Properties

Label 315.4.a.c.1.1
Level $315$
Weight $4$
Character 315.1
Self dual yes
Analytic conductor $18.586$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5856016518\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -7.00000 q^{4} +5.00000 q^{5} +7.00000 q^{7} +15.0000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} -7.00000 q^{4} +5.00000 q^{5} +7.00000 q^{7} +15.0000 q^{8} -5.00000 q^{10} -12.0000 q^{11} -78.0000 q^{13} -7.00000 q^{14} +41.0000 q^{16} +94.0000 q^{17} +40.0000 q^{19} -35.0000 q^{20} +12.0000 q^{22} -32.0000 q^{23} +25.0000 q^{25} +78.0000 q^{26} -49.0000 q^{28} +50.0000 q^{29} -248.000 q^{31} -161.000 q^{32} -94.0000 q^{34} +35.0000 q^{35} -434.000 q^{37} -40.0000 q^{38} +75.0000 q^{40} -402.000 q^{41} -68.0000 q^{43} +84.0000 q^{44} +32.0000 q^{46} -536.000 q^{47} +49.0000 q^{49} -25.0000 q^{50} +546.000 q^{52} -22.0000 q^{53} -60.0000 q^{55} +105.000 q^{56} -50.0000 q^{58} +560.000 q^{59} -278.000 q^{61} +248.000 q^{62} -167.000 q^{64} -390.000 q^{65} -164.000 q^{67} -658.000 q^{68} -35.0000 q^{70} -672.000 q^{71} +82.0000 q^{73} +434.000 q^{74} -280.000 q^{76} -84.0000 q^{77} -1000.00 q^{79} +205.000 q^{80} +402.000 q^{82} +448.000 q^{83} +470.000 q^{85} +68.0000 q^{86} -180.000 q^{88} +870.000 q^{89} -546.000 q^{91} +224.000 q^{92} +536.000 q^{94} +200.000 q^{95} +1026.00 q^{97} -49.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 0 0
\(4\) −7.00000 −0.875000
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 15.0000 0.662913
\(9\) 0 0
\(10\) −5.00000 −0.158114
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 0 0
\(13\) −78.0000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) −7.00000 −0.133631
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 94.0000 1.34108 0.670540 0.741874i \(-0.266063\pi\)
0.670540 + 0.741874i \(0.266063\pi\)
\(18\) 0 0
\(19\) 40.0000 0.482980 0.241490 0.970403i \(-0.422364\pi\)
0.241490 + 0.970403i \(0.422364\pi\)
\(20\) −35.0000 −0.391312
\(21\) 0 0
\(22\) 12.0000 0.116291
\(23\) −32.0000 −0.290107 −0.145054 0.989424i \(-0.546335\pi\)
−0.145054 + 0.989424i \(0.546335\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 78.0000 0.588348
\(27\) 0 0
\(28\) −49.0000 −0.330719
\(29\) 50.0000 0.320164 0.160082 0.987104i \(-0.448824\pi\)
0.160082 + 0.987104i \(0.448824\pi\)
\(30\) 0 0
\(31\) −248.000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −161.000 −0.889408
\(33\) 0 0
\(34\) −94.0000 −0.474143
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −434.000 −1.92836 −0.964178 0.265257i \(-0.914543\pi\)
−0.964178 + 0.265257i \(0.914543\pi\)
\(38\) −40.0000 −0.170759
\(39\) 0 0
\(40\) 75.0000 0.296464
\(41\) −402.000 −1.53126 −0.765632 0.643278i \(-0.777574\pi\)
−0.765632 + 0.643278i \(0.777574\pi\)
\(42\) 0 0
\(43\) −68.0000 −0.241161 −0.120580 0.992704i \(-0.538476\pi\)
−0.120580 + 0.992704i \(0.538476\pi\)
\(44\) 84.0000 0.287806
\(45\) 0 0
\(46\) 32.0000 0.102568
\(47\) −536.000 −1.66348 −0.831741 0.555164i \(-0.812655\pi\)
−0.831741 + 0.555164i \(0.812655\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −25.0000 −0.0707107
\(51\) 0 0
\(52\) 546.000 1.45609
\(53\) −22.0000 −0.0570176 −0.0285088 0.999594i \(-0.509076\pi\)
−0.0285088 + 0.999594i \(0.509076\pi\)
\(54\) 0 0
\(55\) −60.0000 −0.147098
\(56\) 105.000 0.250557
\(57\) 0 0
\(58\) −50.0000 −0.113195
\(59\) 560.000 1.23569 0.617846 0.786299i \(-0.288006\pi\)
0.617846 + 0.786299i \(0.288006\pi\)
\(60\) 0 0
\(61\) −278.000 −0.583512 −0.291756 0.956493i \(-0.594240\pi\)
−0.291756 + 0.956493i \(0.594240\pi\)
\(62\) 248.000 0.508001
\(63\) 0 0
\(64\) −167.000 −0.326172
\(65\) −390.000 −0.744208
\(66\) 0 0
\(67\) −164.000 −0.299042 −0.149521 0.988759i \(-0.547773\pi\)
−0.149521 + 0.988759i \(0.547773\pi\)
\(68\) −658.000 −1.17344
\(69\) 0 0
\(70\) −35.0000 −0.0597614
\(71\) −672.000 −1.12326 −0.561632 0.827387i \(-0.689826\pi\)
−0.561632 + 0.827387i \(0.689826\pi\)
\(72\) 0 0
\(73\) 82.0000 0.131471 0.0657354 0.997837i \(-0.479061\pi\)
0.0657354 + 0.997837i \(0.479061\pi\)
\(74\) 434.000 0.681777
\(75\) 0 0
\(76\) −280.000 −0.422608
\(77\) −84.0000 −0.124321
\(78\) 0 0
\(79\) −1000.00 −1.42416 −0.712081 0.702097i \(-0.752247\pi\)
−0.712081 + 0.702097i \(0.752247\pi\)
\(80\) 205.000 0.286496
\(81\) 0 0
\(82\) 402.000 0.541384
\(83\) 448.000 0.592463 0.296231 0.955116i \(-0.404270\pi\)
0.296231 + 0.955116i \(0.404270\pi\)
\(84\) 0 0
\(85\) 470.000 0.599749
\(86\) 68.0000 0.0852631
\(87\) 0 0
\(88\) −180.000 −0.218046
