Properties

Label 315.4.a.a.1.1
Level $315$
Weight $4$
Character 315.1
Self dual yes
Analytic conductor $18.586$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{2} +17.0000 q^{4} -5.00000 q^{5} +7.00000 q^{7} -45.0000 q^{8} +O(q^{10})\) \(q-5.00000 q^{2} +17.0000 q^{4} -5.00000 q^{5} +7.00000 q^{7} -45.0000 q^{8} +25.0000 q^{10} -12.0000 q^{11} +30.0000 q^{13} -35.0000 q^{14} +89.0000 q^{16} +134.000 q^{17} -92.0000 q^{19} -85.0000 q^{20} +60.0000 q^{22} -112.000 q^{23} +25.0000 q^{25} -150.000 q^{26} +119.000 q^{28} +58.0000 q^{29} -224.000 q^{31} -85.0000 q^{32} -670.000 q^{34} -35.0000 q^{35} -146.000 q^{37} +460.000 q^{38} +225.000 q^{40} -18.0000 q^{41} +340.000 q^{43} -204.000 q^{44} +560.000 q^{46} -208.000 q^{47} +49.0000 q^{49} -125.000 q^{50} +510.000 q^{52} +754.000 q^{53} +60.0000 q^{55} -315.000 q^{56} -290.000 q^{58} -380.000 q^{59} +718.000 q^{61} +1120.00 q^{62} -287.000 q^{64} -150.000 q^{65} +412.000 q^{67} +2278.00 q^{68} +175.000 q^{70} +960.000 q^{71} +1066.00 q^{73} +730.000 q^{74} -1564.00 q^{76} -84.0000 q^{77} +896.000 q^{79} -445.000 q^{80} +90.0000 q^{82} -436.000 q^{83} -670.000 q^{85} -1700.00 q^{86} +540.000 q^{88} +1038.00 q^{89} +210.000 q^{91} -1904.00 q^{92} +1040.00 q^{94} +460.000 q^{95} -702.000 q^{97} -245.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.00000 −1.76777 −0.883883 0.467707i \(-0.845080\pi\)
−0.883883 + 0.467707i \(0.845080\pi\)
\(3\) 0 0
\(4\) 17.0000 2.12500
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −45.0000 −1.98874
\(9\) 0 0
\(10\) 25.0000 0.790569
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 0 0
\(13\) 30.0000 0.640039 0.320019 0.947411i \(-0.396311\pi\)
0.320019 + 0.947411i \(0.396311\pi\)
\(14\) −35.0000 −0.668153
\(15\) 0 0
\(16\) 89.0000 1.39062
\(17\) 134.000 1.91175 0.955876 0.293771i \(-0.0949105\pi\)
0.955876 + 0.293771i \(0.0949105\pi\)
\(18\) 0 0
\(19\) −92.0000 −1.11086 −0.555428 0.831565i \(-0.687445\pi\)
−0.555428 + 0.831565i \(0.687445\pi\)
\(20\) −85.0000 −0.950329
\(21\) 0 0
\(22\) 60.0000 0.581456
\(23\) −112.000 −1.01537 −0.507687 0.861541i \(-0.669499\pi\)
−0.507687 + 0.861541i \(0.669499\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −150.000 −1.13144
\(27\) 0 0
\(28\) 119.000 0.803175
\(29\) 58.0000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −224.000 −1.29779 −0.648897 0.760877i \(-0.724769\pi\)
−0.648897 + 0.760877i \(0.724769\pi\)
\(32\) −85.0000 −0.469563
\(33\) 0 0
\(34\) −670.000 −3.37953
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −146.000 −0.648710 −0.324355 0.945936i \(-0.605147\pi\)
−0.324355 + 0.945936i \(0.605147\pi\)
\(38\) 460.000 1.96373
\(39\) 0 0
\(40\) 225.000 0.889391
\(41\) −18.0000 −0.0685641 −0.0342820 0.999412i \(-0.510914\pi\)
−0.0342820 + 0.999412i \(0.510914\pi\)
\(42\) 0 0
\(43\) 340.000 1.20580 0.602901 0.797816i \(-0.294011\pi\)
0.602901 + 0.797816i \(0.294011\pi\)
\(44\) −204.000 −0.698958
\(45\) 0 0
\(46\) 560.000 1.79495
\(47\) −208.000 −0.645530 −0.322765 0.946479i \(-0.604612\pi\)
−0.322765 + 0.946479i \(0.604612\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −125.000 −0.353553
\(51\) 0 0
\(52\) 510.000 1.36008
\(53\) 754.000 1.95415 0.977074 0.212899i \(-0.0682905\pi\)
0.977074 + 0.212899i \(0.0682905\pi\)
\(54\) 0 0
\(55\) 60.0000 0.147098
\(56\) −315.000 −0.751672
\(57\) 0 0
\(58\) −290.000 −0.656532
\(59\) −380.000 −0.838505 −0.419252 0.907870i \(-0.637708\pi\)
−0.419252 + 0.907870i \(0.637708\pi\)
\(60\) 0 0
\(61\) 718.000 1.50706 0.753529 0.657415i \(-0.228350\pi\)
0.753529 + 0.657415i \(0.228350\pi\)
\(62\) 1120.00 2.29420
\(63\) 0 0
\(64\) −287.000 −0.560547
\(65\) −150.000 −0.286234
\(66\) 0 0
\(67\) 412.000 0.751251 0.375625 0.926772i \(-0.377428\pi\)
0.375625 + 0.926772i \(0.377428\pi\)
\(68\) 2278.00 4.06247
\(69\) 0 0
\(70\) 175.000 0.298807
\(71\) 960.000 1.60466 0.802331 0.596879i \(-0.203593\pi\)
0.802331 + 0.596879i \(0.203593\pi\)
\(72\) 0 0
\(73\) 1066.00 1.70912 0.854561 0.519352i \(-0.173826\pi\)
0.854561 + 0.519352i \(0.173826\pi\)
\(74\) 730.000 1.14677
\(75\) 0 0
\(76\) −1564.00 −2.36057
\(77\) −84.0000 −0.124321
\(78\) 0 0
\(79\) 896.000 1.27605 0.638025 0.770016i \(-0.279752\pi\)
0.638025 + 0.770016i \(0.279752\pi\)
\(80\) −445.000 −0.621906
\(81\) 0 0
\(82\) 90.0000 0.121205
\(83\) −436.000 −0.576593 −0.288296 0.957541i \(-0.593089\pi\)
−0.288296 + 0.957541i \(0.593089\pi\)
\(84\) 0 0
\(85\) −670.000 −0.854961
