Properties

Label 315.4.a.g.1.2
Level $315$
Weight $4$
Character 315.1
Self dual yes
Analytic conductor $18.586$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5856016518\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.70156 q^{2} -5.10469 q^{4} +5.00000 q^{5} +7.00000 q^{7} -22.2984 q^{8} +O(q^{10})\) \(q+1.70156 q^{2} -5.10469 q^{4} +5.00000 q^{5} +7.00000 q^{7} -22.2984 q^{8} +8.50781 q^{10} -37.4031 q^{11} +29.0156 q^{13} +11.9109 q^{14} +2.89531 q^{16} -58.4187 q^{17} -54.5969 q^{19} -25.5234 q^{20} -63.6437 q^{22} -161.675 q^{23} +25.0000 q^{25} +49.3719 q^{26} -35.7328 q^{28} -137.581 q^{29} +154.659 q^{31} +183.314 q^{32} -99.4031 q^{34} +35.0000 q^{35} -350.125 q^{37} -92.9000 q^{38} -111.492 q^{40} -353.769 q^{41} -518.156 q^{43} +190.931 q^{44} -275.100 q^{46} +542.219 q^{47} +49.0000 q^{49} +42.5391 q^{50} -148.116 q^{52} -305.309 q^{53} -187.016 q^{55} -156.089 q^{56} -234.103 q^{58} -14.6813 q^{59} -171.069 q^{61} +263.163 q^{62} +288.758 q^{64} +145.078 q^{65} +551.956 q^{67} +298.209 q^{68} +59.5547 q^{70} +120.334 q^{71} +284.659 q^{73} -595.759 q^{74} +278.700 q^{76} -261.822 q^{77} +941.612 q^{79} +14.4766 q^{80} -601.959 q^{82} -377.150 q^{83} -292.094 q^{85} -881.675 q^{86} +834.031 q^{88} +677.725 q^{89} +203.109 q^{91} +825.300 q^{92} +922.619 q^{94} -272.984 q^{95} -1225.03 q^{97} +83.3765 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 9 q^{4} + 10 q^{5} + 14 q^{7} - 51 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} + 9 q^{4} + 10 q^{5} + 14 q^{7} - 51 q^{8} - 15 q^{10} - 62 q^{11} - 6 q^{13} - 21 q^{14} + 25 q^{16} - 40 q^{17} - 122 q^{19} + 45 q^{20} + 52 q^{22} - 16 q^{23} + 50 q^{25} + 214 q^{26} + 63 q^{28} - 352 q^{29} + 66 q^{31} + 309 q^{32} - 186 q^{34} + 70 q^{35} - 188 q^{37} + 224 q^{38} - 255 q^{40} - 16 q^{41} - 396 q^{43} - 156 q^{44} - 960 q^{46} + 188 q^{47} + 98 q^{49} - 75 q^{50} - 642 q^{52} - 982 q^{53} - 310 q^{55} - 357 q^{56} + 774 q^{58} - 516 q^{59} - 880 q^{61} + 680 q^{62} - 479 q^{64} - 30 q^{65} - 356 q^{67} + 558 q^{68} - 105 q^{70} - 310 q^{71} + 326 q^{73} - 1358 q^{74} - 672 q^{76} - 434 q^{77} + 1832 q^{79} + 125 q^{80} - 2190 q^{82} + 680 q^{83} - 200 q^{85} - 1456 q^{86} + 1540 q^{88} - 796 q^{89} - 42 q^{91} + 2880 q^{92} + 2588 q^{94} - 610 q^{95} - 670 q^{97} - 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.70156 0.601593 0.300797 0.953688i \(-0.402747\pi\)
0.300797 + 0.953688i \(0.402747\pi\)
\(3\) 0 0
\(4\) −5.10469 −0.638086
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −22.2984 −0.985461
\(9\) 0 0
\(10\) 8.50781 0.269041
\(11\) −37.4031 −1.02522 −0.512612 0.858620i \(-0.671322\pi\)
−0.512612 + 0.858620i \(0.671322\pi\)
\(12\) 0 0
\(13\) 29.0156 0.619037 0.309519 0.950893i \(-0.399832\pi\)
0.309519 + 0.950893i \(0.399832\pi\)
\(14\) 11.9109 0.227381
\(15\) 0 0
\(16\) 2.89531 0.0452393
\(17\) −58.4187 −0.833449 −0.416724 0.909033i \(-0.636822\pi\)
−0.416724 + 0.909033i \(0.636822\pi\)
\(18\) 0 0
\(19\) −54.5969 −0.659231 −0.329615 0.944115i \(-0.606919\pi\)
−0.329615 + 0.944115i \(0.606919\pi\)
\(20\) −25.5234 −0.285361
\(21\) 0 0
\(22\) −63.6437 −0.616768
\(23\) −161.675 −1.46572 −0.732860 0.680379i \(-0.761815\pi\)
−0.732860 + 0.680379i \(0.761815\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 49.3719 0.372409
\(27\) 0 0
\(28\) −35.7328 −0.241174
\(29\) −137.581 −0.880972 −0.440486 0.897759i \(-0.645194\pi\)
−0.440486 + 0.897759i \(0.645194\pi\)
\(30\) 0 0
\(31\) 154.659 0.896053 0.448026 0.894020i \(-0.352127\pi\)
0.448026 + 0.894020i \(0.352127\pi\)
\(32\) 183.314 1.01268
\(33\) 0 0
\(34\) −99.4031 −0.501397
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −350.125 −1.55568 −0.777840 0.628462i \(-0.783685\pi\)
−0.777840 + 0.628462i \(0.783685\pi\)
\(38\) −92.9000 −0.396589
\(39\) 0 0
\(40\) −111.492 −0.440712
\(41\) −353.769 −1.34755 −0.673773 0.738938i \(-0.735327\pi\)
−0.673773 + 0.738938i \(0.735327\pi\)
\(42\) 0 0
\(43\) −518.156 −1.83763 −0.918815 0.394689i \(-0.870852\pi\)
−0.918815 + 0.394689i \(0.870852\pi\)
\(44\) 190.931 0.654181
\(45\) 0 0
\(46\) −275.100 −0.881767
\(47\) 542.219 1.68278 0.841391 0.540427i \(-0.181737\pi\)
0.841391 + 0.540427i \(0.181737\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 42.5391 0.120319
\(51\) 0 0
\(52\) −148.116 −0.394999
\(53\) −305.309 −0.791273 −0.395637 0.918407i \(-0.629476\pi\)
−0.395637 + 0.918407i \(0.629476\pi\)
\(54\) 0 0
\(55\) −187.016 −0.458494
\(56\) −156.089 −0.372469
\(57\) 0 0
\(58\) −234.103 −0.529987
\(59\) −14.6813 −0.0323956 −0.0161978 0.999869i \(-0.505156\pi\)