\(89\) 870.000 1.03618 0.518089 0.855327i \(-0.326644\pi\)
0.518089 + 0.855327i \(0.326644\pi\)
\(90\) 0 0
\(91\) −546.000 −0.628971
\(92\) 224.000 0.253844
\(93\) 0 0
\(94\) 536.000 0.588130
\(95\) 200.000 0.215995
\(96\) 0 0
\(97\) 1026.00 1.07396 0.536982 0.843594i \(-0.319564\pi\)
0.536982 + 0.843594i \(0.319564\pi\)
\(98\) −49.0000 −0.0505076
\(99\) 0 0
\(100\) −175.000 −0.175000
\(101\) −482.000 −0.474859 −0.237430 0.971405i \(-0.576305\pi\)
−0.237430 + 0.971405i \(0.576305\pi\)
\(102\) 0 0
\(103\) 272.000 0.260203 0.130102 0.991501i \(-0.458470\pi\)
0.130102 + 0.991501i \(0.458470\pi\)
\(104\) −1170.00 −1.10315
\(105\) 0 0
\(106\) 22.0000 0.0201588
\(107\) 444.000 0.401150 0.200575 0.979678i \(-0.435719\pi\)
0.200575 + 0.979678i \(0.435719\pi\)
\(108\) 0 0
\(109\) −1170.00 −1.02813 −0.514063 0.857753i \(-0.671860\pi\)
−0.514063 + 0.857753i \(0.671860\pi\)
\(110\) 60.0000 0.0520071
\(111\) 0 0
\(112\) 287.000 0.242133
\(113\) 798.000 0.664332 0.332166 0.943221i \(-0.392221\pi\)
0.332166 + 0.943221i \(0.392221\pi\)
\(114\) 0 0
\(115\) −160.000 −0.129740
\(116\) −350.000 −0.280144
\(117\) 0 0
\(118\) −560.000 −0.436883
\(119\) 658.000 0.506880
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 278.000 0.206303
\(123\) 0 0
\(124\) 1736.00 1.25724
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 776.000 0.542196 0.271098 0.962552i \(-0.412613\pi\)
0.271098 + 0.962552i \(0.412613\pi\)
\(128\) 1455.00 1.00473
\(129\) 0 0
\(130\) 390.000 0.263117
\(131\) −1112.00 −0.741648 −0.370824 0.928703i \(-0.620925\pi\)
−0.370824 + 0.928703i \(0.620925\pi\)
\(132\) 0 0
\(133\) 280.000 0.182549
\(134\) 164.000 0.105727
\(135\) 0 0
\(136\) 1410.00 0.889018
\(137\) 694.000 0.432791 0.216396 0.976306i \(-0.430570\pi\)
0.216396 + 0.976306i \(0.430570\pi\)
\(138\) 0 0
\(139\) 360.000 0.219675 0.109837 0.993950i \(-0.464967\pi\)
0.109837 + 0.993950i \(0.464967\pi\)
\(140\) −245.000 −0.147902
\(141\) 0 0
\(142\) 672.000 0.397134
\(143\) 936.000 0.547358
\(144\) 0 0
\(145\) 250.000 0.143182
\(146\) −82.0000 −0.0464820
\(147\) 0 0
\(148\) 3038.00 1.68731
\(149\) −2270.00 −1.24809 −0.624046 0.781388i \(-0.714512\pi\)
−0.624046 + 0.781388i \(0.714512\pi\)
\(150\) 0 0
\(151\) 632.000 0.340606 0.170303 0.985392i \(-0.445525\pi\)
0.170303 + 0.985392i \(0.445525\pi\)
\(152\) 600.000 0.320174
\(153\) 0 0
\(154\) 84.0000 0.0439540
\(155\) −1240.00 −0.642575
\(156\) 0 0
\(157\) −734.000 −0.373118 −0.186559 0.982444i \(-0.559734\pi\)
−0.186559 + 0.982444i \(0.559734\pi\)
\(158\) 1000.00 0.503517
\(159\) 0 0
\(160\) −805.000 −0.397755
\(161\) −224.000 −0.109650
\(162\) 0 0
\(163\) 2532.00 1.21670 0.608348 0.793670i \(-0.291832\pi\)
0.608348 + 0.793670i \(0.291832\pi\)
\(164\) 2814.00 1.33986
\(165\) 0 0
\(166\) −448.000 −0.209467
\(167\) −416.000 −0.192761 −0.0963804 0.995345i \(-0.530727\pi\)
−0.0963804 + 0.995345i \(0.530727\pi\)
\(168\) 0 0
\(169\) 3887.00 1.76923
\(170\) −470.000 −0.212043
\(171\) 0 0
\(172\) 476.000 0.211015
\(173\) −3042.00 −1.33687 −0.668436 0.743769i \(-0.733036\pi\)
−0.668436 + 0.743769i \(0.733036\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −492.000 −0.210715
\(177\) 0 0
\(178\) −870.000 −0.366344
\(179\) 180.000 0.0751611 0.0375805 0.999294i \(-0.488035\pi\)
0.0375805 + 0.999294i \(0.488035\pi\)
\(180\) 0 0
\(181\) −1958.00 −0.804072 −0.402036 0.915624i \(-0.631697\pi\)
−0.402036 + 0.915624i \(0.631697\pi\)
\(182\) 546.000 0.222375
\(183\) 0 0
\(184\) −480.000 −0.192316
\(185\) −2170.00 −0.862387
\(186\) 0 0
\(187\) −1128.00 −0.441110
\(188\) 3752.00 1.45555
\(189\) 0 0
\(190\) −200.000 −0.0763659
\(191\) 2888.00 1.09408 0.547038 0.837108i \(-0.315755\pi\)
0.547038 + 0.837108i \(0.315755\pi\)
\(192\) 0 0
\(193\) 1602.00 0.597484 0.298742 0.954334i \(-0.403433\pi\)
0.298742 + 0.954334i \(0.403433\pi\)
\(194\) −1026.00 −0.379704
\(195\) 0 0
\(196\) −343.000 −0.125000
\(197\) 4794.00 1.73380 0.866899 0.498483i \(-0.166109\pi\)
0.866899 + 0.498483i \(0.166109\pi\)
\(198\) 0 0
\(199\) 1280.00 0.455964 0.227982 0.973665i \(-0.426787\pi\)
0.227982 + 0.973665i \(0.426787\pi\)
\(200\) 375.000 0.132583
\(201\) 0 0
\(202\) 482.000 0.167888
\(203\) 350.000 0.121011
\(204\) 0 0
\(205\) −2010.00 −0.684802
\(206\) −272.000 −0.0919958
\(207\) 0 0
\(208\) −3198.00 −1.06606
\(209\) −480.000 −0.158863
\(210\) 0 0
\(211\) −68.0000 −0.0221863 −0.0110932 0.999938i \(-0.503531\pi\)
−0.0110932 + 0.999938i \(0.503531\pi\)
\(212\) 154.000 0.0498904
\(213\) 0 0
\(214\) −444.000 −0.141828
\(215\) −340.000 −0.107850