\(86\) −1700.00 −2.13158
\(87\) 0 0
\(88\) 540.000 0.654139
\(89\) 1038.00 1.23627 0.618134 0.786073i \(-0.287889\pi\)
0.618134 + 0.786073i \(0.287889\pi\)
\(90\) 0 0
\(91\) 210.000 0.241912
\(92\) −1904.00 −2.15767
\(93\) 0 0
\(94\) 1040.00 1.14115
\(95\) 460.000 0.496790
\(96\) 0 0
\(97\) −702.000 −0.734818 −0.367409 0.930060i \(-0.619755\pi\)
−0.367409 + 0.930060i \(0.619755\pi\)
\(98\) −245.000 −0.252538
\(99\) 0 0
\(100\) 425.000 0.425000
\(101\) −46.0000 −0.0453185 −0.0226593 0.999743i \(-0.507213\pi\)
−0.0226593 + 0.999743i \(0.507213\pi\)
\(102\) 0 0
\(103\) 1880.00 1.79847 0.899233 0.437471i \(-0.144126\pi\)
0.899233 + 0.437471i \(0.144126\pi\)
\(104\) −1350.00 −1.27287
\(105\) 0 0
\(106\) −3770.00 −3.45448
\(107\) −732.000 −0.661356 −0.330678 0.943744i \(-0.607277\pi\)
−0.330678 + 0.943744i \(0.607277\pi\)
\(108\) 0 0
\(109\) −378.000 −0.332164 −0.166082 0.986112i \(-0.553112\pi\)
−0.166082 + 0.986112i \(0.553112\pi\)
\(110\) −300.000 −0.260035
\(111\) 0 0
\(112\) 623.000 0.525607
\(113\) −1458.00 −1.21378 −0.606890 0.794786i \(-0.707583\pi\)
−0.606890 + 0.794786i \(0.707583\pi\)
\(114\) 0 0
\(115\) 560.000 0.454089
\(116\) 986.000 0.789205
\(117\) 0 0
\(118\) 1900.00 1.48228
\(119\) 938.000 0.722574
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) −3590.00 −2.66413
\(123\) 0 0
\(124\) −3808.00 −2.75781
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 608.000 0.424813 0.212407 0.977181i \(-0.431870\pi\)
0.212407 + 0.977181i \(0.431870\pi\)
\(128\) 2115.00 1.46048
\(129\) 0 0
\(130\) 750.000 0.505995
\(131\) 956.000 0.637604 0.318802 0.947821i \(-0.396720\pi\)
0.318802 + 0.947821i \(0.396720\pi\)
\(132\) 0 0
\(133\) −644.000 −0.419864
\(134\) −2060.00 −1.32804
\(135\) 0 0
\(136\) −6030.00 −3.80197
\(137\) 374.000 0.233233 0.116617 0.993177i \(-0.462795\pi\)
0.116617 + 0.993177i \(0.462795\pi\)
\(138\) 0 0
\(139\) 396.000 0.241642 0.120821 0.992674i \(-0.461447\pi\)
0.120821 + 0.992674i \(0.461447\pi\)
\(140\) −595.000 −0.359191
\(141\) 0 0
\(142\) −4800.00 −2.83667
\(143\) −360.000 −0.210522
\(144\) 0 0
\(145\) −290.000 −0.166091
\(146\) −5330.00 −3.02133
\(147\) 0 0
\(148\) −2482.00 −1.37851
\(149\) 1874.00 1.03036 0.515181 0.857081i \(-0.327725\pi\)
0.515181 + 0.857081i \(0.327725\pi\)
\(150\) 0 0
\(151\) −1096.00 −0.590670 −0.295335 0.955394i \(-0.595431\pi\)
−0.295335 + 0.955394i \(0.595431\pi\)
\(152\) 4140.00 2.20920
\(153\) 0 0
\(154\) 420.000 0.219770
\(155\) 1120.00 0.580391
\(156\) 0 0
\(157\) 1918.00 0.974988 0.487494 0.873126i \(-0.337911\pi\)
0.487494 + 0.873126i \(0.337911\pi\)
\(158\) −4480.00 −2.25576
\(159\) 0 0
\(160\) 425.000 0.209995
\(161\) −784.000 −0.383776
\(162\) 0 0
\(163\) 2316.00 1.11290 0.556451 0.830880i \(-0.312163\pi\)
0.556451 + 0.830880i \(0.312163\pi\)
\(164\) −306.000 −0.145699
\(165\) 0 0
\(166\) 2180.00 1.01928
\(167\) 1736.00 0.804405 0.402203 0.915551i \(-0.368245\pi\)
0.402203 + 0.915551i \(0.368245\pi\)
\(168\) 0 0
\(169\) −1297.00 −0.590350
\(170\) 3350.00 1.51137
\(171\) 0 0
\(172\) 5780.00 2.56233
\(173\) 2442.00 1.07319 0.536595 0.843840i \(-0.319710\pi\)
0.536595 + 0.843840i \(0.319710\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −1068.00 −0.457406
\(177\) 0 0
\(178\) −5190.00 −2.18543
\(179\) 4092.00 1.70866 0.854331 0.519730i \(-0.173967\pi\)
0.854331 + 0.519730i \(0.173967\pi\)
\(180\) 0 0
\(181\) 1270.00 0.521538 0.260769 0.965401i \(-0.416024\pi\)
0.260769 + 0.965401i \(0.416024\pi\)
\(182\) −1050.00 −0.427644
\(183\) 0 0
\(184\) 5040.00 2.01931
\(185\) 730.000 0.290112
\(186\) 0 0
\(187\) −1608.00 −0.628816
\(188\) −3536.00 −1.37175
\(189\) 0 0
\(190\) −2300.00 −0.878208
\(191\) −4904.00 −1.85781 −0.928903 0.370323i \(-0.879247\pi\)
−0.928903 + 0.370323i \(0.879247\pi\)
\(192\) 0 0
\(193\) 2178.00 0.812310 0.406155 0.913804i \(-0.366869\pi\)
0.406155 + 0.913804i \(0.366869\pi\)
\(194\) 3510.00 1.29899
\(195\) 0 0
\(196\) 833.000 0.303571
\(197\) 2850.00 1.03073 0.515366 0.856970i \(-0.327656\pi\)
0.515366 + 0.856970i \(0.327656\pi\)
\(198\) 0 0
\(199\) −1144.00 −0.407518 −0.203759 0.979021i \(-0.565316\pi\)
−0.203759 + 0.979021i \(0.565316\pi\)
\(200\) −1125.00 −0.397748
\(201\) 0 0
\(202\) 230.000 0.0801126
\(203\) 406.000 0.140372
\(204\) 0 0
\(205\) 90.0000 0.0306628
\(206\) −9400.00 −3.17927
\(207\) 0 0
\(208\) 2670.00 0.890054
\(209\) 1104.00 0.365384
\(210\) 0 0
\(211\) 412.000 0.134423 0.0672115 0.997739i \(-0.478590\pi\)
