Properties

Label 315.4.a.m
Level $315$
Weight $4$
Character orbit 315.a
Self dual yes
Analytic conductor $18.586$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 4) q^{2} + ( - 7 \beta + 12) q^{4} + 5 q^{5} - 7 q^{7} + ( - 25 \beta + 44) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta + 4) q^{2} + ( - 7 \beta + 12) q^{4} + 5 q^{5} - 7 q^{7} + ( - 25 \beta + 44) q^{8} + ( - 5 \beta + 20) q^{10} + ( - 10 \beta + 18) q^{11} + (22 \beta - 4) q^{13} + (7 \beta - 28) q^{14} + ( - 63 \beta + 180) q^{16} + (28 \beta - 22) q^{17} + (26 \beta + 74) q^{19} + ( - 35 \beta + 60) q^{20} + ( - 48 \beta + 112) q^{22} + (56 \beta - 120) q^{23} + 25 q^{25} + (70 \beta - 104) q^{26} + (49 \beta - 84) q^{28} + ( - 84 \beta + 58) q^{29} + ( - 18 \beta + 174) q^{31} + ( - 169 \beta + 620) q^{32} + (106 \beta - 200) q^{34} - 35 q^{35} + ( - 24 \beta - 54) q^{37} + (4 \beta + 192) q^{38} + ( - 125 \beta + 220) q^{40} + (140 \beta - 170) q^{41} + (68 \beta + 148) q^{43} + ( - 176 \beta + 496) q^{44} + (288 \beta - 704) q^{46} + (108 \beta - 200) q^{47} + 49 q^{49} + ( - 25 \beta + 100) q^{50} + (138 \beta - 664) q^{52} + (214 \beta - 124) q^{53} + ( - 50 \beta + 90) q^{55} + (175 \beta - 308) q^{56} + ( - 310 \beta + 568) q^{58} + (36 \beta - 200) q^{59} + (252 \beta + 270) q^{61} + ( - 228 \beta + 768) q^{62} + ( - 623 \beta + 1716) q^{64} + (110 \beta - 20) q^{65} + ( - 28 \beta - 380) q^{67} + (294 \beta - 1048) q^{68} + (35 \beta - 140) q^{70} + ( - 330 \beta - 62) q^{71} + (178 \beta + 300) q^{73} + ( - 18 \beta - 120) q^{74} + ( - 388 \beta + 160) q^{76} + (70 \beta - 126) q^{77} + ( - 88 \beta + 248) q^{79} + ( - 315 \beta + 900) q^{80} + (590 \beta - 1240) q^{82} + ( - 264 \beta - 436) q^{83} + (140 \beta - 110) q^{85} + (56 \beta + 320) q^{86} + ( - 640 \beta + 1792) q^{88} + ( - 728 \beta + 346) q^{89} + ( - 154 \beta + 28) q^{91} + (1120 \beta - 3008) q^{92} + (524 \beta - 1232) q^{94} + (130 \beta + 370) q^{95} + ( - 146 \beta - 176) q^{97} + ( - 49 \beta + 196) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{2} + 17 q^{4} + 10 q^{5} - 14 q^{7} + 63 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 7 q^{2} + 17 q^{4} + 10 q^{5} - 14 q^{7} + 63 q^{8} + 35 q^{10} + 26 q^{11} + 14 q^{13} - 49 q^{14} + 297 q^{16} - 16 q^{17} + 174 q^{19} + 85 q^{20} + 176 q^{22} - 184 q^{23} + 50 q^{25} - 138 q^{26} - 119 q^{28} + 32 q^{29} + 330 q^{31} + 1071 q^{32} - 294 q^{34} - 70 q^{35} - 132 q^{37} + 388 q^{38} + 315 q^{40} - 200 q^{41} + 364 q^{43} + 816 q^{44} - 1120 q^{46} - 292 q^{47} + 98 q^{49} + 175 q^{50} - 1190 q^{52} - 34 q^{53} + 130 q^{55} - 441 q^{56} + 826 q^{58} - 364 q^{59} + 792 q^{61} + 1308 q^{62} + 2809 q^{64} + 70 q^{65} - 788 q^{67} - 1802 q^{68} - 245 q^{70} - 454 q^{71} + 778 q^{73} - 258 q^{74} - 68 q^{76} - 182 q^{77} + 408 q^{79} + 1485 q^{80} - 1890 q^{82} - 1136 q^{83} - 80 q^{85} + 696 q^{86} + 2944 q^{88} - 36 q^{89} - 98 q^{91} - 4896 q^{92} - 1940 q^{94} + 870 q^{95} - 498 q^{97} + 343 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
1.43845 0 −5.93087 5.00000 0 −7.00000 −20.0388 0 7.19224
1.2 5.56155 0 22.9309 5.00000 0 −7.00000 83.0388 0 27.8078
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.4.a.m 2
3.b odd 2 1 105.4.a.c 2
5.b even 2 1 1575.4.a.m 2
7.b odd 2 1 2205.4.a.bh 2
12.b even 2 1 1680.4.a.bk 2
15.d odd 2 1 525.4.a.p 2
15.e even 4 2 525.4.d.i 4
21.c even 2 1 735.4.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.c 2 3.b odd 2 1
315.4.a.m 2 1.a even 1 1 trivial
525.4.a.p 2 15.d odd 2 1
525.4.d.i 4 15.e even 4 2
735.4.a.k 2 21.c even 2 1
1575.4.a.m 2 5.b even 2 1
1680.4.a.bk 2 12.b even 2 1
2205.4.a.bh 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 7T_{2} + 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 26T - 256 \) Copy content Toggle raw display
$13$ \( T^{2} - 14T - 2008 \) Copy content Toggle raw display
$17$ \( T^{2} + 16T - 3268 \) Copy content Toggle raw display
$19$ \( T^{2} - 174T + 4696 \) Copy content Toggle raw display
$23$ \( T^{2} + 184T - 4864 \) Copy content Toggle raw display
$29$ \( T^{2} - 32T - 29732 \) Copy content Toggle raw display
$31$ \( T^{2} - 330T + 25848 \) Copy content Toggle raw display
$37$ \( T^{2} + 132T + 1908 \) Copy content Toggle raw display
$41$ \( T^{2} + 200T - 73300 \) Copy content Toggle raw display
$43$ \( T^{2} - 364T + 13472 \) Copy content Toggle raw display
$47$ \( T^{2} + 292T - 28256 \) Copy content Toggle raw display
$53$ \( T^{2} + 34T - 194344 \) Copy content Toggle raw display
$59$ \( T^{2} + 364T + 27616 \) Copy content Toggle raw display
$61$ \( T^{2} - 792T - 113076 \) Copy content Toggle raw display
$67$ \( T^{2} + 788T + 151904 \) Copy content Toggle raw display
$71$ \( T^{2} + 454T - 411296 \) Copy content Toggle raw display
$73$ \( T^{2} - 778T + 16664 \) Copy content Toggle raw display
$79$ \( T^{2} - 408T + 8704 \) Copy content Toggle raw display
$83$ \( T^{2} + 1136T + 26416 \) Copy content Toggle raw display
$89$ \( T^{2} + 36T - 2252108 \) Copy content Toggle raw display
$97$ \( T^{2} + 498T - 28592 \) Copy content Toggle raw display
show more
show less