\(216\) 0 0
\(217\) −1736.00 −0.543075
\(218\) 1170.00 0.363497
\(219\) 0 0
\(220\) 420.000 0.128711
\(221\) −7332.00 −2.23169
\(222\) 0 0
\(223\) −1728.00 −0.518903 −0.259452 0.965756i \(-0.583542\pi\)
−0.259452 + 0.965756i \(0.583542\pi\)
\(224\) −1127.00 −0.336165
\(225\) 0 0
\(226\) −798.000 −0.234877
\(227\) 4864.00 1.42218 0.711090 0.703101i \(-0.248202\pi\)
0.711090 + 0.703101i \(0.248202\pi\)
\(228\) 0 0
\(229\) −5510.00 −1.59000 −0.795002 0.606606i \(-0.792530\pi\)
−0.795002 + 0.606606i \(0.792530\pi\)
\(230\) 160.000 0.0458699
\(231\) 0 0
\(232\) 750.000 0.212241
\(233\) −5322.00 −1.49638 −0.748188 0.663486i \(-0.769076\pi\)
−0.748188 + 0.663486i \(0.769076\pi\)
\(234\) 0 0
\(235\) −2680.00 −0.743932
\(236\) −3920.00 −1.08123
\(237\) 0 0
\(238\) −658.000 −0.179209
\(239\) 1840.00 0.497990 0.248995 0.968505i \(-0.419900\pi\)
0.248995 + 0.968505i \(0.419900\pi\)
\(240\) 0 0
\(241\) −438.000 −0.117071 −0.0585354 0.998285i \(-0.518643\pi\)
−0.0585354 + 0.998285i \(0.518643\pi\)
\(242\) 1187.00 0.315303
\(243\) 0 0
\(244\) 1946.00 0.510573
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −3120.00 −0.803728
\(248\) −3720.00 −0.952501
\(249\) 0 0
\(250\) −125.000 −0.0316228
\(251\) −5592.00 −1.40623 −0.703115 0.711076i \(-0.748208\pi\)
−0.703115 + 0.711076i \(0.748208\pi\)
\(252\) 0 0
\(253\) 384.000 0.0954224
\(254\) −776.000 −0.191695
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) 1974.00 0.479123 0.239562 0.970881i \(-0.422996\pi\)
0.239562 + 0.970881i \(0.422996\pi\)
\(258\) 0 0
\(259\) −3038.00 −0.728850
\(260\) 2730.00 0.651182
\(261\) 0 0
\(262\) 1112.00 0.262212
\(263\) 728.000 0.170686 0.0853430 0.996352i \(-0.472801\pi\)
0.0853430 + 0.996352i \(0.472801\pi\)
\(264\) 0 0
\(265\) −110.000 −0.0254990
\(266\) −280.000 −0.0645410
\(267\) 0 0
\(268\) 1148.00 0.261661
\(269\) −5810.00 −1.31688 −0.658442 0.752631i \(-0.728784\pi\)
−0.658442 + 0.752631i \(0.728784\pi\)
\(270\) 0 0
\(271\) −6528.00 −1.46328 −0.731638 0.681693i \(-0.761244\pi\)
−0.731638 + 0.681693i \(0.761244\pi\)
\(272\) 3854.00 0.859129
\(273\) 0 0
\(274\) −694.000 −0.153015
\(275\) −300.000 −0.0657843
\(276\) 0 0
\(277\) 5126.00 1.11188 0.555941 0.831222i \(-0.312358\pi\)
0.555941 + 0.831222i \(0.312358\pi\)
\(278\) −360.000 −0.0776668
\(279\) 0 0
\(280\) 525.000 0.112053
\(281\) 2358.00 0.500592 0.250296 0.968169i \(-0.419472\pi\)
0.250296 + 0.968169i \(0.419472\pi\)
\(282\) 0 0
\(283\) 392.000 0.0823392 0.0411696 0.999152i \(-0.486892\pi\)
0.0411696 + 0.999152i \(0.486892\pi\)
\(284\) 4704.00 0.982856
\(285\) 0 0
\(286\) −936.000 −0.193520
\(287\) −2814.00 −0.578764
\(288\) 0 0
\(289\) 3923.00 0.798494
\(290\) −250.000 −0.0506224
\(291\) 0 0
\(292\) −574.000 −0.115037
\(293\) −1202.00 −0.239664 −0.119832 0.992794i \(-0.538236\pi\)
−0.119832 + 0.992794i \(0.538236\pi\)
\(294\) 0 0
\(295\) 2800.00 0.552618
\(296\) −6510.00 −1.27833
\(297\) 0 0
\(298\) 2270.00 0.441267
\(299\) 2496.00 0.482767
\(300\) 0 0
\(301\) −476.000 −0.0911501
\(302\) −632.000 −0.120422
\(303\) 0 0
\(304\) 1640.00 0.309409
\(305\) −1390.00 −0.260955
\(306\) 0 0
\(307\) −6384.00 −1.18682 −0.593411 0.804900i \(-0.702219\pi\)
−0.593411 + 0.804900i \(0.702219\pi\)
\(308\) 588.000 0.108781
\(309\) 0 0
\(310\) 1240.00 0.227185
\(311\) 4968.00 0.905818 0.452909 0.891557i \(-0.350386\pi\)
0.452909 + 0.891557i \(0.350386\pi\)
\(312\) 0 0
\(313\) −2758.00 −0.498056 −0.249028 0.968496i \(-0.580111\pi\)
−0.249028 + 0.968496i \(0.580111\pi\)
\(314\) 734.000 0.131917
\(315\) 0 0
\(316\) 7000.00 1.24614
\(317\) 6274.00 1.11162 0.555809 0.831310i \(-0.312409\pi\)
0.555809 + 0.831310i \(0.312409\pi\)
\(318\) 0 0
\(319\) −600.000 −0.105309
\(320\) −835.000 −0.145868
\(321\) 0 0
\(322\) 224.000 0.0387672
\(323\) 3760.00 0.647715
\(324\) 0 0
\(325\) −1950.00 −0.332820
\(326\) −2532.00 −0.430167
\(327\) 0 0
\(328\) −6030.00 −1.01509
\(329\) −3752.00 −0.628737
\(330\) 0 0
\(331\) 1932.00 0.320823 0.160411 0.987050i \(-0.448718\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(332\) −3136.00 −0.518405
\(333\) 0 0
\(334\) 416.000 0.0681512
\(335\) −820.000 −0.133735
\(336\) 0 0
\(337\) 2386.00 0.385679 0.192839 0.981230i \(-0.438230\pi\)
0.192839 + 0.981230i \(0.438230\pi\)
\(338\) −3887.00 −0.625518
\(339\) 0 0
\(340\) −3290.00 −0.524780
\(341\) 2976.00 0.472608
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −1020.00 −0.159868
\(345\) 0 0
\(346\) 3042.00 0.472656
\(347\) −6076.00 −0.939991 −0.469995 0.882669i \(-0.655744\pi\)