0.0672115 + 0.997739i \(0.478590\pi\)
\(212\) 12818.0 4.15257
\(213\) 0 0
\(214\) 3660.00 1.16912
\(215\) −1700.00 −0.539251
\(216\) 0 0
\(217\) −1568.00 −0.490520
\(218\) 1890.00 0.587188
\(219\) 0 0
\(220\) 1020.00 0.312584
\(221\) 4020.00 1.22359
\(222\) 0 0
\(223\) −1632.00 −0.490075 −0.245038 0.969514i \(-0.578800\pi\)
−0.245038 + 0.969514i \(0.578800\pi\)
\(224\) −595.000 −0.177478
\(225\) 0 0
\(226\) 7290.00 2.14568
\(227\) −4084.00 −1.19412 −0.597059 0.802198i \(-0.703664\pi\)
−0.597059 + 0.802198i \(0.703664\pi\)
\(228\) 0 0
\(229\) −3386.00 −0.977088 −0.488544 0.872539i \(-0.662472\pi\)
−0.488544 + 0.872539i \(0.662472\pi\)
\(230\) −2800.00 −0.802724
\(231\) 0 0
\(232\) −2610.00 −0.738599
\(233\) −5322.00 −1.49638 −0.748188 0.663486i \(-0.769076\pi\)
−0.748188 + 0.663486i \(0.769076\pi\)
\(234\) 0 0
\(235\) 1040.00 0.288690
\(236\) −6460.00 −1.78182
\(237\) 0 0
\(238\) −4690.00 −1.27734
\(239\) −3736.00 −1.01114 −0.505569 0.862786i \(-0.668717\pi\)
−0.505569 + 0.862786i \(0.668717\pi\)
\(240\) 0 0
\(241\) 210.000 0.0561298 0.0280649 0.999606i \(-0.491065\pi\)
0.0280649 + 0.999606i \(0.491065\pi\)
\(242\) 5935.00 1.57651
\(243\) 0 0
\(244\) 12206.0 3.20250
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −2760.00 −0.710990
\(248\) 10080.0 2.58097
\(249\) 0 0
\(250\) 625.000 0.158114
\(251\) 4212.00 1.05920 0.529600 0.848248i \(-0.322342\pi\)
0.529600 + 0.848248i \(0.322342\pi\)
\(252\) 0 0
\(253\) 1344.00 0.333978
\(254\) −3040.00 −0.750971
\(255\) 0 0
\(256\) −8279.00 −2.02124
\(257\) −5130.00 −1.24514 −0.622569 0.782565i \(-0.713911\pi\)
−0.622569 + 0.782565i \(0.713911\pi\)
\(258\) 0 0
\(259\) −1022.00 −0.245189
\(260\) −2550.00 −0.608247
\(261\) 0 0
\(262\) −4780.00 −1.12714
\(263\) −848.000 −0.198821 −0.0994105 0.995047i \(-0.531696\pi\)
−0.0994105 + 0.995047i \(0.531696\pi\)
\(264\) 0 0
\(265\) −3770.00 −0.873922
\(266\) 3220.00 0.742221
\(267\) 0 0
\(268\) 7004.00 1.59641
\(269\) 1274.00 0.288763 0.144381 0.989522i \(-0.453881\pi\)
0.144381 + 0.989522i \(0.453881\pi\)
\(270\) 0 0
\(271\) 864.000 0.193669 0.0968344 0.995301i \(-0.469128\pi\)
0.0968344 + 0.995301i \(0.469128\pi\)
\(272\) 11926.0 2.65853
\(273\) 0 0
\(274\) −1870.00 −0.412302
\(275\) −300.000 −0.0657843
\(276\) 0 0
\(277\) −8530.00 −1.85025 −0.925123 0.379668i \(-0.876038\pi\)
−0.925123 + 0.379668i \(0.876038\pi\)
\(278\) −1980.00 −0.427167
\(279\) 0 0
\(280\) 1575.00 0.336158
\(281\) 5382.00 1.14257 0.571287 0.820750i \(-0.306444\pi\)
0.571287 + 0.820750i \(0.306444\pi\)
\(282\) 0 0
\(283\) 6236.00 1.30986 0.654932 0.755687i \(-0.272697\pi\)
0.654932 + 0.755687i \(0.272697\pi\)
\(284\) 16320.0 3.40991
\(285\) 0 0
\(286\) 1800.00 0.372155
\(287\) −126.000 −0.0259148
\(288\) 0 0
\(289\) 13043.0 2.65479
\(290\) 1450.00 0.293610
\(291\) 0 0
\(292\) 18122.0 3.63188
\(293\) 818.000 0.163099 0.0815496 0.996669i \(-0.474013\pi\)
0.0815496 + 0.996669i \(0.474013\pi\)
\(294\) 0 0
\(295\) 1900.00 0.374991
\(296\) 6570.00 1.29011
\(297\) 0 0
\(298\) −9370.00 −1.82144
\(299\) −3360.00 −0.649879
\(300\) 0 0
\(301\) 2380.00 0.455751
\(302\) 5480.00 1.04417
\(303\) 0 0
\(304\) −8188.00 −1.54478
\(305\) −3590.00 −0.673976
\(306\) 0 0
\(307\) −2268.00 −0.421634 −0.210817 0.977526i \(-0.567612\pi\)
−0.210817 + 0.977526i \(0.567612\pi\)
\(308\) −1428.00 −0.264181
\(309\) 0 0
\(310\) −5600.00 −1.02600
\(311\) −6648.00 −1.21213 −0.606067 0.795414i \(-0.707254\pi\)
−0.606067 + 0.795414i \(0.707254\pi\)
\(312\) 0 0
\(313\) 9818.00 1.77299 0.886495 0.462737i \(-0.153133\pi\)
0.886495 + 0.462737i \(0.153133\pi\)
\(314\) −9590.00 −1.72355
\(315\) 0 0
\(316\) 15232.0 2.71160
\(317\) −934.000 −0.165485 −0.0827424 0.996571i \(-0.526368\pi\)
−0.0827424 + 0.996571i \(0.526368\pi\)
\(318\) 0 0
\(319\) −696.000 −0.122158
\(320\) 1435.00 0.250684
\(321\) 0 0
\(322\) 3920.00 0.678426
\(323\) −12328.0 −2.12368
\(324\) 0 0
\(325\) 750.000 0.128008
\(326\) −11580.0 −1.96735
\(327\) 0 0
\(328\) 810.000 0.136356
\(329\) −1456.00 −0.243987
\(330\) 0 0
\(331\) 2292.00 0.380603 0.190302 0.981726i \(-0.439053\pi\)
0.190302 + 0.981726i \(0.439053\pi\)
\(332\) −7412.00 −1.22526
\(333\) 0 0
\(334\) −8680.00 −1.42200
\(335\) −2060.00 −0.335970
\(336\) 0 0
\(337\) −6062.00 −0.979876 −0.489938 0.871757i \(-0.662981\pi\)
−0.489938 + 0.871757i \(0.662981\pi\)
\(338\) 6485.00 1.04360
\(339\) 0 0
\(340\) −11390.0 −1.81679
\(341\) 2688.00 0.426872