−0.0161978 + 0.999869i \(0.505156\pi\)
\(60\) 0 0
\(61\) −171.069 −0.359067 −0.179534 0.983752i \(-0.557459\pi\)
−0.179534 + 0.983752i \(0.557459\pi\)
\(62\) 263.163 0.539059
\(63\) 0 0
\(64\) 288.758 0.563980
\(65\) 145.078 0.276842
\(66\) 0 0
\(67\) 551.956 1.00645 0.503225 0.864155i \(-0.332147\pi\)
0.503225 + 0.864155i \(0.332147\pi\)
\(68\) 298.209 0.531812
\(69\) 0 0
\(70\) 59.5547 0.101688
\(71\) 120.334 0.201142 0.100571 0.994930i \(-0.467933\pi\)
0.100571 + 0.994930i \(0.467933\pi\)
\(72\) 0 0
\(73\) 284.659 0.456395 0.228198 0.973615i \(-0.426717\pi\)
0.228198 + 0.973615i \(0.426717\pi\)
\(74\) −595.759 −0.935887
\(75\) 0 0
\(76\) 278.700 0.420646
\(77\) −261.822 −0.387498
\(78\) 0 0
\(79\) 941.612 1.34101 0.670504 0.741906i \(-0.266078\pi\)
0.670504 + 0.741906i \(0.266078\pi\)
\(80\) 14.4766 0.0202316
\(81\) 0 0
\(82\) −601.959 −0.810674
\(83\) −377.150 −0.498766 −0.249383 0.968405i \(-0.580228\pi\)
−0.249383 + 0.968405i \(0.580228\pi\)
\(84\) 0 0
\(85\) −292.094 −0.372730
\(86\) −881.675 −1.10551
\(87\) 0 0
\(88\) 834.031 1.01032
\(89\) 677.725 0.807176 0.403588 0.914941i \(-0.367763\pi\)
0.403588 + 0.914941i \(0.367763\pi\)
\(90\) 0 0
\(91\) 203.109 0.233974
\(92\) 825.300 0.935255
\(93\) 0 0
\(94\) 922.619 1.01235
\(95\) −272.984 −0.294817
\(96\) 0 0
\(97\) −1225.03 −1.28230 −0.641151 0.767414i \(-0.721543\pi\)
−0.641151 + 0.767414i \(0.721543\pi\)
\(98\) 83.3765 0.0859419
\(99\) 0 0
\(100\) −127.617 −0.127617
\(101\) 338.144 0.333134 0.166567 0.986030i \(-0.446732\pi\)
0.166567 + 0.986030i \(0.446732\pi\)
\(102\) 0 0
\(103\) −566.700 −0.542122 −0.271061 0.962562i \(-0.587375\pi\)
−0.271061 + 0.962562i \(0.587375\pi\)
\(104\) −647.003 −0.610037
\(105\) 0 0
\(106\) −519.503 −0.476024
\(107\) 562.531 0.508242 0.254121 0.967172i \(-0.418214\pi\)
0.254121 + 0.967172i \(0.418214\pi\)
\(108\) 0 0
\(109\) 1830.79 1.60879 0.804396 0.594094i \(-0.202489\pi\)
0.804396 + 0.594094i \(0.202489\pi\)
\(110\) −318.219 −0.275827
\(111\) 0 0
\(112\) 20.2672 0.0170988
\(113\) 31.8032 0.0264761 0.0132380 0.999912i \(-0.495786\pi\)
0.0132380 + 0.999912i \(0.495786\pi\)
\(114\) 0 0
\(115\) −808.375 −0.655490
\(116\) 702.309 0.562136
\(117\) 0 0
\(118\) −24.9811 −0.0194890
\(119\) −408.931 −0.315014
\(120\) 0 0
\(121\) 67.9937 0.0510847
\(122\) −291.084 −0.216012
\(123\) 0 0
\(124\) −789.488 −0.571759
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2220.81 1.55169 0.775847 0.630921i \(-0.217323\pi\)
0.775847 + 0.630921i \(0.217323\pi\)
\(128\) −975.173 −0.673390
\(129\) 0 0
\(130\) 246.859 0.166546
\(131\) −646.512 −0.431191 −0.215596 0.976483i \(-0.569169\pi\)
−0.215596 + 0.976483i \(0.569169\pi\)
\(132\) 0 0
\(133\) −382.178 −0.249166
\(134\) 939.188 0.605474
\(135\) 0 0
\(136\) 1302.65 0.821331
\(137\) 896.009 0.558768 0.279384 0.960179i \(-0.409870\pi\)
0.279384 + 0.960179i \(0.409870\pi\)
\(138\) 0 0
\(139\) −2313.61 −1.41178 −0.705891 0.708320i \(-0.749453\pi\)
−0.705891 + 0.708320i \(0.749453\pi\)
\(140\) −178.664 −0.107856
\(141\) 0 0
\(142\) 204.756 0.121005
\(143\) −1085.27 −0.634652
\(144\) 0 0
\(145\) −687.906 −0.393983
\(146\) 484.366 0.274564
\(147\) 0 0
\(148\) 1787.28 0.992658
\(149\) −819.337 −0.450488 −0.225244 0.974302i \(-0.572318\pi\)
−0.225244 + 0.974302i \(0.572318\pi\)
\(150\) 0 0
\(151\) 534.744 0.288191 0.144095 0.989564i \(-0.453973\pi\)
0.144095 + 0.989564i \(0.453973\pi\)
\(152\) 1217.43 0.649646
\(153\) 0 0
\(154\) −445.506 −0.233116
\(155\) 773.297 0.400727
\(156\) 0 0
\(157\) 1564.76 0.795423 0.397711 0.917511i \(-0.369805\pi\)
0.397711 + 0.917511i \(0.369805\pi\)
\(158\) 1602.21 0.806741
\(159\) 0 0
\(160\) 916.570 0.452883
\(161\) −1131.72 −0.553990
\(162\) 0 0
\(163\) −1114.31 −0.535455 −0.267728 0.963495i \(-0.586273\pi\)
−0.267728 + 0.963495i \(0.586273\pi\)
\(164\) 1805.88 0.859850
\(165\) 0 0
\(166\) −641.744 −0.300054
\(167\) 1774.47 0.822231 0.411115 0.911583i \(-0.365139\pi\)
0.411115 + 0.911583i \(0.365139\pi\)
\(168\) 0 0
\(169\) −1355.09 −0.616793
\(170\) −497.016 −0.224232
\(171\) 0 0
\(172\) 2645.02 1.17257
\(173\) 4215.88 1.85276 0.926380 0.376590i \(-0.122903\pi\)
0.926380 + 0.376590i \(0.122903\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −108.294 −0.0463804
\(177\) 0 0
\(178\) 1153.19 0.485592
\(179\) 2430.70 1.01497 0.507483 0.861662i \(-0.330576\pi\)
0.507483 + 0.861662i \(0.330576\pi\)
\(180\) 0 0
\(181\) −2700.91 −1.10916 −0.554578 0.832132i \(-0.687120\pi\)
−0.554578 + 0.832132i \(0.687120\pi\)
\(182\) 345.603 0.140757
\(183\) 0 0
\(184\) 3605.10 1.44441
\(185\) −1750.62 −0.695722
\(186\) 0 0
\(187\) 2185.04 0.854472