−0.469995 + 0.882669i \(0.655744\pi\)
\(348\) 0 0
\(349\) 2210.00 0.338964 0.169482 0.985533i \(-0.445790\pi\)
0.169482 + 0.985533i \(0.445790\pi\)
\(350\) −175.000 −0.0267261
\(351\) 0 0
\(352\) 1932.00 0.292545
\(353\) 2598.00 0.391721 0.195861 0.980632i \(-0.437250\pi\)
0.195861 + 0.980632i \(0.437250\pi\)
\(354\) 0 0
\(355\) −3360.00 −0.502339
\(356\) −6090.00 −0.906655
\(357\) 0 0
\(358\) −180.000 −0.0265735
\(359\) 13320.0 1.95822 0.979112 0.203320i \(-0.0651731\pi\)
0.979112 + 0.203320i \(0.0651731\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 1958.00 0.284282
\(363\) 0 0
\(364\) 3822.00 0.550350
\(365\) 410.000 0.0587956
\(366\) 0 0
\(367\) 10816.0 1.53839 0.769197 0.639012i \(-0.220656\pi\)
0.769197 + 0.639012i \(0.220656\pi\)
\(368\) −1312.00 −0.185850
\(369\) 0 0
\(370\) 2170.00 0.304900
\(371\) −154.000 −0.0215506
\(372\) 0 0
\(373\) −11098.0 −1.54057 −0.770285 0.637700i \(-0.779886\pi\)
−0.770285 + 0.637700i \(0.779886\pi\)
\(374\) 1128.00 0.155956
\(375\) 0 0
\(376\) −8040.00 −1.10274
\(377\) −3900.00 −0.532786
\(378\) 0 0
\(379\) 7100.00 0.962276 0.481138 0.876645i \(-0.340224\pi\)
0.481138 + 0.876645i \(0.340224\pi\)
\(380\) −1400.00 −0.188996
\(381\) 0 0
\(382\) −2888.00 −0.386814
\(383\) 728.000 0.0971255 0.0485627 0.998820i \(-0.484536\pi\)
0.0485627 + 0.998820i \(0.484536\pi\)
\(384\) 0 0
\(385\) −420.000 −0.0555979
\(386\) −1602.00 −0.211243
\(387\) 0 0
\(388\) −7182.00 −0.939719
\(389\) 6810.00 0.887611 0.443806 0.896123i \(-0.353628\pi\)
0.443806 + 0.896123i \(0.353628\pi\)
\(390\) 0 0
\(391\) −3008.00 −0.389057
\(392\) 735.000 0.0947018
\(393\) 0 0
\(394\) −4794.00 −0.612990
\(395\) −5000.00 −0.636905
\(396\) 0 0
\(397\) −574.000 −0.0725648 −0.0362824 0.999342i \(-0.511552\pi\)
−0.0362824 + 0.999342i \(0.511552\pi\)
\(398\) −1280.00 −0.161208
\(399\) 0 0
\(400\) 1025.00 0.128125
\(401\) −6162.00 −0.767371 −0.383685 0.923464i \(-0.625345\pi\)
−0.383685 + 0.923464i \(0.625345\pi\)
\(402\) 0 0
\(403\) 19344.0 2.39105
\(404\) 3374.00 0.415502
\(405\) 0 0
\(406\) −350.000 −0.0427838
\(407\) 5208.00 0.634278
\(408\) 0 0
\(409\) 8210.00 0.992563 0.496282 0.868162i \(-0.334698\pi\)
0.496282 + 0.868162i \(0.334698\pi\)
\(410\) 2010.00 0.242114
\(411\) 0 0
\(412\) −1904.00 −0.227678
\(413\) 3920.00 0.467047
\(414\) 0 0
\(415\) 2240.00 0.264957
\(416\) 12558.0 1.48006
\(417\) 0 0
\(418\) 480.000 0.0561664
\(419\) −4800.00 −0.559655 −0.279827 0.960050i \(-0.590277\pi\)
−0.279827 + 0.960050i \(0.590277\pi\)
\(420\) 0 0
\(421\) −9938.00 −1.15047 −0.575236 0.817988i \(-0.695090\pi\)
−0.575236 + 0.817988i \(0.695090\pi\)
\(422\) 68.0000 0.00784405
\(423\) 0 0
\(424\) −330.000 −0.0377977
\(425\) 2350.00 0.268216
\(426\) 0 0
\(427\) −1946.00 −0.220547
\(428\) −3108.00 −0.351007
\(429\) 0 0
\(430\) 340.000 0.0381308
\(431\) 9248.00 1.03355 0.516776 0.856121i \(-0.327132\pi\)
0.516776 + 0.856121i \(0.327132\pi\)
\(432\) 0 0
\(433\) −1118.00 −0.124082 −0.0620412 0.998074i \(-0.519761\pi\)
−0.0620412 + 0.998074i \(0.519761\pi\)
\(434\) 1736.00 0.192006
\(435\) 0 0
\(436\) 8190.00 0.899610
\(437\) −1280.00 −0.140116
\(438\) 0 0
\(439\) −11960.0 −1.30027 −0.650136 0.759818i \(-0.725288\pi\)
−0.650136 + 0.759818i \(0.725288\pi\)
\(440\) −900.000 −0.0975132
\(441\) 0 0
\(442\) 7332.00 0.789022
\(443\) −7332.00 −0.786352 −0.393176 0.919463i \(-0.628624\pi\)
−0.393176 + 0.919463i \(0.628624\pi\)
\(444\) 0 0
\(445\) 4350.00 0.463393
\(446\) 1728.00 0.183460
\(447\) 0 0
\(448\) −1169.00 −0.123281
\(449\) −1890.00 −0.198652 −0.0993259 0.995055i \(-0.531669\pi\)
−0.0993259 + 0.995055i \(0.531669\pi\)
\(450\) 0 0
\(451\) 4824.00 0.503666
\(452\) −5586.00 −0.581291
\(453\) 0 0
\(454\) −4864.00 −0.502817
\(455\) −2730.00 −0.281284
\(456\) 0 0
\(457\) −7014.00 −0.717945 −0.358973 0.933348i \(-0.616873\pi\)
−0.358973 + 0.933348i \(0.616873\pi\)
\(458\) 5510.00 0.562152
\(459\) 0 0
\(460\) 1120.00 0.113522
\(461\) 8318.00 0.840364 0.420182 0.907440i \(-0.361966\pi\)
0.420182 + 0.907440i \(0.361966\pi\)
\(462\) 0 0
\(463\) 6432.00 0.645616 0.322808 0.946464i \(-0.395373\pi\)
0.322808 + 0.946464i \(0.395373\pi\)
\(464\) 2050.00 0.205105
\(465\) 0 0
\(466\) 5322.00 0.529049
\(467\) 10064.0 0.997230 0.498615 0.866824i \(-0.333842\pi\)
0.498615 + 0.866824i \(0.333842\pi\)
\(468\) 0 0
\(469\) −1148.00 −0.113027
\(470\) 2680.00 0.263020
\(471\) 0 0
\(472\) 8400.00 0.819155
\(473\) 816.000 0.0793229
\(474\) 0 0
\(475\) 1000.00 0.0965961
\(476\) −4606.00 −0.443520
\(477\) 0 0
\(478\) −1840.00 −0.176066