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −15300.0 −2.39803
\(345\) 0 0
\(346\) −12210.0 −1.89715
\(347\) −1484.00 −0.229583 −0.114791 0.993390i \(-0.536620\pi\)
−0.114791 + 0.993390i \(0.536620\pi\)
\(348\) 0 0
\(349\) 254.000 0.0389579 0.0194790 0.999810i \(-0.493799\pi\)
0.0194790 + 0.999810i \(0.493799\pi\)
\(350\) −875.000 −0.133631
\(351\) 0 0
\(352\) 1020.00 0.154449
\(353\) 10950.0 1.65102 0.825509 0.564388i \(-0.190888\pi\)
0.825509 + 0.564388i \(0.190888\pi\)
\(354\) 0 0
\(355\) −4800.00 −0.717627
\(356\) 17646.0 2.62707
\(357\) 0 0
\(358\) −20460.0 −3.02052
\(359\) −11376.0 −1.67243 −0.836215 0.548402i \(-0.815236\pi\)
−0.836215 + 0.548402i \(0.815236\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) −6350.00 −0.921957
\(363\) 0 0
\(364\) 3570.00 0.514063
\(365\) −5330.00 −0.764342
\(366\) 0 0
\(367\) −1136.00 −0.161577 −0.0807884 0.996731i \(-0.525744\pi\)
−0.0807884 + 0.996731i \(0.525744\pi\)
\(368\) −9968.00 −1.41201
\(369\) 0 0
\(370\) −3650.00 −0.512850
\(371\) 5278.00 0.738599
\(372\) 0 0
\(373\) −8242.00 −1.14411 −0.572057 0.820214i \(-0.693854\pi\)
−0.572057 + 0.820214i \(0.693854\pi\)
\(374\) 8040.00 1.11160
\(375\) 0 0
\(376\) 9360.00 1.28379
\(377\) 1740.00 0.237704
\(378\) 0 0
\(379\) 3620.00 0.490625 0.245313 0.969444i \(-0.421109\pi\)
0.245313 + 0.969444i \(0.421109\pi\)
\(380\) 7820.00 1.05568
\(381\) 0 0
\(382\) 24520.0 3.28417
\(383\) 8464.00 1.12922 0.564609 0.825359i \(-0.309027\pi\)
0.564609 + 0.825359i \(0.309027\pi\)
\(384\) 0 0
\(385\) 420.000 0.0555979
\(386\) −10890.0 −1.43598
\(387\) 0 0
\(388\) −11934.0 −1.56149
\(389\) −3678.00 −0.479388 −0.239694 0.970848i \(-0.577047\pi\)
−0.239694 + 0.970848i \(0.577047\pi\)
\(390\) 0 0
\(391\) −15008.0 −1.94114
\(392\) −2205.00 −0.284105
\(393\) 0 0
\(394\) −14250.0 −1.82209
\(395\) −4480.00 −0.570666
\(396\) 0 0
\(397\) 12590.0 1.59162 0.795811 0.605545i \(-0.207045\pi\)
0.795811 + 0.605545i \(0.207045\pi\)
\(398\) 5720.00 0.720396
\(399\) 0 0
\(400\) 2225.00 0.278125
\(401\) −2850.00 −0.354918 −0.177459 0.984128i \(-0.556788\pi\)
−0.177459 + 0.984128i \(0.556788\pi\)
\(402\) 0 0
\(403\) −6720.00 −0.830638
\(404\) −782.000 −0.0963019
\(405\) 0 0
\(406\) −2030.00 −0.248146
\(407\) 1752.00 0.213374
\(408\) 0 0
\(409\) 1226.00 0.148220 0.0741098 0.997250i \(-0.476388\pi\)
0.0741098 + 0.997250i \(0.476388\pi\)
\(410\) −450.000 −0.0542047
\(411\) 0 0
\(412\) 31960.0 3.82174
\(413\) −2660.00 −0.316925
\(414\) 0 0
\(415\) 2180.00 0.257860
\(416\) −2550.00 −0.300539
\(417\) 0 0
\(418\) −5520.00 −0.645914
\(419\) −612.000 −0.0713560 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(420\) 0 0
\(421\) 5182.00 0.599894 0.299947 0.953956i \(-0.403031\pi\)
0.299947 + 0.953956i \(0.403031\pi\)
\(422\) −2060.00 −0.237629
\(423\) 0 0
\(424\) −33930.0 −3.88629
\(425\) 3350.00 0.382350
\(426\) 0 0
\(427\) 5026.00 0.569614
\(428\) −12444.0 −1.40538
\(429\) 0 0
\(430\) 8500.00 0.953271
\(431\) 4984.00 0.557009 0.278504 0.960435i \(-0.410161\pi\)
0.278504 + 0.960435i \(0.410161\pi\)
\(432\) 0 0
\(433\) −1694.00 −0.188010 −0.0940051 0.995572i \(-0.529967\pi\)
−0.0940051 + 0.995572i \(0.529967\pi\)
\(434\) 7840.00 0.867125
\(435\) 0 0
\(436\) −6426.00 −0.705848
\(437\) 10304.0 1.12793
\(438\) 0 0
\(439\) 13864.0 1.50727 0.753636 0.657292i \(-0.228298\pi\)
0.753636 + 0.657292i \(0.228298\pi\)
\(440\) −2700.00 −0.292540
\(441\) 0 0
\(442\) −20100.0 −2.16303
\(443\) 4644.00 0.498066 0.249033 0.968495i \(-0.419887\pi\)
0.249033 + 0.968495i \(0.419887\pi\)
\(444\) 0 0
\(445\) −5190.00 −0.552875
\(446\) 8160.00 0.866339
\(447\) 0 0
\(448\) −2009.00 −0.211867
\(449\) 4926.00 0.517756 0.258878 0.965910i \(-0.416647\pi\)
0.258878 + 0.965910i \(0.416647\pi\)
\(450\) 0 0
\(451\) 216.000 0.0225522
\(452\) −24786.0 −2.57928
\(453\) 0 0
\(454\) 20420.0 2.11092
\(455\) −1050.00 −0.108186
\(456\) 0 0
\(457\) −14694.0 −1.50406 −0.752031 0.659128i \(-0.770926\pi\)
−0.752031 + 0.659128i \(0.770926\pi\)
\(458\) 16930.0 1.72726
\(459\) 0 0
\(460\) 9520.00 0.964940
\(461\) −2006.00 −0.202665 −0.101333 0.994853i \(-0.532311\pi\)
−0.101333 + 0.994853i \(0.532311\pi\)
\(462\) 0 0
\(463\) 4896.00 0.491439 0.245720 0.969341i \(-0.420976\pi\)
0.245720 + 0.969341i \(0.420976\pi\)
\(464\) 5162.00 0.516465
\(465\) 0 0
\(466\) 26610.0 2.64525
\(467\) −2660.00 −0.263576 −0.131788 0.991278i \(-0.542072\pi\)
−0.131788 + 0.991278i \(0.542072\pi\)
\(468\) 0 0
\(469\) 2884.00 0.283946