\(188\) −2767.86 −1.07376
\(189\) 0 0
\(190\) −464.500 −0.177360
\(191\) −3611.10 −1.36801 −0.684005 0.729478i \(-0.739763\pi\)
−0.684005 + 0.729478i \(0.739763\pi\)
\(192\) 0 0
\(193\) −4468.33 −1.66651 −0.833257 0.552886i \(-0.813526\pi\)
−0.833257 + 0.552886i \(0.813526\pi\)
\(194\) −2084.47 −0.771425
\(195\) 0 0
\(196\) −250.130 −0.0911551
\(197\) 434.422 0.157113 0.0785566 0.996910i \(-0.474969\pi\)
0.0785566 + 0.996910i \(0.474969\pi\)
\(198\) 0 0
\(199\) −468.915 −0.167038 −0.0835189 0.996506i \(-0.526616\pi\)
−0.0835189 + 0.996506i \(0.526616\pi\)
\(200\) −557.461 −0.197092
\(201\) 0 0
\(202\) 575.372 0.200411
\(203\) −963.069 −0.332976
\(204\) 0 0
\(205\) −1768.84 −0.602641
\(206\) −964.275 −0.326137
\(207\) 0 0
\(208\) 84.0093 0.0280048
\(209\) 2042.09 0.675859
\(210\) 0 0
\(211\) 3735.51 1.21878 0.609392 0.792869i \(-0.291414\pi\)
0.609392 + 0.792869i \(0.291414\pi\)
\(212\) 1558.51 0.504900
\(213\) 0 0
\(214\) 957.182 0.305755
\(215\) −2590.78 −0.821813
\(216\) 0 0
\(217\) 1082.62 0.338676
\(218\) 3115.21 0.967838
\(219\) 0 0
\(220\) 954.656 0.292559
\(221\) −1695.06 −0.515936
\(222\) 0 0
\(223\) 842.806 0.253087 0.126544 0.991961i \(-0.459612\pi\)
0.126544 + 0.991961i \(0.459612\pi\)
\(224\) 1283.20 0.382756
\(225\) 0 0
\(226\) 54.1152 0.0159278
\(227\) −992.150 −0.290094 −0.145047 0.989425i \(-0.546333\pi\)
−0.145047 + 0.989425i \(0.546333\pi\)
\(228\) 0 0
\(229\) −6411.39 −1.85012 −0.925059 0.379825i \(-0.875984\pi\)
−0.925059 + 0.379825i \(0.875984\pi\)
\(230\) −1375.50 −0.394338
\(231\) 0 0
\(232\) 3067.85 0.868164
\(233\) 2274.35 0.639476 0.319738 0.947506i \(-0.396405\pi\)
0.319738 + 0.947506i \(0.396405\pi\)
\(234\) 0 0
\(235\) 2711.09 0.752563
\(236\) 74.9433 0.0206712
\(237\) 0 0
\(238\) −695.822 −0.189510
\(239\) −2863.12 −0.774893 −0.387447 0.921892i \(-0.626643\pi\)
−0.387447 + 0.921892i \(0.626643\pi\)
\(240\) 0 0
\(241\) −5364.23 −1.43378 −0.716889 0.697187i \(-0.754435\pi\)
−0.716889 + 0.697187i \(0.754435\pi\)
\(242\) 115.696 0.0307322
\(243\) 0 0
\(244\) 873.252 0.229116
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −1584.16 −0.408088
\(248\) −3448.66 −0.883025
\(249\) 0 0
\(250\) 212.695 0.0538081
\(251\) −5569.81 −1.40065 −0.700325 0.713824i \(-0.746961\pi\)
−0.700325 + 0.713824i \(0.746961\pi\)
\(252\) 0 0
\(253\) 6047.15 1.50269
\(254\) 3778.85 0.933489
\(255\) 0 0
\(256\) −3969.38 −0.969087
\(257\) −2095.36 −0.508580 −0.254290 0.967128i \(-0.581842\pi\)
−0.254290 + 0.967128i \(0.581842\pi\)
\(258\) 0 0
\(259\) −2450.87 −0.587992
\(260\) −740.578 −0.176649
\(261\) 0 0
\(262\) −1100.08 −0.259402
\(263\) 7465.88 1.75044 0.875220 0.483724i \(-0.160716\pi\)
0.875220 + 0.483724i \(0.160716\pi\)
\(264\) 0 0
\(265\) −1526.55 −0.353868
\(266\) −650.300 −0.149896
\(267\) 0 0
\(268\) −2817.56 −0.642202
\(269\) 6521.38 1.47812 0.739062 0.673637i \(-0.235269\pi\)
0.739062 + 0.673637i \(0.235269\pi\)
\(270\) 0 0
\(271\) 2409.70 0.540144 0.270072 0.962840i \(-0.412952\pi\)
0.270072 + 0.962840i \(0.412952\pi\)
\(272\) −169.141 −0.0377046
\(273\) 0 0
\(274\) 1524.62 0.336151
\(275\) −935.078 −0.205045
\(276\) 0 0
\(277\) −2219.83 −0.481503 −0.240752 0.970587i \(-0.577394\pi\)
−0.240752 + 0.970587i \(0.577394\pi\)
\(278\) −3936.75 −0.849319
\(279\) 0 0
\(280\) −780.445 −0.166573
\(281\) −5838.56 −1.23950 −0.619749 0.784800i \(-0.712766\pi\)
−0.619749 + 0.784800i \(0.712766\pi\)
\(282\) 0 0
\(283\) −3645.04 −0.765636 −0.382818 0.923824i \(-0.625046\pi\)
−0.382818 + 0.923824i \(0.625046\pi\)
\(284\) −614.269 −0.128346
\(285\) 0 0
\(286\) −1846.66 −0.381802
\(287\) −2476.38 −0.509325
\(288\) 0 0
\(289\) −1500.25 −0.305363
\(290\) −1170.52 −0.237017
\(291\) 0 0
\(292\) −1453.10 −0.291219
\(293\) −3777.91 −0.753268 −0.376634 0.926362i \(-0.622919\pi\)
−0.376634 + 0.926362i \(0.622919\pi\)
\(294\) 0 0
\(295\) −73.4064 −0.0144877
\(296\) 7807.24 1.53306
\(297\) 0 0
\(298\) −1394.15 −0.271011
\(299\) −4691.10 −0.907336
\(300\) 0 0
\(301\) −3627.09 −0.694559
\(302\) 909.900 0.173374
\(303\) 0 0
\(304\) −158.075 −0.0298231
\(305\) −855.344 −0.160580
\(306\) 0 0
\(307\) −4799.64 −0.892281 −0.446140 0.894963i \(-0.647202\pi\)
−0.446140 + 0.894963i \(0.647202\pi\)
\(308\) 1336.52 0.247257
\(309\) 0 0
\(310\) 1315.81 0.241075
\(311\) −580.113 −0.105772 −0.0528861 0.998601i \(-0.516842\pi\)
−0.0528861 + 0.998601i \(0.516842\pi\)
\(312\) 0 0
\(313\) −6114.78 −1.10424 −0.552121 0.833764i \(-0.686182\pi\)
−0.552121 + 0.833764i \(0.686182\pi\)
\(314\) 2662.53 0.478521
\(315\) 0 0
\(316\) −4806.64 −0.855679
\(317\) 4300.63 0.761979 0.380989 0.924579i \(-0.375583\pi\)