\(479\) −1400.00 −0.133544 −0.0667721 0.997768i \(-0.521270\pi\)
−0.0667721 + 0.997768i \(0.521270\pi\)
\(480\) 0 0
\(481\) 33852.0 3.20898
\(482\) 438.000 0.0413908
\(483\) 0 0
\(484\) 8309.00 0.780334
\(485\) 5130.00 0.480291
\(486\) 0 0
\(487\) 13376.0 1.24461 0.622304 0.782775i \(-0.286197\pi\)
0.622304 + 0.782775i \(0.286197\pi\)
\(488\) −4170.00 −0.386818
\(489\) 0 0
\(490\) −245.000 −0.0225877
\(491\) −7092.00 −0.651848 −0.325924 0.945396i \(-0.605675\pi\)
−0.325924 + 0.945396i \(0.605675\pi\)
\(492\) 0 0
\(493\) 4700.00 0.429366
\(494\) 3120.00 0.284161
\(495\) 0 0
\(496\) −10168.0 −0.920477
\(497\) −4704.00 −0.424554
\(498\) 0 0
\(499\) −820.000 −0.0735636 −0.0367818 0.999323i \(-0.511711\pi\)
−0.0367818 + 0.999323i \(0.511711\pi\)
\(500\) −875.000 −0.0782624
\(501\) 0 0
\(502\) 5592.00 0.497178
\(503\) 4568.00 0.404925 0.202462 0.979290i \(-0.435106\pi\)
0.202462 + 0.979290i \(0.435106\pi\)
\(504\) 0 0
\(505\) −2410.00 −0.212364
\(506\) −384.000 −0.0337369
\(507\) 0 0
\(508\) −5432.00 −0.474421
\(509\) −19810.0 −1.72507 −0.862537 0.505994i \(-0.831126\pi\)
−0.862537 + 0.505994i \(0.831126\pi\)
\(510\) 0 0
\(511\) 574.000 0.0496913
\(512\) −11521.0 −0.994455
\(513\) 0 0
\(514\) −1974.00 −0.169396
\(515\) 1360.00 0.116367
\(516\) 0 0
\(517\) 6432.00 0.547155
\(518\) 3038.00 0.257687
\(519\) 0 0
\(520\) −5850.00 −0.493345
\(521\) 1838.00 0.154557 0.0772785 0.997010i \(-0.475377\pi\)
0.0772785 + 0.997010i \(0.475377\pi\)
\(522\) 0 0
\(523\) 2072.00 0.173236 0.0866178 0.996242i \(-0.472394\pi\)
0.0866178 + 0.996242i \(0.472394\pi\)
\(524\) 7784.00 0.648942
\(525\) 0 0
\(526\) −728.000 −0.0603466
\(527\) −23312.0 −1.92692
\(528\) 0 0
\(529\) −11143.0 −0.915838
\(530\) 110.000 0.00901527
\(531\) 0 0
\(532\) −1960.00 −0.159731
\(533\) 31356.0 2.54818
\(534\) 0 0
\(535\) 2220.00 0.179400
\(536\) −2460.00 −0.198238
\(537\) 0 0
\(538\) 5810.00 0.465589
\(539\) −588.000 −0.0469888
\(540\) 0 0
\(541\) −3498.00 −0.277987 −0.138993 0.990293i \(-0.544387\pi\)
−0.138993 + 0.990293i \(0.544387\pi\)
\(542\) 6528.00 0.517346
\(543\) 0 0
\(544\) −15134.0 −1.19277
\(545\) −5850.00 −0.459792
\(546\) 0 0
\(547\) 5076.00 0.396772 0.198386 0.980124i \(-0.436430\pi\)
0.198386 + 0.980124i \(0.436430\pi\)
\(548\) −4858.00 −0.378692
\(549\) 0 0
\(550\) 300.000 0.0232583
\(551\) 2000.00 0.154633
\(552\) 0 0
\(553\) −7000.00 −0.538283
\(554\) −5126.00 −0.393110
\(555\) 0 0
\(556\) −2520.00 −0.192215
\(557\) 8674.00 0.659837 0.329918 0.944009i \(-0.392979\pi\)
0.329918 + 0.944009i \(0.392979\pi\)
\(558\) 0 0
\(559\) 5304.00 0.401315
\(560\) 1435.00 0.108285
\(561\) 0 0
\(562\) −2358.00 −0.176986
\(563\) −16072.0 −1.20312 −0.601558 0.798829i \(-0.705453\pi\)
−0.601558 + 0.798829i \(0.705453\pi\)
\(564\) 0 0
\(565\) 3990.00 0.297098
\(566\) −392.000 −0.0291113
\(567\) 0 0
\(568\) −10080.0 −0.744626
\(569\) −2730.00 −0.201138 −0.100569 0.994930i \(-0.532066\pi\)
−0.100569 + 0.994930i \(0.532066\pi\)
\(570\) 0 0
\(571\) 19932.0 1.46082 0.730410 0.683009i \(-0.239329\pi\)
0.730410 + 0.683009i \(0.239329\pi\)
\(572\) −6552.00 −0.478939
\(573\) 0 0
\(574\) 2814.00 0.204624
\(575\) −800.000 −0.0580214
\(576\) 0 0
\(577\) −20054.0 −1.44690 −0.723448 0.690379i \(-0.757444\pi\)
−0.723448 + 0.690379i \(0.757444\pi\)
\(578\) −3923.00 −0.282310
\(579\) 0 0
\(580\) −1750.00 −0.125284
\(581\) 3136.00 0.223930
\(582\) 0 0
\(583\) 264.000 0.0187543
\(584\) 1230.00 0.0871537
\(585\) 0 0
\(586\) 1202.00 0.0847341
\(587\) 2544.00 0.178879 0.0894396 0.995992i \(-0.471492\pi\)
0.0894396 + 0.995992i \(0.471492\pi\)
\(588\) 0 0
\(589\) −9920.00 −0.693967
\(590\) −2800.00 −0.195380
\(591\) 0 0
\(592\) −17794.0 −1.23535
\(593\) −14202.0 −0.983484 −0.491742 0.870741i \(-0.663640\pi\)
−0.491742 + 0.870741i \(0.663640\pi\)
\(594\) 0 0
\(595\) 3290.00 0.226684
\(596\) 15890.0 1.09208
\(597\) 0 0
\(598\) −2496.00 −0.170684
\(599\) 19600.0 1.33695 0.668476 0.743734i \(-0.266947\pi\)
0.668476 + 0.743734i \(0.266947\pi\)
\(600\) 0 0
\(601\) −27078.0 −1.83783 −0.918914 0.394458i \(-0.870932\pi\)
−0.918914 + 0.394458i \(0.870932\pi\)
\(602\) 476.000 0.0322264
\(603\) 0 0
\(604\) −4424.00 −0.298030
\(605\) −5935.00 −0.398830
\(606\) 0 0
\(607\) −2704.00 −0.180811 −0.0904053 0.995905i \(-0.528816\pi\)
−0.0904053 + 0.995905i \(0.528816\pi\)
\(608\) −6440.00 −0.429567
\(609\) 0 0
\(610\) 1390.00 0.0922614
\(611\) 41808.0 2.76820
\(612\) 0 0
\(613\) 12702.0 0.836915 0.418458 0.908236i \(-0.362571\pi\)
0.418458 + 0.908236i \(0.362571\pi\)