\(470\) −5200.00 −0.510336
\(471\) 0 0
\(472\) 17100.0 1.66757
\(473\) −4080.00 −0.396614
\(474\) 0 0
\(475\) −2300.00 −0.222171
\(476\) 15946.0 1.53547
\(477\) 0 0
\(478\) 18680.0 1.78745
\(479\) 5600.00 0.534176 0.267088 0.963672i \(-0.413938\pi\)
0.267088 + 0.963672i \(0.413938\pi\)
\(480\) 0 0
\(481\) −4380.00 −0.415199
\(482\) −1050.00 −0.0992245
\(483\) 0 0
\(484\) −20179.0 −1.89510
\(485\) 3510.00 0.328620
\(486\) 0 0
\(487\) −6424.00 −0.597740 −0.298870 0.954294i \(-0.596610\pi\)
−0.298870 + 0.954294i \(0.596610\pi\)
\(488\) −32310.0 −2.99714
\(489\) 0 0
\(490\) 1225.00 0.112938
\(491\) 18900.0 1.73716 0.868579 0.495550i \(-0.165033\pi\)
0.868579 + 0.495550i \(0.165033\pi\)
\(492\) 0 0
\(493\) 7772.00 0.710007
\(494\) 13800.0 1.25687
\(495\) 0 0
\(496\) −19936.0 −1.80474
\(497\) 6720.00 0.606505
\(498\) 0 0
\(499\) −15364.0 −1.37833 −0.689165 0.724604i \(-0.742023\pi\)
−0.689165 + 0.724604i \(0.742023\pi\)
\(500\) −2125.00 −0.190066
\(501\) 0 0
\(502\) −21060.0 −1.87242
\(503\) −2216.00 −0.196435 −0.0982173 0.995165i \(-0.531314\pi\)
−0.0982173 + 0.995165i \(0.531314\pi\)
\(504\) 0 0
\(505\) 230.000 0.0202671
\(506\) −6720.00 −0.590396
\(507\) 0 0
\(508\) 10336.0 0.902728
\(509\) 3754.00 0.326902 0.163451 0.986551i \(-0.447737\pi\)
0.163451 + 0.986551i \(0.447737\pi\)
\(510\) 0 0
\(511\) 7462.00 0.645987
\(512\) 24475.0 2.11260
\(513\) 0 0
\(514\) 25650.0 2.20111
\(515\) −9400.00 −0.804298
\(516\) 0 0
\(517\) 2496.00 0.212329
\(518\) 5110.00 0.433437
\(519\) 0 0
\(520\) 6750.00 0.569244
\(521\) 4702.00 0.395390 0.197695 0.980264i \(-0.436654\pi\)
0.197695 + 0.980264i \(0.436654\pi\)
\(522\) 0 0
\(523\) −22660.0 −1.89456 −0.947278 0.320413i \(-0.896178\pi\)
−0.947278 + 0.320413i \(0.896178\pi\)
\(524\) 16252.0 1.35491
\(525\) 0 0
\(526\) 4240.00 0.351469
\(527\) −30016.0 −2.48106
\(528\) 0 0
\(529\) 377.000 0.0309855
\(530\) 18850.0 1.54489
\(531\) 0 0
\(532\) −10948.0 −0.892211
\(533\) −540.000 −0.0438837
\(534\) 0 0
\(535\) 3660.00 0.295767
\(536\) −18540.0 −1.49404
\(537\) 0 0
\(538\) −6370.00 −0.510465
\(539\) −588.000 −0.0469888
\(540\) 0 0
\(541\) −8634.00 −0.686145 −0.343073 0.939309i \(-0.611468\pi\)
−0.343073 + 0.939309i \(0.611468\pi\)
\(542\) −4320.00 −0.342361
\(543\) 0 0
\(544\) −11390.0 −0.897688
\(545\) 1890.00 0.148548
\(546\) 0 0
\(547\) −19284.0 −1.50736 −0.753679 0.657243i \(-0.771722\pi\)
−0.753679 + 0.657243i \(0.771722\pi\)
\(548\) 6358.00 0.495621
\(549\) 0 0
\(550\) 1500.00 0.116291
\(551\) −5336.00 −0.412561
\(552\) 0 0
\(553\) 6272.00 0.482301
\(554\) 42650.0 3.27080
\(555\) 0 0
\(556\) 6732.00 0.513490
\(557\) 19658.0 1.49540 0.747699 0.664038i \(-0.231159\pi\)
0.747699 + 0.664038i \(0.231159\pi\)
\(558\) 0 0
\(559\) 10200.0 0.771760
\(560\) −3115.00 −0.235059
\(561\) 0 0
\(562\) −26910.0 −2.01980
\(563\) 25612.0 1.91726 0.958630 0.284656i \(-0.0918793\pi\)
0.958630 + 0.284656i \(0.0918793\pi\)
\(564\) 0 0
\(565\) 7290.00 0.542819
\(566\) −31180.0 −2.31554
\(567\) 0 0
\(568\) −43200.0 −3.19125
\(569\) −7002.00 −0.515886 −0.257943 0.966160i \(-0.583045\pi\)
−0.257943 + 0.966160i \(0.583045\pi\)
\(570\) 0 0
\(571\) −4524.00 −0.331565 −0.165782 0.986162i \(-0.553015\pi\)
−0.165782 + 0.986162i \(0.553015\pi\)
\(572\) −6120.00 −0.447360
\(573\) 0 0
\(574\) 630.000 0.0458113
\(575\) −2800.00 −0.203075
\(576\) 0 0
\(577\) −6014.00 −0.433910 −0.216955 0.976182i \(-0.569612\pi\)
−0.216955 + 0.976182i \(0.569612\pi\)
\(578\) −65215.0 −4.69306
\(579\) 0 0
\(580\) −4930.00 −0.352943
\(581\) −3052.00 −0.217932
\(582\) 0 0
\(583\) −9048.00 −0.642761
\(584\) −47970.0 −3.39899
\(585\) 0 0
\(586\) −4090.00 −0.288321
\(587\) 11748.0 0.826051 0.413025 0.910719i \(-0.364472\pi\)
0.413025 + 0.910719i \(0.364472\pi\)
\(588\) 0 0
\(589\) 20608.0 1.44166
\(590\) −9500.00 −0.662896
\(591\) 0 0
\(592\) −12994.0 −0.902112
\(593\) 9462.00 0.655241 0.327620 0.944809i \(-0.393753\pi\)
0.327620 + 0.944809i \(0.393753\pi\)
\(594\) 0 0
\(595\) −4690.00 −0.323145
\(596\) 31858.0 2.18952
\(597\) 0 0
\(598\) 16800.0 1.14883
\(599\) −2320.00 −0.158251 −0.0791257 0.996865i \(-0.525213\pi\)
−0.0791257 + 0.996865i \(0.525213\pi\)
\(600\) 0 0
\(601\) 4650.00 0.315603 0.157802 0.987471i \(-0.449559\pi\)
0.157802 + 0.987471i \(0.449559\pi\)
\(602\) −11900.0 −0.805661
\(603\) 0 0
\(604\) −18632.0 −1.25517
\(605\) 5935.00 0.398830
\(606\) 0 0
\(607\) −14656.0 −0.980014 −0.490007 0.871718i \(-0.663006\pi\)
