Defining parameters
| Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 315.bb (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 105 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(315, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 304 | 96 | 208 |
| Cusp forms | 272 | 96 | 176 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(315, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 315.4.bb.a | $96$ | $18.586$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{4}^{\mathrm{old}}(315, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)