\(614\) 6384.00 0.419605
\(615\) 0 0
\(616\) −1260.00 −0.0824137
\(617\) −12666.0 −0.826441 −0.413220 0.910631i \(-0.635596\pi\)
−0.413220 + 0.910631i \(0.635596\pi\)
\(618\) 0 0
\(619\) 960.000 0.0623355 0.0311677 0.999514i \(-0.490077\pi\)
0.0311677 + 0.999514i \(0.490077\pi\)
\(620\) 8680.00 0.562254
\(621\) 0 0
\(622\) −4968.00 −0.320255
\(623\) 6090.00 0.391638
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 2758.00 0.176089
\(627\) 0 0
\(628\) 5138.00 0.326479
\(629\) −40796.0 −2.58608
\(630\) 0 0
\(631\) 23232.0 1.46569 0.732846 0.680395i \(-0.238192\pi\)
0.732846 + 0.680395i \(0.238192\pi\)
\(632\) −15000.0 −0.944095
\(633\) 0 0
\(634\) −6274.00 −0.393016
\(635\) 3880.00 0.242477
\(636\) 0 0
\(637\) −3822.00 −0.237729
\(638\) 600.000 0.0372323
\(639\) 0 0
\(640\) 7275.00 0.449328
\(641\) −12162.0 −0.749407 −0.374704 0.927145i \(-0.622256\pi\)
−0.374704 + 0.927145i \(0.622256\pi\)
\(642\) 0 0
\(643\) −488.000 −0.0299298 −0.0149649 0.999888i \(-0.504764\pi\)
−0.0149649 + 0.999888i \(0.504764\pi\)
\(644\) 1568.00 0.0959439
\(645\) 0 0
\(646\) −3760.00 −0.229002
\(647\) 3984.00 0.242082 0.121041 0.992647i \(-0.461377\pi\)
0.121041 + 0.992647i \(0.461377\pi\)
\(648\) 0 0
\(649\) −6720.00 −0.406445
\(650\) 1950.00 0.117670
\(651\) 0 0
\(652\) −17724.0 −1.06461
\(653\) 30538.0 1.83008 0.915042 0.403360i \(-0.132158\pi\)
0.915042 + 0.403360i \(0.132158\pi\)
\(654\) 0 0
\(655\) −5560.00 −0.331675
\(656\) −16482.0 −0.980966
\(657\) 0 0
\(658\) 3752.00 0.222292
\(659\) −22740.0 −1.34420 −0.672098 0.740463i \(-0.734606\pi\)
−0.672098 + 0.740463i \(0.734606\pi\)
\(660\) 0 0
\(661\) −18718.0 −1.10143 −0.550715 0.834693i \(-0.685645\pi\)
−0.550715 + 0.834693i \(0.685645\pi\)
\(662\) −1932.00 −0.113428
\(663\) 0 0
\(664\) 6720.00 0.392751
\(665\) 1400.00 0.0816386
\(666\) 0 0
\(667\) −1600.00 −0.0928819
\(668\) 2912.00 0.168666
\(669\) 0 0
\(670\) 820.000 0.0472826
\(671\) 3336.00 0.191930
\(672\) 0 0
\(673\) 10802.0 0.618702 0.309351 0.950948i \(-0.399888\pi\)
0.309351 + 0.950948i \(0.399888\pi\)
\(674\) −2386.00 −0.136358
\(675\) 0 0
\(676\) −27209.0 −1.54808
\(677\) −346.000 −0.0196423 −0.00982117 0.999952i \(-0.503126\pi\)
−0.00982117 + 0.999952i \(0.503126\pi\)
\(678\) 0 0
\(679\) 7182.00 0.405920
\(680\) 7050.00 0.397581
\(681\) 0 0
\(682\) −2976.00 −0.167092
\(683\) 11628.0 0.651439 0.325720 0.945466i \(-0.394393\pi\)
0.325720 + 0.945466i \(0.394393\pi\)
\(684\) 0 0
\(685\) 3470.00 0.193550
\(686\) −343.000 −0.0190901
\(687\) 0 0
\(688\) −2788.00 −0.154493
\(689\) 1716.00 0.0948830
\(690\) 0 0
\(691\) 2472.00 0.136092 0.0680458 0.997682i \(-0.478324\pi\)
0.0680458 + 0.997682i \(0.478324\pi\)
\(692\) 21294.0 1.16976
\(693\) 0 0
\(694\) 6076.00 0.332337
\(695\) 1800.00 0.0982416
\(696\) 0 0
\(697\) −37788.0 −2.05355
\(698\) −2210.00 −0.119842
\(699\) 0 0
\(700\) −1225.00 −0.0661438
\(701\) 2018.00 0.108729 0.0543643 0.998521i \(-0.482687\pi\)
0.0543643 + 0.998521i \(0.482687\pi\)
\(702\) 0 0
\(703\) −17360.0 −0.931358
\(704\) 2004.00 0.107285
\(705\) 0 0
\(706\) −2598.00 −0.138494
\(707\) −3374.00 −0.179480
\(708\) 0 0
\(709\) 790.000 0.0418464 0.0209232 0.999781i \(-0.493339\pi\)
0.0209232 + 0.999781i \(0.493339\pi\)
\(710\) 3360.00 0.177604
\(711\) 0 0
\(712\) 13050.0 0.686895
\(713\) 7936.00 0.416838
\(714\) 0 0
\(715\) 4680.00 0.244786
\(716\) −1260.00 −0.0657659
\(717\) 0 0
\(718\) −13320.0 −0.692337
\(719\) −18200.0 −0.944013 −0.472007 0.881595i \(-0.656470\pi\)
−0.472007 + 0.881595i \(0.656470\pi\)
\(720\) 0 0
\(721\) 1904.00 0.0983477
\(722\) 5259.00 0.271080
\(723\) 0 0
\(724\) 13706.0 0.703563
\(725\) 1250.00 0.0640329
\(726\) 0 0
\(727\) 29056.0 1.48229 0.741147 0.671343i \(-0.234282\pi\)
0.741147 + 0.671343i \(0.234282\pi\)
\(728\) −8190.00 −0.416953
\(729\) 0 0
\(730\) −410.000 −0.0207874
\(731\) −6392.00 −0.323415
\(732\) 0 0
\(733\) 7082.00 0.356862 0.178431 0.983952i \(-0.442898\pi\)
0.178431 + 0.983952i \(0.442898\pi\)
\(734\) −10816.0 −0.543904
\(735\) 0 0
\(736\) 5152.00 0.258023
\(737\) 1968.00 0.0983612
\(738\) 0 0
\(739\) 11060.0 0.550539 0.275270 0.961367i \(-0.411233\pi\)
0.275270 + 0.961367i \(0.411233\pi\)
\(740\) 15190.0 0.754589
\(741\) 0 0
\(742\) 154.000 0.00761930
\(743\) −33072.0 −1.63297 −0.816483 0.577369i \(-0.804079\pi\)
−0.816483 + 0.577369i \(0.804079\pi\)
\(744\) 0 0
\(745\) −11350.0 −0.558164
\(746\) 11098.0 0.544674
\(747\) 0 0
\(748\) 7896.00 0.385971
\(749\) 3108.00 0.151621
\(750\) 0 0
\(751\) 29072.0 1.41259 0.706293 0.707919i \(-0.250366\pi\)