−0.490007 + 0.871718i \(0.663006\pi\)
\(608\) 7820.00 0.521617
\(609\) 0 0
\(610\) 17950.0 1.19143
\(611\) −6240.00 −0.413164
\(612\) 0 0
\(613\) 29166.0 1.92170 0.960851 0.277065i \(-0.0893616\pi\)
0.960851 + 0.277065i \(0.0893616\pi\)
\(614\) 11340.0 0.745350
\(615\) 0 0
\(616\) 3780.00 0.247241
\(617\) −28554.0 −1.86311 −0.931557 0.363597i \(-0.881549\pi\)
−0.931557 + 0.363597i \(0.881549\pi\)
\(618\) 0 0
\(619\) −3876.00 −0.251679 −0.125840 0.992051i \(-0.540163\pi\)
−0.125840 + 0.992051i \(0.540163\pi\)
\(620\) 19040.0 1.23333
\(621\) 0 0
\(622\) 33240.0 2.14277
\(623\) 7266.00 0.467265
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −49090.0 −3.13423
\(627\) 0 0
\(628\) 32606.0 2.07185
\(629\) −19564.0 −1.24017
\(630\) 0 0
\(631\) 2904.00 0.183211 0.0916057 0.995795i \(-0.470800\pi\)
0.0916057 + 0.995795i \(0.470800\pi\)
\(632\) −40320.0 −2.53773
\(633\) 0 0
\(634\) 4670.00 0.292538
\(635\) −3040.00 −0.189982
\(636\) 0 0
\(637\) 1470.00 0.0914341
\(638\) 3480.00 0.215948
\(639\) 0 0
\(640\) −10575.0 −0.653146
\(641\) −9330.00 −0.574903 −0.287452 0.957795i \(-0.592808\pi\)
−0.287452 + 0.957795i \(0.592808\pi\)
\(642\) 0 0
\(643\) −18332.0 −1.12433 −0.562164 0.827025i \(-0.690031\pi\)
−0.562164 + 0.827025i \(0.690031\pi\)
\(644\) −13328.0 −0.815523
\(645\) 0 0
\(646\) 61640.0 3.75417
\(647\) 2088.00 0.126874 0.0634372 0.997986i \(-0.479794\pi\)
0.0634372 + 0.997986i \(0.479794\pi\)
\(648\) 0 0
\(649\) 4560.00 0.275802
\(650\) −3750.00 −0.226288
\(651\) 0 0
\(652\) 39372.0 2.36492
\(653\) −22.0000 −0.00131842 −0.000659209 1.00000i \(-0.500210\pi\)
−0.000659209 1.00000i \(0.500210\pi\)
\(654\) 0 0
\(655\) −4780.00 −0.285145
\(656\) −1602.00 −0.0953469
\(657\) 0 0
\(658\) 7280.00 0.431313
\(659\) −16260.0 −0.961153 −0.480576 0.876953i \(-0.659573\pi\)
−0.480576 + 0.876953i \(0.659573\pi\)
\(660\) 0 0
\(661\) −23818.0 −1.40153 −0.700766 0.713391i \(-0.747158\pi\)
−0.700766 + 0.713391i \(0.747158\pi\)
\(662\) −11460.0 −0.672818
\(663\) 0 0
\(664\) 19620.0 1.14669
\(665\) 3220.00 0.187769
\(666\) 0 0
\(667\) −6496.00 −0.377101
\(668\) 29512.0 1.70936
\(669\) 0 0
\(670\) 10300.0 0.593916
\(671\) −8616.00 −0.495703
\(672\) 0 0
\(673\) 31106.0 1.78165 0.890823 0.454350i \(-0.150128\pi\)
0.890823 + 0.454350i \(0.150128\pi\)
\(674\) 30310.0 1.73219
\(675\) 0 0
\(676\) −22049.0 −1.25449
\(677\) 1090.00 0.0618790 0.0309395 0.999521i \(-0.490150\pi\)
0.0309395 + 0.999521i \(0.490150\pi\)
\(678\) 0 0
\(679\) −4914.00 −0.277735
\(680\) 30150.0 1.70029
\(681\) 0 0
\(682\) −13440.0 −0.754610
\(683\) 12372.0 0.693121 0.346560 0.938028i \(-0.387350\pi\)
0.346560 + 0.938028i \(0.387350\pi\)
\(684\) 0 0
\(685\) −1870.00 −0.104305
\(686\) −1715.00 −0.0954504
\(687\) 0 0
\(688\) 30260.0 1.67682
\(689\) 22620.0 1.25073
\(690\) 0 0
\(691\) 3252.00 0.179033 0.0895166 0.995985i \(-0.471468\pi\)
0.0895166 + 0.995985i \(0.471468\pi\)
\(692\) 41514.0 2.28053
\(693\) 0 0
\(694\) 7420.00 0.405849
\(695\) −1980.00 −0.108066
\(696\) 0 0
\(697\) −2412.00 −0.131077
\(698\) −1270.00 −0.0688685
\(699\) 0 0
\(700\) 2975.00 0.160635
\(701\) 5434.00 0.292781 0.146390 0.989227i \(-0.453234\pi\)
0.146390 + 0.989227i \(0.453234\pi\)
\(702\) 0 0
\(703\) 13432.0 0.720622
\(704\) 3444.00 0.184376
\(705\) 0 0
\(706\) −54750.0 −2.91862
\(707\) −322.000 −0.0171288
\(708\) 0 0
\(709\) −5330.00 −0.282331 −0.141165 0.989986i \(-0.545085\pi\)
−0.141165 + 0.989986i \(0.545085\pi\)
\(710\) 24000.0 1.26860
\(711\) 0 0
\(712\) −46710.0 −2.45861
\(713\) 25088.0 1.31775
\(714\) 0 0
\(715\) 1800.00 0.0941485
\(716\) 69564.0 3.63091
\(717\) 0 0
\(718\) 56880.0 2.95647
\(719\) 7520.00 0.390054 0.195027 0.980798i \(-0.437521\pi\)
0.195027 + 0.980798i \(0.437521\pi\)
\(720\) 0 0
\(721\) 13160.0 0.679756
\(722\) −8025.00 −0.413656
\(723\) 0 0
\(724\) 21590.0 1.10827
\(725\) 1450.00 0.0742781
\(726\) 0 0
\(727\) 19336.0 0.986427 0.493214 0.869908i \(-0.335822\pi\)
0.493214 + 0.869908i \(0.335822\pi\)
\(728\) −9450.00 −0.481099
\(729\) 0 0
\(730\) 26650.0 1.35118
\(731\) 45560.0 2.30519
\(732\) 0 0
\(733\) −22498.0 −1.13367 −0.566837 0.823830i \(-0.691833\pi\)
−0.566837 + 0.823830i \(0.691833\pi\)
\(734\) 5680.00 0.285630
\(735\) 0 0
\(736\) 9520.00 0.476782
\(737\) −4944.00 −0.247103
\(738\) 0 0
\(739\) −18292.0 −0.910531 −0.455265 0.890356i \(-0.650456\pi\)
−0.455265 + 0.890356i \(0.650456\pi\)
\(740\) 12410.0 0.616487
\(741\) 0 0
\(742\) −26390.0 −1.30567