0.380989 + 0.924579i \(0.375583\pi\)
\(318\) 0 0
\(319\) 5145.97 0.903194
\(320\) 1443.79 0.252220
\(321\) 0 0
\(322\) −1925.70 −0.333277
\(323\) 3189.48 0.549435
\(324\) 0 0
\(325\) 725.391 0.123807
\(326\) −1896.06 −0.322126
\(327\) 0 0
\(328\) 7888.49 1.32795
\(329\) 3795.53 0.636032
\(330\) 0 0
\(331\) −6687.54 −1.11051 −0.555257 0.831679i \(-0.687380\pi\)
−0.555257 + 0.831679i \(0.687380\pi\)
\(332\) 1925.23 0.318256
\(333\) 0 0
\(334\) 3019.37 0.494648
\(335\) 2759.78 0.450098
\(336\) 0 0
\(337\) 5869.28 0.948723 0.474362 0.880330i \(-0.342679\pi\)
0.474362 + 0.880330i \(0.342679\pi\)
\(338\) −2305.78 −0.371058
\(339\) 0 0
\(340\) 1491.05 0.237833
\(341\) −5784.74 −0.918655
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 11554.1 1.81091
\(345\) 0 0
\(346\) 7173.58 1.11461
\(347\) −1937.22 −0.299699 −0.149850 0.988709i \(-0.547879\pi\)
−0.149850 + 0.988709i \(0.547879\pi\)
\(348\) 0 0
\(349\) −9748.82 −1.49525 −0.747625 0.664121i \(-0.768806\pi\)
−0.747625 + 0.664121i \(0.768806\pi\)
\(350\) 297.773 0.0454762
\(351\) 0 0
\(352\) −6856.52 −1.03822
\(353\) 4576.61 0.690052 0.345026 0.938593i \(-0.387870\pi\)
0.345026 + 0.938593i \(0.387870\pi\)
\(354\) 0 0
\(355\) 601.672 0.0899533
\(356\) −3459.57 −0.515048
\(357\) 0 0
\(358\) 4135.98 0.610596
\(359\) −10849.9 −1.59509 −0.797546 0.603258i \(-0.793869\pi\)
−0.797546 + 0.603258i \(0.793869\pi\)
\(360\) 0 0
\(361\) −3878.18 −0.565415
\(362\) −4595.77 −0.667261
\(363\) 0 0
\(364\) −1036.81 −0.149296
\(365\) 1423.30 0.204106
\(366\) 0 0
\(367\) 11467.7 1.63108 0.815541 0.578699i \(-0.196439\pi\)
0.815541 + 0.578699i \(0.196439\pi\)
\(368\) −468.100 −0.0663081
\(369\) 0 0
\(370\) −2978.80 −0.418541
\(371\) −2137.17 −0.299073
\(372\) 0 0
\(373\) 539.982 0.0749576 0.0374788 0.999297i \(-0.488067\pi\)
0.0374788 + 0.999297i \(0.488067\pi\)
\(374\) 3717.99 0.514044
\(375\) 0 0
\(376\) −12090.6 −1.65832
\(377\) −3992.01 −0.545355
\(378\) 0 0
\(379\) 8577.57 1.16253 0.581267 0.813713i \(-0.302557\pi\)
0.581267 + 0.813713i \(0.302557\pi\)
\(380\) 1393.50 0.188118
\(381\) 0 0
\(382\) −6144.51 −0.822985
\(383\) −8627.96 −1.15109 −0.575546 0.817770i \(-0.695210\pi\)
−0.575546 + 0.817770i \(0.695210\pi\)
\(384\) 0 0
\(385\) −1309.11 −0.173295
\(386\) −7603.13 −1.00256
\(387\) 0 0
\(388\) 6253.42 0.818219
\(389\) −9234.06 −1.20356 −0.601781 0.798661i \(-0.705542\pi\)
−0.601781 + 0.798661i \(0.705542\pi\)
\(390\) 0 0
\(391\) 9444.85 1.22160
\(392\) −1092.62 −0.140780
\(393\) 0 0
\(394\) 739.196 0.0945182
\(395\) 4708.06 0.599717
\(396\) 0 0
\(397\) 11618.0 1.46874 0.734372 0.678747i \(-0.237477\pi\)
0.734372 + 0.678747i \(0.237477\pi\)
\(398\) −797.889 −0.100489
\(399\) 0 0
\(400\) 72.3828 0.00904786
\(401\) −11157.1 −1.38942 −0.694711 0.719289i \(-0.744468\pi\)
−0.694711 + 0.719289i \(0.744468\pi\)
\(402\) 0 0
\(403\) 4487.54 0.554690
\(404\) −1726.12 −0.212568
\(405\) 0 0
\(406\) −1638.72 −0.200316
\(407\) 13095.8 1.59492
\(408\) 0 0
\(409\) −7428.08 −0.898031 −0.449015 0.893524i \(-0.648225\pi\)
−0.449015 + 0.893524i \(0.648225\pi\)
\(410\) −3009.80 −0.362545
\(411\) 0 0
\(412\) 2892.83 0.345921
\(413\) −102.769 −0.0122444
\(414\) 0 0
\(415\) −1885.75 −0.223055
\(416\) 5318.97 0.626885
\(417\) 0 0
\(418\) 3474.75 0.406592
\(419\) −9644.74 −1.12453 −0.562263 0.826959i \(-0.690069\pi\)
−0.562263 + 0.826959i \(0.690069\pi\)
\(420\) 0 0
\(421\) 9918.18 1.14818 0.574088 0.818793i \(-0.305357\pi\)
0.574088 + 0.818793i \(0.305357\pi\)
\(422\) 6356.21 0.733212
\(423\) 0 0
\(424\) 6807.92 0.779769
\(425\) −1460.47 −0.166690
\(426\) 0 0
\(427\) −1197.48 −0.135715
\(428\) −2871.54 −0.324302
\(429\) 0 0
\(430\) −4408.37 −0.494397
\(431\) 16324.1 1.82437 0.912185 0.409779i \(-0.134394\pi\)
0.912185 + 0.409779i \(0.134394\pi\)
\(432\) 0 0
\(433\) −5168.75 −0.573659 −0.286829 0.957982i \(-0.592601\pi\)
−0.286829 + 0.957982i \(0.592601\pi\)
\(434\) 1842.14 0.203745
\(435\) 0 0
\(436\) −9345.63 −1.02655
\(437\) 8826.95 0.966248
\(438\) 0 0
\(439\) 18339.0 1.99378 0.996892 0.0787782i \(-0.0251019\pi\)
0.996892 + 0.0787782i \(0.0251019\pi\)
\(440\) 4170.16 0.451828
\(441\) 0 0
\(442\) −2884.24 −0.310383
\(443\) 1613.28 0.173023 0.0865113 0.996251i \(-0.472428\pi\)
0.0865113 + 0.996251i \(0.472428\pi\)
\(444\) 0 0
\(445\) 3388.62 0.360980
\(446\) 1434.09 0.152256
\(447\) 0 0
\(448\) 2021.30 0.213164
\(449\) 886.750 0.0932034 0.0466017 0.998914i \(-0.485161\pi\)
0.0466017 + 0.998914i \(0.485161\pi\)
\(450\) 0 0
\(451\) 13232.1 1.38154
\(452\) −162.345 −0.0168940
\(453\) 0 0
\(454\) −1688.21 −0.174518
\(455\) 1015.55 0.104636