0.706293 + 0.707919i \(0.250366\pi\)
\(752\) −21976.0 −1.06567
\(753\) 0 0
\(754\) 3900.00 0.188368
\(755\) 3160.00 0.152323
\(756\) 0 0
\(757\) −13234.0 −0.635400 −0.317700 0.948191i \(-0.602911\pi\)
−0.317700 + 0.948191i \(0.602911\pi\)
\(758\) −7100.00 −0.340216
\(759\) 0 0
\(760\) 3000.00 0.143186
\(761\) 22398.0 1.06692 0.533460 0.845825i \(-0.320891\pi\)
0.533460 + 0.845825i \(0.320891\pi\)
\(762\) 0 0
\(763\) −8190.00 −0.388595
\(764\) −20216.0 −0.957316
\(765\) 0 0
\(766\) −728.000 −0.0343390
\(767\) −43680.0 −2.05631
\(768\) 0 0
\(769\) 6890.00 0.323095 0.161547 0.986865i \(-0.448352\pi\)
0.161547 + 0.986865i \(0.448352\pi\)
\(770\) 420.000 0.0196568
\(771\) 0 0
\(772\) −11214.0 −0.522799
\(773\) −16722.0 −0.778071 −0.389035 0.921223i \(-0.627192\pi\)
−0.389035 + 0.921223i \(0.627192\pi\)
\(774\) 0 0
\(775\) −6200.00 −0.287368
\(776\) 15390.0 0.711944
\(777\) 0 0
\(778\) −6810.00 −0.313818
\(779\) −16080.0 −0.739571
\(780\) 0 0
\(781\) 8064.00 0.369466
\(782\) 3008.00 0.137552
\(783\) 0 0
\(784\) 2009.00 0.0915179
\(785\) −3670.00 −0.166864
\(786\) 0 0
\(787\) −32624.0 −1.47766 −0.738831 0.673891i \(-0.764622\pi\)
−0.738831 + 0.673891i \(0.764622\pi\)
\(788\) −33558.0 −1.51707
\(789\) 0 0
\(790\) 5000.00 0.225180
\(791\) 5586.00 0.251094
\(792\) 0 0
\(793\) 21684.0 0.971023
\(794\) 574.000 0.0256555
\(795\) 0 0
\(796\) −8960.00 −0.398968
\(797\) −11346.0 −0.504261 −0.252130 0.967693i \(-0.581131\pi\)
−0.252130 + 0.967693i \(0.581131\pi\)
\(798\) 0 0
\(799\) −50384.0 −2.23086
\(800\) −4025.00 −0.177882
\(801\) 0 0
\(802\) 6162.00 0.271306
\(803\) −984.000 −0.0432436
\(804\) 0 0
\(805\) −1120.00 −0.0490370
\(806\) −19344.0 −0.845364
\(807\) 0 0
\(808\) −7230.00 −0.314790
\(809\) 35190.0 1.52931 0.764657 0.644438i \(-0.222909\pi\)
0.764657 + 0.644438i \(0.222909\pi\)
\(810\) 0 0
\(811\) 30432.0 1.31765 0.658824 0.752297i \(-0.271054\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(812\) −2450.00 −0.105884
\(813\) 0 0
\(814\) −5208.00 −0.224251
\(815\) 12660.0 0.544123
\(816\) 0 0
\(817\) −2720.00 −0.116476
\(818\) −8210.00 −0.350924
\(819\) 0 0
\(820\) 14070.0 0.599202
\(821\) −12702.0 −0.539955 −0.269977 0.962867i \(-0.587016\pi\)
−0.269977 + 0.962867i \(0.587016\pi\)
\(822\) 0 0
\(823\) 16952.0 0.717995 0.358997 0.933339i \(-0.383119\pi\)
0.358997 + 0.933339i \(0.383119\pi\)
\(824\) 4080.00 0.172492
\(825\) 0 0
\(826\) −3920.00 −0.165126
\(827\) 25404.0 1.06818 0.534089 0.845428i \(-0.320655\pi\)
0.534089 + 0.845428i \(0.320655\pi\)
\(828\) 0 0
\(829\) 26250.0 1.09976 0.549879 0.835244i \(-0.314674\pi\)
0.549879 + 0.835244i \(0.314674\pi\)
\(830\) −2240.00 −0.0936765
\(831\) 0 0
\(832\) 13026.0 0.542783
\(833\) 4606.00 0.191583
\(834\) 0 0
\(835\) −2080.00 −0.0862052
\(836\) 3360.00 0.139005
\(837\) 0 0
\(838\) 4800.00 0.197868
\(839\) 15360.0 0.632045 0.316023 0.948752i \(-0.397652\pi\)
0.316023 + 0.948752i \(0.397652\pi\)
\(840\) 0 0
\(841\) −21889.0 −0.897495
\(842\) 9938.00 0.406753
\(843\) 0 0
\(844\) 476.000 0.0194130
\(845\) 19435.0 0.791224
\(846\) 0 0
\(847\) −8309.00 −0.337073
\(848\) −902.000 −0.0365269
\(849\) 0 0
\(850\) −2350.00 −0.0948286
\(851\) 13888.0 0.559430
\(852\) 0 0
\(853\) 10362.0 0.415930 0.207965 0.978136i \(-0.433316\pi\)
0.207965 + 0.978136i \(0.433316\pi\)
\(854\) 1946.00 0.0779751
\(855\) 0 0
\(856\) 6660.00 0.265928
\(857\) −4506.00 −0.179606 −0.0898028 0.995960i \(-0.528624\pi\)
−0.0898028 + 0.995960i \(0.528624\pi\)
\(858\) 0 0
\(859\) 24200.0 0.961226 0.480613 0.876933i \(-0.340414\pi\)
0.480613 + 0.876933i \(0.340414\pi\)
\(860\) 2380.00 0.0943690
\(861\) 0 0
\(862\) −9248.00 −0.365415
\(863\) 37008.0 1.45975 0.729877 0.683579i \(-0.239578\pi\)
0.729877 + 0.683579i \(0.239578\pi\)
\(864\) 0 0
\(865\) −15210.0 −0.597868
\(866\) 1118.00 0.0438697
\(867\) 0 0
\(868\) 12152.0 0.475191
\(869\) 12000.0 0.468437
\(870\) 0 0
\(871\) 12792.0 0.497635
\(872\) −17550.0 −0.681557
\(873\) 0 0
\(874\) 1280.00 0.0495385
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) 3446.00 0.132683 0.0663416 0.997797i \(-0.478867\pi\)
0.0663416 + 0.997797i \(0.478867\pi\)
\(878\) 11960.0 0.459716
\(879\) 0 0
\(880\) −2460.00 −0.0942348
\(881\) 16158.0 0.617908 0.308954 0.951077i \(-0.400021\pi\)
0.308954 + 0.951077i \(0.400021\pi\)
\(882\) 0 0
\(883\) −44708.0 −1.70390 −0.851950 0.523623i \(-0.824580\pi\)
−0.851950 + 0.523623i \(0.824580\pi\)
\(884\) 51324.0 1.95273
\(885\) 0 0
\(886\) 7332.00 0.278017
\(887\) 23504.0 0.889726 0.444863 0.895599i \(-0.353252\pi\)