\(743\) −17904.0 −0.884030 −0.442015 0.897008i \(-0.645736\pi\)
−0.442015 + 0.897008i \(0.645736\pi\)
\(744\) 0 0
\(745\) −9370.00 −0.460792
\(746\) 41210.0 2.02253
\(747\) 0 0
\(748\) −27336.0 −1.33623
\(749\) −5124.00 −0.249969
\(750\) 0 0
\(751\) 5408.00 0.262771 0.131385 0.991331i \(-0.458057\pi\)
0.131385 + 0.991331i \(0.458057\pi\)
\(752\) −18512.0 −0.897690
\(753\) 0 0
\(754\) −8700.00 −0.420206
\(755\) 5480.00 0.264156
\(756\) 0 0
\(757\) 8318.00 0.399370 0.199685 0.979860i \(-0.436008\pi\)
0.199685 + 0.979860i \(0.436008\pi\)
\(758\) −18100.0 −0.867311
\(759\) 0 0
\(760\) −20700.0 −0.987984
\(761\) −6690.00 −0.318676 −0.159338 0.987224i \(-0.550936\pi\)
−0.159338 + 0.987224i \(0.550936\pi\)
\(762\) 0 0
\(763\) −2646.00 −0.125546
\(764\) −83368.0 −3.94784
\(765\) 0 0
\(766\) −42320.0 −1.99619
\(767\) −11400.0 −0.536676
\(768\) 0 0
\(769\) 9266.00 0.434513 0.217257 0.976115i \(-0.430289\pi\)
0.217257 + 0.976115i \(0.430289\pi\)
\(770\) −2100.00 −0.0982841
\(771\) 0 0
\(772\) 37026.0 1.72616
\(773\) −9678.00 −0.450315 −0.225157 0.974322i \(-0.572290\pi\)
−0.225157 + 0.974322i \(0.572290\pi\)
\(774\) 0 0
\(775\) −5600.00 −0.259559
\(776\) 31590.0 1.46136
\(777\) 0 0
\(778\) 18390.0 0.847447
\(779\) 1656.00 0.0761648
\(780\) 0 0
\(781\) −11520.0 −0.527808
\(782\) 75040.0 3.43149
\(783\) 0 0
\(784\) 4361.00 0.198661
\(785\) −9590.00 −0.436028
\(786\) 0 0
\(787\) −6860.00 −0.310715 −0.155357 0.987858i \(-0.549653\pi\)
−0.155357 + 0.987858i \(0.549653\pi\)
\(788\) 48450.0 2.19030
\(789\) 0 0
\(790\) 22400.0 1.00881
\(791\) −10206.0 −0.458766
\(792\) 0 0
\(793\) 21540.0 0.964575
\(794\) −62950.0 −2.81362
\(795\) 0 0
\(796\) −19448.0 −0.865975
\(797\) −10950.0 −0.486661 −0.243331 0.969943i \(-0.578240\pi\)
−0.243331 + 0.969943i \(0.578240\pi\)
\(798\) 0 0
\(799\) −27872.0 −1.23409
\(800\) −2125.00 −0.0939126
\(801\) 0 0
\(802\) 14250.0 0.627413
\(803\) −12792.0 −0.562167
\(804\) 0 0
\(805\) 3920.00 0.171630
\(806\) 33600.0 1.46837
\(807\) 0 0
\(808\) 2070.00 0.0901267
\(809\) −26010.0 −1.13036 −0.565181 0.824967i \(-0.691194\pi\)
−0.565181 + 0.824967i \(0.691194\pi\)
\(810\) 0 0
\(811\) −14628.0 −0.633364 −0.316682 0.948532i \(-0.602569\pi\)
−0.316682 + 0.948532i \(0.602569\pi\)
\(812\) 6902.00 0.298292
\(813\) 0 0
\(814\) −8760.00 −0.377196
\(815\) −11580.0 −0.497705
\(816\) 0 0
\(817\) −31280.0 −1.33947
\(818\) −6130.00 −0.262018
\(819\) 0 0
\(820\) 1530.00 0.0651584
\(821\) −8718.00 −0.370597 −0.185299 0.982682i \(-0.559325\pi\)
−0.185299 + 0.982682i \(0.559325\pi\)
\(822\) 0 0
\(823\) −7432.00 −0.314779 −0.157390 0.987537i \(-0.550308\pi\)
−0.157390 + 0.987537i \(0.550308\pi\)
\(824\) −84600.0 −3.57668
\(825\) 0 0
\(826\) 13300.0 0.560250
\(827\) −17388.0 −0.731125 −0.365562 0.930787i \(-0.619123\pi\)
−0.365562 + 0.930787i \(0.619123\pi\)
\(828\) 0 0
\(829\) 7902.00 0.331059 0.165529 0.986205i \(-0.447067\pi\)
0.165529 + 0.986205i \(0.447067\pi\)
\(830\) −10900.0 −0.455837
\(831\) 0 0
\(832\) −8610.00 −0.358772
\(833\) 6566.00 0.273107
\(834\) 0 0
\(835\) −8680.00 −0.359741
\(836\) 18768.0 0.776441
\(837\) 0 0
\(838\) 3060.00 0.126141
\(839\) 31848.0 1.31051 0.655253 0.755409i \(-0.272562\pi\)
0.655253 + 0.755409i \(0.272562\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) −25910.0 −1.06047
\(843\) 0 0
\(844\) 7004.00 0.285649
\(845\) 6485.00 0.264013
\(846\) 0 0
\(847\) −8309.00 −0.337073
\(848\) 67106.0 2.71749
\(849\) 0 0
\(850\) −16750.0 −0.675906
\(851\) 16352.0 0.658683
\(852\) 0 0
\(853\) 30150.0 1.21022 0.605109 0.796142i \(-0.293129\pi\)
0.605109 + 0.796142i \(0.293129\pi\)
\(854\) −25130.0 −1.00694
\(855\) 0 0
\(856\) 32940.0 1.31526
\(857\) 4350.00 0.173388 0.0866938 0.996235i \(-0.472370\pi\)
0.0866938 + 0.996235i \(0.472370\pi\)
\(858\) 0 0
\(859\) −30676.0 −1.21845 −0.609227 0.792996i \(-0.708520\pi\)
−0.609227 + 0.792996i \(0.708520\pi\)
\(860\) −28900.0 −1.14591
\(861\) 0 0
\(862\) −24920.0 −0.984662
\(863\) 23688.0 0.934356 0.467178 0.884163i \(-0.345271\pi\)
0.467178 + 0.884163i \(0.345271\pi\)
\(864\) 0 0
\(865\) −12210.0 −0.479945
\(866\) 8470.00 0.332358
\(867\) 0 0
\(868\) −26656.0 −1.04235
\(869\) −10752.0 −0.419720
\(870\) 0 0
\(871\) 12360.0 0.480830
\(872\) 17010.0 0.660586
\(873\) 0 0
\(874\) −51520.0 −1.99392
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) 31910.0 1.22865 0.614324 0.789054i \(-0.289429\pi\)
0.614324 + 0.789054i \(0.289429\pi\)
\(878\) −69320.0 −2.66451
\(879\) 0 0