\(456\) 0 0
\(457\) 7391.22 0.756557 0.378279 0.925692i \(-0.376516\pi\)
0.378279 + 0.925692i \(0.376516\pi\)
\(458\) −10909.4 −1.11302
\(459\) 0 0
\(460\) 4126.50 0.418259
\(461\) 7133.35 0.720679 0.360340 0.932821i \(-0.382661\pi\)
0.360340 + 0.932821i \(0.382661\pi\)
\(462\) 0 0
\(463\) 14461.8 1.45162 0.725808 0.687897i \(-0.241466\pi\)
0.725808 + 0.687897i \(0.241466\pi\)
\(464\) −398.341 −0.0398546
\(465\) 0 0
\(466\) 3869.95 0.384704
\(467\) 16393.5 1.62441 0.812206 0.583370i \(-0.198266\pi\)
0.812206 + 0.583370i \(0.198266\pi\)
\(468\) 0 0
\(469\) 3863.69 0.380403
\(470\) 4613.09 0.452737
\(471\) 0 0
\(472\) 327.370 0.0319246
\(473\) 19380.7 1.88398
\(474\) 0 0
\(475\) −1364.92 −0.131846
\(476\) 2087.47 0.201006
\(477\) 0 0
\(478\) −4871.77 −0.466171
\(479\) 12991.4 1.23923 0.619617 0.784904i \(-0.287288\pi\)
0.619617 + 0.784904i \(0.287288\pi\)
\(480\) 0 0
\(481\) −10159.1 −0.963025
\(482\) −9127.57 −0.862551
\(483\) 0 0
\(484\) −347.087 −0.0325964
\(485\) −6125.17 −0.573463
\(486\) 0 0
\(487\) −12863.5 −1.19692 −0.598461 0.801152i \(-0.704221\pi\)
−0.598461 + 0.801152i \(0.704221\pi\)
\(488\) 3814.57 0.353847
\(489\) 0 0
\(490\) 416.883 0.0384344
\(491\) 4898.10 0.450200 0.225100 0.974336i \(-0.427729\pi\)
0.225100 + 0.974336i \(0.427729\pi\)
\(492\) 0 0
\(493\) 8037.32 0.734245
\(494\) −2695.55 −0.245503
\(495\) 0 0
\(496\) 447.787 0.0405368
\(497\) 842.340 0.0760244
\(498\) 0 0
\(499\) 10308.0 0.924746 0.462373 0.886686i \(-0.346998\pi\)
0.462373 + 0.886686i \(0.346998\pi\)
\(500\) −638.086 −0.0570721
\(501\) 0 0
\(502\) −9477.37 −0.842621
\(503\) 15119.6 1.34026 0.670130 0.742244i \(-0.266238\pi\)
0.670130 + 0.742244i \(0.266238\pi\)
\(504\) 0 0
\(505\) 1690.72 0.148982
\(506\) 10289.6 0.904009
\(507\) 0 0
\(508\) −11336.6 −0.990114
\(509\) −14183.8 −1.23514 −0.617571 0.786515i \(-0.711883\pi\)
−0.617571 + 0.786515i \(0.711883\pi\)
\(510\) 0 0
\(511\) 1992.62 0.172501
\(512\) 1047.24 0.0903943
\(513\) 0 0
\(514\) −3565.39 −0.305958
\(515\) −2833.50 −0.242444
\(516\) 0 0
\(517\) −20280.7 −1.72523
\(518\) −4170.32 −0.353732
\(519\) 0 0
\(520\) −3235.02 −0.272817
\(521\) 7464.08 0.627653 0.313827 0.949480i \(-0.398389\pi\)
0.313827 + 0.949480i \(0.398389\pi\)
\(522\) 0 0
\(523\) −16642.9 −1.39148 −0.695739 0.718295i \(-0.744923\pi\)
−0.695739 + 0.718295i \(0.744923\pi\)
\(524\) 3300.24 0.275137
\(525\) 0 0
\(526\) 12703.7 1.05305
\(527\) −9035.01 −0.746814
\(528\) 0 0
\(529\) 13971.8 1.14834
\(530\) −2597.51 −0.212885
\(531\) 0 0
\(532\) 1950.90 0.158989
\(533\) −10264.8 −0.834181
\(534\) 0 0
\(535\) 2812.66 0.227293
\(536\) −12307.8 −0.991818
\(537\) 0 0
\(538\) 11096.5 0.889230
\(539\) −1832.75 −0.146461
\(540\) 0 0
\(541\) 67.8755 0.00539408 0.00269704 0.999996i \(-0.499142\pi\)
0.00269704 + 0.999996i \(0.499142\pi\)
\(542\) 4100.26 0.324947
\(543\) 0 0
\(544\) −10709.0 −0.844014
\(545\) 9153.97 0.719473
\(546\) 0 0
\(547\) −9212.91 −0.720138 −0.360069 0.932926i \(-0.617247\pi\)
−0.360069 + 0.932926i \(0.617247\pi\)
\(548\) −4573.85 −0.356542
\(549\) 0 0
\(550\) −1591.09 −0.123354
\(551\) 7511.51 0.580764
\(552\) 0 0
\(553\) 6591.29 0.506854
\(554\) −3777.17 −0.289669
\(555\) 0 0
\(556\) 11810.2 0.900838
\(557\) −16699.6 −1.27035 −0.635173 0.772370i \(-0.719071\pi\)
−0.635173 + 0.772370i \(0.719071\pi\)
\(558\) 0 0
\(559\) −15034.6 −1.13756
\(560\) 101.336 0.00764683
\(561\) 0 0
\(562\) −9934.67 −0.745674
\(563\) −14772.8 −1.10586 −0.552931 0.833227i \(-0.686491\pi\)
−0.552931 + 0.833227i \(0.686491\pi\)
\(564\) 0 0
\(565\) 159.016 0.0118405
\(566\) −6202.26 −0.460601
\(567\) 0 0
\(568\) −2683.27 −0.198217
\(569\) −5663.76 −0.417289 −0.208644 0.977992i \(-0.566905\pi\)
−0.208644 + 0.977992i \(0.566905\pi\)
\(570\) 0 0
\(571\) 5579.58 0.408929 0.204464 0.978874i \(-0.434455\pi\)
0.204464 + 0.978874i \(0.434455\pi\)
\(572\) 5539.99 0.404962
\(573\) 0 0
\(574\) −4213.72 −0.306406
\(575\) −4041.87 −0.293144
\(576\) 0 0
\(577\) −2301.23 −0.166034 −0.0830170 0.996548i \(-0.526456\pi\)
−0.0830170 + 0.996548i \(0.526456\pi\)
\(578\) −2552.77 −0.183704
\(579\) 0 0
\(580\) 3511.55 0.251395
\(581\) −2640.05 −0.188516
\(582\) 0 0
\(583\) 11419.5 0.811232
\(584\) −6347.46 −0.449760
\(585\) 0 0
\(586\) −6428.34 −0.453161
\(587\) 16470.4 1.15810 0.579052 0.815291i \(-0.303423\pi\)
0.579052 + 0.815291i \(0.303423\pi\)
\(588\) 0 0
\(589\) −8443.92 −0.590706
\(590\) −124.906 −0.00871573
\(591\) 0 0
\(592\) −1013.72 −0.0703779
\(593\) 13570.0 0.939715 0.469858 0.882742i \(-0.344305\pi\)
0.469858 + 0.882742i \(0.344305\pi\)
\(594\) 0 0
\(595\) −2044.66 −0.140879
\(596\) 4182.46 0.287450