0.444863 + 0.895599i \(0.353252\pi\)
\(888\) 0 0
\(889\) 5432.00 0.204931
\(890\) −4350.00 −0.163834
\(891\) 0 0
\(892\) 12096.0 0.454040
\(893\) −21440.0 −0.803429
\(894\) 0 0
\(895\) 900.000 0.0336131
\(896\) 10185.0 0.379751
\(897\) 0 0
\(898\) 1890.00 0.0702340
\(899\) −12400.0 −0.460026
\(900\) 0 0
\(901\) −2068.00 −0.0764651
\(902\) −4824.00 −0.178073
\(903\) 0 0
\(904\) 11970.0 0.440394
\(905\) −9790.00 −0.359592
\(906\) 0 0
\(907\) 42436.0 1.55354 0.776772 0.629782i \(-0.216856\pi\)
0.776772 + 0.629782i \(0.216856\pi\)
\(908\) −34048.0 −1.24441
\(909\) 0 0
\(910\) 2730.00 0.0994490
\(911\) 7968.00 0.289782 0.144891 0.989448i \(-0.453717\pi\)
0.144891 + 0.989448i \(0.453717\pi\)
\(912\) 0 0
\(913\) −5376.00 −0.194874
\(914\) 7014.00 0.253832
\(915\) 0 0
\(916\) 38570.0 1.39125
\(917\) −7784.00 −0.280317
\(918\) 0 0
\(919\) 14880.0 0.534109 0.267054 0.963681i \(-0.413950\pi\)
0.267054 + 0.963681i \(0.413950\pi\)
\(920\) −2400.00 −0.0860061
\(921\) 0 0
\(922\) −8318.00 −0.297114
\(923\) 52416.0 1.86922
\(924\) 0 0
\(925\) −10850.0 −0.385671
\(926\) −6432.00 −0.228260
\(927\) 0 0
\(928\) −8050.00 −0.284757
\(929\) −27610.0 −0.975086 −0.487543 0.873099i \(-0.662107\pi\)
−0.487543 + 0.873099i \(0.662107\pi\)
\(930\) 0 0
\(931\) 1960.00 0.0689972
\(932\) 37254.0 1.30933
\(933\) 0 0
\(934\) −10064.0 −0.352574
\(935\) −5640.00 −0.197270
\(936\) 0 0
\(937\) −28094.0 −0.979499 −0.489750 0.871863i \(-0.662912\pi\)
−0.489750 + 0.871863i \(0.662912\pi\)
\(938\) 1148.00 0.0399611
\(939\) 0 0
\(940\) 18760.0 0.650940
\(941\) 12198.0 0.422575 0.211288 0.977424i \(-0.432234\pi\)
0.211288 + 0.977424i \(0.432234\pi\)
\(942\) 0 0
\(943\) 12864.0 0.444231
\(944\) 22960.0 0.791615
\(945\) 0 0
\(946\) −816.000 −0.0280449
\(947\) −31316.0 −1.07459 −0.537293 0.843396i \(-0.680553\pi\)
−0.537293 + 0.843396i \(0.680553\pi\)
\(948\) 0 0
\(949\) −6396.00 −0.218781
\(950\) −1000.00 −0.0341519
\(951\) 0 0
\(952\) 9870.00 0.336017
\(953\) −27322.0 −0.928695 −0.464348 0.885653i \(-0.653711\pi\)
−0.464348 + 0.885653i \(0.653711\pi\)
\(954\) 0 0
\(955\) 14440.0 0.489285
\(956\) −12880.0 −0.435742
\(957\) 0 0
\(958\) 1400.00 0.0472150
\(959\) 4858.00 0.163580
\(960\) 0 0
\(961\) 31713.0 1.06452
\(962\) −33852.0 −1.13454
\(963\) 0 0
\(964\) 3066.00 0.102437
\(965\) 8010.00 0.267203
\(966\) 0 0
\(967\) 5296.00 0.176120 0.0880599 0.996115i \(-0.471933\pi\)
0.0880599 + 0.996115i \(0.471933\pi\)
\(968\) −17805.0 −0.591193
\(969\) 0 0
\(970\) −5130.00 −0.169809
\(971\) −512.000 −0.0169216 −0.00846079 0.999964i \(-0.502693\pi\)
−0.00846079 + 0.999964i \(0.502693\pi\)
\(972\) 0 0
\(973\) 2520.00 0.0830293
\(974\) −13376.0 −0.440036
\(975\) 0 0
\(976\) −11398.0 −0.373813
\(977\) 20734.0 0.678955 0.339478 0.940614i \(-0.389750\pi\)
0.339478 + 0.940614i \(0.389750\pi\)
\(978\) 0 0
\(979\) −10440.0 −0.340821
\(980\) −1715.00 −0.0559017
\(981\) 0 0
\(982\) 7092.00 0.230463
\(983\) 61168.0 1.98470 0.992348 0.123472i \(-0.0394030\pi\)
0.992348 + 0.123472i \(0.0394030\pi\)
\(984\) 0 0
\(985\) 23970.0 0.775378
\(986\) −4700.00 −0.151804
\(987\) 0 0
\(988\) 21840.0 0.703262
\(989\) 2176.00 0.0699624
\(990\) 0 0
\(991\) −47928.0 −1.53631 −0.768155 0.640264i \(-0.778825\pi\)
−0.768155 + 0.640264i \(0.778825\pi\)
\(992\) 39928.0 1.27794
\(993\) 0 0
\(994\) 4704.00 0.150102
\(995\) 6400.00 0.203913
\(996\) 0 0
\(997\) −9454.00 −0.300312 −0.150156 0.988662i \(-0.547978\pi\)
−0.150156 + 0.988662i \(0.547978\pi\)
\(998\) 820.000 0.0260087
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.a.c.1.1 1
3.2 odd 2 35.4.a.a.1.1 1
5.4 even 2 1575.4.a.g.1.1 1
7.6 odd 2 2205.4.a.i.1.1 1
12.11 even 2 560.4.a.p.1.1 1
15.2 even 4 175.4.b.a.99.2 2
15.8 even 4 175.4.b.a.99.1 2
15.14 odd 2 175.4.a.a.1.1 1
21.2 odd 6 245.4.e.e.116.1 2
21.5 even 6 245.4.e.b.116.1 2
21.11 odd 6 245.4.e.e.226.1 2
21.17 even 6 245.4.e.b.226.1 2
21.20 even 2 245.4.a.d.1.1 1
24.5 odd 2 2240.4.a.bk.1.1 1
24.11 even 2 2240.4.a.b.1.1 1
105.104 even 2 1225.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.a.1.1 1 3.2 odd 2
175.4.a.a.1.1 1 15.14 odd 2
175.4.b.a.99.1 2 15.8 even 4
175.4.b.a.99.2 2 15.2 even 4
245.4.a.d.1.1 1 21.20 even 2
245.4.e.b.116.1 2 21.5 even 6
245.4.e.b.226.1 2 21.17 even 6
245.4.e.e.116.1 2 21.2 odd 6
245.4.e.e.226.1 2 21.11 odd 6
315.4.a.c.1.1 1 1.1 even 1 trivial
560.4.a.p.1.1 1 12.11 even 2
1225.4.a.e.1.1 1 105.104 even 2
1575.4.a.g.1.1 1 5.4 even 2
2205.4.a.i.1.1 1 7.6 odd 2
2240.4.a.b.1.1 1 24.11 even 2
2240.4.a.bk.1.1 1 24.5 odd 2