\(880\) 5340.00 0.204558
\(881\) −50250.0 −1.92164 −0.960820 0.277172i \(-0.910603\pi\)
−0.960820 + 0.277172i \(0.910603\pi\)
\(882\) 0 0
\(883\) 5980.00 0.227908 0.113954 0.993486i \(-0.463648\pi\)
0.113954 + 0.993486i \(0.463648\pi\)
\(884\) 68340.0 2.60014
\(885\) 0 0
\(886\) −23220.0 −0.880464
\(887\) 24568.0 0.930003 0.465002 0.885310i \(-0.346054\pi\)
0.465002 + 0.885310i \(0.346054\pi\)
\(888\) 0 0
\(889\) 4256.00 0.160564
\(890\) 25950.0 0.977355
\(891\) 0 0
\(892\) −27744.0 −1.04141
\(893\) 19136.0 0.717091
\(894\) 0 0
\(895\) −20460.0 −0.764137
\(896\) 14805.0 0.552009
\(897\) 0 0
\(898\) −24630.0 −0.915271
\(899\) −12992.0 −0.481988
\(900\) 0 0
\(901\) 101036. 3.73585
\(902\) −1080.00 −0.0398670
\(903\) 0 0
\(904\) 65610.0 2.41389
\(905\) −6350.00 −0.233239
\(906\) 0 0
\(907\) 13252.0 0.485144 0.242572 0.970133i \(-0.422009\pi\)
0.242572 + 0.970133i \(0.422009\pi\)
\(908\) −69428.0 −2.53750
\(909\) 0 0
\(910\) 5250.00 0.191248
\(911\) 6744.00 0.245267 0.122634 0.992452i \(-0.460866\pi\)
0.122634 + 0.992452i \(0.460866\pi\)
\(912\) 0 0
\(913\) 5232.00 0.189654
\(914\) 73470.0 2.65883
\(915\) 0 0
\(916\) −57562.0 −2.07631
\(917\) 6692.00 0.240992
\(918\) 0 0
\(919\) −45336.0 −1.62731 −0.813654 0.581349i \(-0.802525\pi\)
−0.813654 + 0.581349i \(0.802525\pi\)
\(920\) −25200.0 −0.903065
\(921\) 0 0
\(922\) 10030.0 0.358265
\(923\) 28800.0 1.02705
\(924\) 0 0
\(925\) −3650.00 −0.129742
\(926\) −24480.0 −0.868750
\(927\) 0 0
\(928\) −4930.00 −0.174391
\(929\) −30074.0 −1.06211 −0.531053 0.847339i \(-0.678203\pi\)
−0.531053 + 0.847339i \(0.678203\pi\)
\(930\) 0 0
\(931\) −4508.00 −0.158694
\(932\) −90474.0 −3.17980
\(933\) 0 0
\(934\) 13300.0 0.465941
\(935\) 8040.00 0.281215
\(936\) 0 0
\(937\) 21754.0 0.758455 0.379227 0.925303i \(-0.376190\pi\)
0.379227 + 0.925303i \(0.376190\pi\)
\(938\) −14420.0 −0.501951
\(939\) 0 0
\(940\) 17680.0 0.613466
\(941\) −14550.0 −0.504056 −0.252028 0.967720i \(-0.581097\pi\)
−0.252028 + 0.967720i \(0.581097\pi\)
\(942\) 0 0
\(943\) 2016.00 0.0696182
\(944\) −33820.0 −1.16605
\(945\) 0 0
\(946\) 20400.0 0.701122
\(947\) −46660.0 −1.60110 −0.800552 0.599263i \(-0.795460\pi\)
−0.800552 + 0.599263i \(0.795460\pi\)
\(948\) 0 0
\(949\) 31980.0 1.09390
\(950\) 11500.0 0.392747
\(951\) 0 0
\(952\) −42210.0 −1.43701
\(953\) −20810.0 −0.707347 −0.353674 0.935369i \(-0.615068\pi\)
−0.353674 + 0.935369i \(0.615068\pi\)
\(954\) 0 0
\(955\) 24520.0 0.830836
\(956\) −63512.0 −2.14867
\(957\) 0 0
\(958\) −28000.0 −0.944300
\(959\) 2618.00 0.0881539
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 21900.0 0.733975
\(963\) 0 0
\(964\) 3570.00 0.119276
\(965\) −10890.0 −0.363276
\(966\) 0 0
\(967\) 2776.00 0.0923166 0.0461583 0.998934i \(-0.485302\pi\)
0.0461583 + 0.998934i \(0.485302\pi\)
\(968\) 53415.0 1.77358
\(969\) 0 0
\(970\) −17550.0 −0.580924
\(971\) −27292.0 −0.902000 −0.451000 0.892524i \(-0.648933\pi\)
−0.451000 + 0.892524i \(0.648933\pi\)
\(972\) 0 0
\(973\) 2772.00 0.0913322
\(974\) 32120.0 1.05666
\(975\) 0 0
\(976\) 63902.0 2.09575
\(977\) 62.0000 0.00203025 0.00101513 0.999999i \(-0.499677\pi\)
0.00101513 + 0.999999i \(0.499677\pi\)
\(978\) 0 0
\(979\) −12456.0 −0.406635
\(980\) −4165.00 −0.135761
\(981\) 0 0
\(982\) −94500.0 −3.07089
\(983\) −37912.0 −1.23012 −0.615058 0.788481i \(-0.710868\pi\)
−0.615058 + 0.788481i \(0.710868\pi\)
\(984\) 0 0
\(985\) −14250.0 −0.460957
\(986\) −38860.0 −1.25513
\(987\) 0 0
\(988\) −46920.0 −1.51085
\(989\) −38080.0 −1.22434
\(990\) 0 0
\(991\) 10656.0 0.341573 0.170787 0.985308i \(-0.445369\pi\)
0.170787 + 0.985308i \(0.445369\pi\)
\(992\) 19040.0 0.609396
\(993\) 0 0
\(994\) −33600.0 −1.07216
\(995\) 5720.00 0.182247
\(996\) 0 0
\(997\) −29434.0 −0.934989 −0.467495 0.883996i \(-0.654843\pi\)
−0.467495 + 0.883996i \(0.654843\pi\)
\(998\) 76820.0 2.43657
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.a.a.1.1 1
3.2 odd 2 105.4.a.b.1.1 1
5.4 even 2 1575.4.a.l.1.1 1
7.6 odd 2 2205.4.a.b.1.1 1
12.11 even 2 1680.4.a.u.1.1 1
15.2 even 4 525.4.d.a.274.2 2
15.8 even 4 525.4.d.a.274.1 2
15.14 odd 2 525.4.a.a.1.1 1
21.20 even 2 735.4.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.b.1.1 1 3.2 odd 2
315.4.a.a.1.1 1 1.1 even 1 trivial
525.4.a.a.1.1 1 15.14 odd 2
525.4.d.a.274.1 2 15.8 even 4
525.4.d.a.274.2 2 15.2 even 4
735.4.a.j.1.1 1 21.20 even 2
1575.4.a.l.1.1 1 5.4 even 2
1680.4.a.u.1.1 1 12.11 even 2
2205.4.a.b.1.1 1 7.6 odd 2