\(597\) 0 0
\(598\) −7982.20 −0.545847
\(599\) −27814.1 −1.89725 −0.948625 0.316403i \(-0.897525\pi\)
−0.948625 + 0.316403i \(0.897525\pi\)
\(600\) 0 0
\(601\) 20646.1 1.40128 0.700641 0.713514i \(-0.252898\pi\)
0.700641 + 0.713514i \(0.252898\pi\)
\(602\) −6171.72 −0.417842
\(603\) 0 0
\(604\) −2729.70 −0.183891
\(605\) 339.969 0.0228458
\(606\) 0 0
\(607\) 3315.28 0.221686 0.110843 0.993838i \(-0.464645\pi\)
0.110843 + 0.993838i \(0.464645\pi\)
\(608\) −10008.4 −0.667588
\(609\) 0 0
\(610\) −1455.42 −0.0966037
\(611\) 15732.8 1.04170
\(612\) 0 0
\(613\) −11113.9 −0.732278 −0.366139 0.930560i \(-0.619320\pi\)
−0.366139 + 0.930560i \(0.619320\pi\)
\(614\) −8166.89 −0.536790
\(615\) 0 0
\(616\) 5838.22 0.381865
\(617\) −7871.34 −0.513595 −0.256797 0.966465i \(-0.582667\pi\)
−0.256797 + 0.966465i \(0.582667\pi\)
\(618\) 0 0
\(619\) −19107.1 −1.24068 −0.620339 0.784334i \(-0.713005\pi\)
−0.620339 + 0.784334i \(0.713005\pi\)
\(620\) −3947.44 −0.255698
\(621\) 0 0
\(622\) −987.098 −0.0636319
\(623\) 4744.07 0.305084
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −10404.7 −0.664305
\(627\) 0 0
\(628\) −7987.60 −0.507548
\(629\) 20453.9 1.29658
\(630\) 0 0
\(631\) −25769.9 −1.62580 −0.812902 0.582401i \(-0.802113\pi\)
−0.812902 + 0.582401i \(0.802113\pi\)
\(632\) −20996.5 −1.32151
\(633\) 0 0
\(634\) 7317.79 0.458401
\(635\) 11104.1 0.693939
\(636\) 0 0
\(637\) 1421.77 0.0884339
\(638\) 8756.19 0.543355
\(639\) 0 0
\(640\) −4875.87 −0.301149
\(641\) 1954.61 0.120440 0.0602202 0.998185i \(-0.480820\pi\)
0.0602202 + 0.998185i \(0.480820\pi\)
\(642\) 0 0
\(643\) −19396.5 −1.18961 −0.594807 0.803868i \(-0.702772\pi\)
−0.594807 + 0.803868i \(0.702772\pi\)
\(644\) 5777.10 0.353493
\(645\) 0 0
\(646\) 5427.10 0.330536
\(647\) −31264.3 −1.89973 −0.949865 0.312661i \(-0.898780\pi\)
−0.949865 + 0.312661i \(0.898780\pi\)
\(648\) 0 0
\(649\) 549.126 0.0332127
\(650\) 1234.30 0.0744817
\(651\) 0 0
\(652\) 5688.18 0.341666
\(653\) −6442.75 −0.386102 −0.193051 0.981189i \(-0.561838\pi\)
−0.193051 + 0.981189i \(0.561838\pi\)
\(654\) 0 0
\(655\) −3232.56 −0.192835
\(656\) −1024.27 −0.0609620
\(657\) 0 0
\(658\) 6458.33 0.382632
\(659\) 3584.70 0.211897 0.105949 0.994372i \(-0.466212\pi\)
0.105949 + 0.994372i \(0.466212\pi\)
\(660\) 0 0
\(661\) 6294.43 0.370386 0.185193 0.982702i \(-0.440709\pi\)
0.185193 + 0.982702i \(0.440709\pi\)
\(662\) −11379.3 −0.668078
\(663\) 0 0
\(664\) 8409.85 0.491514
\(665\) −1910.89 −0.111430
\(666\) 0 0
\(667\) 22243.4 1.29126
\(668\) −9058.11 −0.524654
\(669\) 0 0
\(670\) 4695.94 0.270776
\(671\) 6398.51 0.368125
\(672\) 0 0
\(673\) −10233.9 −0.586162 −0.293081 0.956088i \(-0.594681\pi\)
−0.293081 + 0.956088i \(0.594681\pi\)
\(674\) 9986.94 0.570745
\(675\) 0 0
\(676\) 6917.33 0.393567
\(677\) 7100.75 0.403108 0.201554 0.979477i \(-0.435401\pi\)
0.201554 + 0.979477i \(0.435401\pi\)
\(678\) 0 0
\(679\) −8575.24 −0.484665
\(680\) 6513.23 0.367310
\(681\) 0 0
\(682\) −9843.10 −0.552657
\(683\) 35274.6 1.97620 0.988100 0.153813i \(-0.0491554\pi\)
0.988100 + 0.153813i \(0.0491554\pi\)
\(684\) 0 0
\(685\) 4480.05 0.249889
\(686\) 583.636 0.0324830
\(687\) 0 0
\(688\) −1500.22 −0.0831330
\(689\) −8858.74 −0.489828
\(690\) 0 0
\(691\) 4945.12 0.272245 0.136122 0.990692i \(-0.456536\pi\)
0.136122 + 0.990692i \(0.456536\pi\)
\(692\) −21520.8 −1.18222
\(693\) 0 0
\(694\) −3296.31 −0.180297
\(695\) −11568.0 −0.631368
\(696\) 0 0
\(697\) 20666.7 1.12311
\(698\) −16588.2 −0.899532
\(699\) 0 0
\(700\) −893.320 −0.0482348
\(701\) 15300.4 0.824379 0.412190 0.911098i \(-0.364764\pi\)
0.412190 + 0.911098i \(0.364764\pi\)
\(702\) 0 0
\(703\) 19115.7 1.02555
\(704\) −10800.4 −0.578206
\(705\) 0 0
\(706\) 7787.38 0.415130
\(707\) 2367.01 0.125913
\(708\) 0 0
\(709\) −28297.4 −1.49892 −0.749458 0.662052i \(-0.769686\pi\)
−0.749458 + 0.662052i \(0.769686\pi\)
\(710\) 1023.78 0.0541153
\(711\) 0 0
\(712\) −15112.2 −0.795441
\(713\) −25004.5 −1.31336
\(714\) 0 0
\(715\) −5426.37 −0.283825
\(716\) −12407.9 −0.647635
\(717\) 0 0
\(718\) −18461.9 −0.959597
\(719\) −8548.96 −0.443425 −0.221712 0.975112i \(-0.571165\pi\)
−0.221712 + 0.975112i \(0.571165\pi\)
\(720\) 0 0
\(721\) −3966.90 −0.204903
\(722\) −6598.97 −0.340150
\(723\) 0 0
\(724\) 13787.3 0.707737
\(725\) −3439.53 −0.176194
\(726\) 0 0
\(727\) 14345.3 0.731827 0.365913 0.930649i \(-0.380757\pi\)
0.365913 + 0.930649i \(0.380757\pi\)
\(728\) −4529.02 −0.230572
\(729\) 0 0
\(730\) 2421.83 0.122789
\(731\) 30270.0 1.53157
\(732\) 0 0
\(733\) −22624.0 −1.14002 −0.570012 0.821637i \(-0.693061\pi\)
