(780\) 0 0
\(781\) 14217.0 0.651374
\(782\) 15982.8i 0.730875i
\(783\) 0 0
\(784\) −8995.11 −0.409763
\(785\) 18300.3 3895.43i 0.832060 0.177113i
\(786\) 0 0
\(787\) 31945.6i 1.44693i −0.690359 0.723467i \(-0.742547\pi\)
0.690359 0.723467i \(-0.257453\pi\)
\(788\) 4492.58i 0.203098i