−0.570012 + 0.821637i \(0.693061\pi\)
\(734\) 19512.9 0.981248
\(735\) 0 0
\(736\) −29637.3 −1.48430
\(737\) −20644.9 −1.03184
\(738\) 0 0
\(739\) 14837.3 0.738566 0.369283 0.929317i \(-0.379603\pi\)
0.369283 + 0.929317i \(0.379603\pi\)
\(740\) 8936.39 0.443930
\(741\) 0 0
\(742\) −3636.52 −0.179920
\(743\) −13073.1 −0.645497 −0.322749 0.946485i \(-0.604607\pi\)
−0.322749 + 0.946485i \(0.604607\pi\)
\(744\) 0 0
\(745\) −4096.69 −0.201464
\(746\) 918.813 0.0450940
\(747\) 0 0
\(748\) −11154.0 −0.545226
\(749\) 3937.72 0.192098
\(750\) 0 0
\(751\) 16213.3 0.787791 0.393895 0.919155i \(-0.371127\pi\)
0.393895 + 0.919155i \(0.371127\pi\)
\(752\) 1569.89 0.0761278
\(753\) 0 0
\(754\) −6792.65 −0.328082
\(755\) 2673.72 0.128883
\(756\) 0 0
\(757\) 19903.9 0.955642 0.477821 0.878457i \(-0.341427\pi\)
0.477821 + 0.878457i \(0.341427\pi\)
\(758\) 14595.3 0.699372
\(759\) 0 0
\(760\) 6087.13 0.290531
\(761\) 30125.5 1.43502 0.717509 0.696549i \(-0.245282\pi\)
0.717509 + 0.696549i \(0.245282\pi\)
\(762\) 0 0
\(763\) 12815.6 0.608066
\(764\) 18433.5 0.872907
\(765\) 0 0
\(766\) −14681.0 −0.692489
\(767\) −425.986 −0.0200541
\(768\) 0 0
\(769\) −36049.1 −1.69046 −0.845230 0.534402i \(-0.820537\pi\)
−0.845230 + 0.534402i \(0.820537\pi\)
\(770\) −2227.53 −0.104253
\(771\) 0 0
\(772\) 22809.4 1.06338
\(773\) 9644.77 0.448769 0.224384 0.974501i \(-0.427963\pi\)
0.224384 + 0.974501i \(0.427963\pi\)
\(774\) 0 0
\(775\) 3866.48 0.179211
\(776\) 27316.4 1.26366
\(777\) 0 0
\(778\) −15712.3 −0.724054
\(779\) 19314.7 0.888344
\(780\) 0 0
\(781\) −4500.88 −0.206215
\(782\) 16071.0 0.734908
\(783\) 0 0
\(784\) 141.870 0.00646275
\(785\) 7823.80 0.355724
\(786\) 0 0
\(787\) −25218.6 −1.14224 −0.571122 0.820865i \(-0.693492\pi\)
−0.571122 + 0.820865i \(0.693492\pi\)
\(788\) −2217.59 −0.100252
\(789\) 0 0
\(790\) 8011.06 0.360786
\(791\) 222.623 0.0100070
\(792\) 0 0
\(793\) −4963.67 −0.222276
\(794\) 19768.8 0.883586
\(795\) 0 0
\(796\) 2393.67 0.106584
\(797\) −32042.3 −1.42409 −0.712044 0.702135i \(-0.752230\pi\)
−0.712044 + 0.702135i \(0.752230\pi\)
\(798\) 0 0
\(799\) −31675.7 −1.40251
\(800\) 4582.85 0.202535
\(801\) 0 0
\(802\) −18984.5 −0.835867
\(803\) −10647.1 −0.467908
\(804\) 0 0
\(805\) −5658.62 −0.247752
\(806\) 7635.82 0.333698
\(807\) 0 0
\(808\) −7540.07 −0.328291
\(809\) −3427.90 −0.148972 −0.0744860 0.997222i \(-0.523732\pi\)
−0.0744860 + 0.997222i \(0.523732\pi\)
\(810\) 0 0
\(811\) 23094.4 0.999943 0.499972 0.866042i \(-0.333344\pi\)
0.499972 + 0.866042i \(0.333344\pi\)
\(812\) 4916.16 0.212467
\(813\) 0 0
\(814\) 22283.3 0.959494
\(815\) −5571.53 −0.239463
\(816\) 0 0
\(817\) 28289.7 1.21142
\(818\) −12639.3 −0.540249
\(819\) 0 0
\(820\) 9029.39 0.384537
\(821\) −474.741 −0.0201810 −0.0100905 0.999949i \(-0.503212\pi\)
−0.0100905 + 0.999949i \(0.503212\pi\)
\(822\) 0 0
\(823\) 24159.8 1.02328 0.511638 0.859201i \(-0.329039\pi\)
0.511638 + 0.859201i \(0.329039\pi\)
\(824\) 12636.5 0.534240
\(825\) 0 0
\(826\) −174.868 −0.00736613
\(827\) 7566.35 0.318147 0.159074 0.987267i \(-0.449149\pi\)
0.159074 + 0.987267i \(0.449149\pi\)
\(828\) 0 0
\(829\) −10580.9 −0.443295 −0.221648 0.975127i \(-0.571143\pi\)
−0.221648 + 0.975127i \(0.571143\pi\)
\(830\) −3208.72 −0.134188
\(831\) 0 0
\(832\) 8378.49 0.349125
\(833\) −2862.52 −0.119064
\(834\) 0 0
\(835\) 8872.34 0.367713
\(836\) −10424.2 −0.431256
\(837\) 0 0
\(838\) −16411.1 −0.676507
\(839\) −15315.6 −0.630218 −0.315109 0.949055i \(-0.602041\pi\)
−0.315109 + 0.949055i \(0.602041\pi\)
\(840\) 0 0
\(841\) −5460.40 −0.223888
\(842\) 16876.4 0.690735
\(843\) 0 0
\(844\) −19068.6 −0.777688
\(845\) −6775.47 −0.275838
\(846\) 0 0
\(847\) 475.956 0.0193082
\(848\) −883.966 −0.0357966
\(849\) 0 0
\(850\) −2485.08 −0.100279
\(851\) 56606.4 2.28019
\(852\) 0 0
\(853\) 18598.2 0.746528 0.373264 0.927725i \(-0.378239\pi\)
0.373264 + 0.927725i \(0.378239\pi\)
\(854\) −2037.59 −0.0816450
\(855\) 0 0
\(856\) −12543.6 −0.500853
\(857\) −41775.3 −1.66513 −0.832566 0.553926i \(-0.813129\pi\)
−0.832566 + 0.553926i \(0.813129\pi\)
\(858\) 0 0
\(859\) 32414.7 1.28752 0.643758 0.765229i \(-0.277374\pi\)
0.643758 + 0.765229i \(0.277374\pi\)
\(860\) 13225.1 0.524387
\(861\) 0 0
\(862\) 27776.4 1.09753
\(863\) 31299.7 1.23459 0.617297 0.786730i \(-0.288228\pi\)
0.617297 + 0.786730i \(0.288228\pi\)
\(864\) 0 0
\(865\) 21079.4 0.828580
\(866\) −8794.94 −0.345109
\(867\) 0 0
\(868\) −5526.41 −0.216104
\(869\) −35219.2 −1.37483
\(870\) 0 0
\(871\) 16015.4 0.623030
\(872\) −40823.8 −1.58540
\(873\) 0 0
\(874\) 15019.6 0.581288
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −19973.0 −0.769031 −0.384515 0.923119i \(-0.625631\pi\)
−0.384515 + 0.923119i \(0.625631\pi\)
\(878\) 31204.9 1.19945
\(879\) 0 0
\(880\) −541.469 −0.0207419
\(881\) −17367.9 −0.664176 −0.332088 0.943248i \(-0.607753\pi\)
−0.332088 + 0.943248i \(0.607753\pi\)
\(882\) 0 0
\(883\) −14364.2 −0.547446 −0.273723 0.961809i \(-0.588255\pi\)
−0.273723 + 0.961809i \(0.588255\pi\)
\(884\) 8652.73 0.329211
\(885\) 0 0
\(886\) 2745.09 0.104089
\(887\) 33738.1 1.27713 0.638564 0.769568i \(-0.279529\pi\)
0.638564 + 0.769568i \(0.279529\pi\)
\(888\) 0 0
\(889\) 15545.7 0.586485
\(890\) 5765.95 0.217163
\(891\) 0 0
\(892\) −4302.26 −0.161491
\(893\) −29603.4 −1.10934
\(894\) 0 0
\(895\) 12153.5 0.453906
\(896\) −6826.21 −0.254518
\(897\) 0 0
\(898\) 1508.86 0.0560705
\(899\) −21278.2 −0.789398
\(900\) 0 0
\(901\) 17835.8 0.659485
\(902\) 22515.2 0.831123
\(903\) 0 0
\(904\) −709.162 −0.0260911
\(905\) −13504.6 −0.496030
\(906\) 0 0
\(907\) −32998.6 −1.20805 −0.604024 0.796966i \(-0.706437\pi\)
−0.604024 + 0.796966i \(0.706437\pi\)
\(908\) 5064.62 0.185105
\(909\) 0 0
\(910\) 1728.02 0.0629485
\(911\) −33446.3 −1.21638 −0.608192 0.793790i \(-0.708105\pi\)
−0.608192 + 0.793790i \(0.708105\pi\)
\(912\) 0 0
\(913\) 14106.6 0.511347
\(914\) 12576.6 0.455139
\(915\) 0 0
\(916\) 32728.2 1.18053
\(917\) −4525.59 −0.162975
\(918\) 0 0
\(919\) 41708.7 1.49711 0.748554 0.663074i \(-0.230748\pi\)
0.748554 + 0.663074i \(0.230748\pi\)
\(920\) 18025.5 0.645960
\(921\) 0 0
\(922\) 12137.8 0.433556
\(923\) 3491.58 0.124514
\(924\) 0 0
\(925\) −8753.12 −0.311136
\(926\) 24607.7 0.873283
\(927\) 0 0
\(928\) −25220.6 −0.892140
\(929\) −49024.6 −1.73137 −0.865686 0.500587i \(-0.833117\pi\)
−0.865686 + 0.500587i \(0.833117\pi\)
\(930\) 0 0
\(931\) −2675.25 −0.0941758
\(932\) −11609.9 −0.408040
\(933\) 0 0
\(934\) 27894.6 0.977235
\(935\) 10925.2 0.382131
\(936\) 0 0
\(937\) −5447.58 −0.189930 −0.0949651 0.995481i \(-0.530274\pi\)
−0.0949651 + 0.995481i \(0.530274\pi\)
\(938\) 6574.31 0.228848
\(939\) 0 0
\(940\) −13839.3 −0.480200
\(941\) −4125.75 −0.142928 −0.0714642 0.997443i \(-0.522767\pi\)
−0.0714642 + 0.997443i \(0.522767\pi\)
\(942\) 0 0
\(943\) 57195.5 1.97513
\(944\) −42.5069 −0.00146555
\(945\) 0 0
\(946\) 32977.4 1.13339
\(947\) −17332.3 −0.594747 −0.297374 0.954761i \(-0.596111\pi\)
−0.297374 + 0.954761i \(0.596111\pi\)
\(948\) 0 0
\(949\) 8259.57 0.282526
\(950\) −2322.50 −0.0793177
\(951\) 0 0
\(952\) 9118.53 0.310434
\(953\) −56839.4 −1.93201 −0.966007 0.258517i \(-0.916766\pi\)
−0.966007 + 0.258517i \(0.916766\pi\)
\(954\) 0 0
\(955\) −18055.5 −0.611792
\(956\) 14615.3 0.494449
\(957\) 0 0
\(958\) 22105.7 0.745515
\(959\) 6272.07 0.211195
\(960\) 0 0
\(961\) −5871.48 −0.197089
\(962\) −17286.3 −0.579349
\(963\) 0 0
\(964\) 27382.7 0.914873
\(965\) −22341.6 −0.745287
\(966\) 0 0
\(967\) −13284.2 −0.441769 −0.220884 0.975300i \(-0.570894\pi\)
−0.220884 + 0.975300i \(0.570894\pi\)
\(968\) −1516.15 −0.0503420
\(969\) 0 0
\(970\) −10422.4 −0.344992
\(971\) −12153.0 −0.401658 −0.200829 0.979626i \(-0.564364\pi\)
−0.200829 + 0.979626i \(0.564364\pi\)
\(972\) 0 0
\(973\) −16195.3 −0.533604
\(974\) −21888.1 −0.720060
\(975\) 0 0
\(976\) −495.298 −0.0162440
\(977\) 37999.3 1.24433 0.622163 0.782888i \(-0.286254\pi\)
0.622163 + 0.782888i \(0.286254\pi\)
\(978\) 0 0
\(979\) −25349.0 −0.827537
\(980\) −1250.65 −0.0407658
\(981\) 0 0
\(982\) 8334.42 0.270837
\(983\) −22375.0 −0.725993 −0.362996 0.931791i \(-0.618246\pi\)
−0.362996 + 0.931791i \(0.618246\pi\)
\(984\) 0 0
\(985\) 2172.11 0.0702631
\(986\) 13676.0 0.441717
\(987\) 0 0
\(988\) 8086.65 0.260395
\(989\) 83772.9 2.69345
\(990\) 0 0
\(991\) 18985.3 0.608564 0.304282 0.952582i \(-0.401583\pi\)
0.304282 + 0.952582i \(0.401583\pi\)
\(992\) 28351.2 0.907412
\(993\) 0 0
\(994\) 1433.29 0.0457358
\(995\) −2344.58 −0.0747016
\(996\) 0 0
\(997\) −56476.5 −1.79401 −0.897006 0.442019i \(-0.854262\pi\)
−0.897006 + 0.442019i \(0.854262\pi\)
\(998\) 17539.6 0.556321
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.a.g.1.2 2
3.2 odd 2 105.4.a.g.1.1 2
5.4 even 2 1575.4.a.y.1.1 2
7.6 odd 2 2205.4.a.v.1.2 2
12.11 even 2 1680.4.a.y.1.1 2
15.2 even 4 525.4.d.j.274.2 4
15.8 even 4 525.4.d.j.274.3 4
15.14 odd 2 525.4.a.i.1.2 2
21.20 even 2 735.4.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.g.1.1 2 3.2 odd 2
315.4.a.g.1.2 2 1.1 even 1 trivial
525.4.a.i.1.2 2 15.14 odd 2
525.4.d.j.274.2 4 15.2 even 4
525.4.d.j.274.3 4 15.8 even 4
735.4.a.q.1.1 2 21.20 even 2
1575.4.a.y.1.1 2 5.4 even 2
1680.4.a.y.1.1 2 12.11 even 2
2205.4.a.v.1.2 2 7.6 odd 2