Newspace parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.51528766367\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(136\) | \(281\) |
\(\chi(n)\) | \(1\) | \(-1 - \beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
46.1 |
|
−0.207107 | − | 0.358719i | 0 | 0.914214 | − | 1.58346i | 0.500000 | + | 0.866025i | 0 | −1.62132 | − | 2.09077i | −1.58579 | 0 | 0.207107 | − | 0.358719i | ||||||||||||||||||||
46.2 | 1.20711 | + | 2.09077i | 0 | −1.91421 | + | 3.31552i | 0.500000 | + | 0.866025i | 0 | 2.62132 | + | 0.358719i | −4.41421 | 0 | −1.20711 | + | 2.09077i | |||||||||||||||||||||
226.1 | −0.207107 | + | 0.358719i | 0 | 0.914214 | + | 1.58346i | 0.500000 | − | 0.866025i | 0 | −1.62132 | + | 2.09077i | −1.58579 | 0 | 0.207107 | + | 0.358719i | |||||||||||||||||||||
226.2 | 1.20711 | − | 2.09077i | 0 | −1.91421 | − | 3.31552i | 0.500000 | − | 0.866025i | 0 | 2.62132 | − | 0.358719i | −4.41421 | 0 | −1.20711 | − | 2.09077i | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.2.j.e | 4 | |
3.b | odd | 2 | 1 | 35.2.e.a | ✓ | 4 | |
7.c | even | 3 | 1 | inner | 315.2.j.e | 4 | |
7.c | even | 3 | 1 | 2205.2.a.n | 2 | ||
7.d | odd | 6 | 1 | 2205.2.a.q | 2 | ||
12.b | even | 2 | 1 | 560.2.q.k | 4 | ||
15.d | odd | 2 | 1 | 175.2.e.c | 4 | ||
15.e | even | 4 | 2 | 175.2.k.a | 8 | ||
21.c | even | 2 | 1 | 245.2.e.e | 4 | ||
21.g | even | 6 | 1 | 245.2.a.g | 2 | ||
21.g | even | 6 | 1 | 245.2.e.e | 4 | ||
21.h | odd | 6 | 1 | 35.2.e.a | ✓ | 4 | |
21.h | odd | 6 | 1 | 245.2.a.h | 2 | ||
84.j | odd | 6 | 1 | 3920.2.a.bv | 2 | ||
84.n | even | 6 | 1 | 560.2.q.k | 4 | ||
84.n | even | 6 | 1 | 3920.2.a.bq | 2 | ||
105.o | odd | 6 | 1 | 175.2.e.c | 4 | ||
105.o | odd | 6 | 1 | 1225.2.a.k | 2 | ||
105.p | even | 6 | 1 | 1225.2.a.m | 2 | ||
105.w | odd | 12 | 2 | 1225.2.b.h | 4 | ||
105.x | even | 12 | 2 | 175.2.k.a | 8 | ||
105.x | even | 12 | 2 | 1225.2.b.g | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.2.e.a | ✓ | 4 | 3.b | odd | 2 | 1 | |
35.2.e.a | ✓ | 4 | 21.h | odd | 6 | 1 | |
175.2.e.c | 4 | 15.d | odd | 2 | 1 | ||
175.2.e.c | 4 | 105.o | odd | 6 | 1 | ||
175.2.k.a | 8 | 15.e | even | 4 | 2 | ||
175.2.k.a | 8 | 105.x | even | 12 | 2 | ||
245.2.a.g | 2 | 21.g | even | 6 | 1 | ||
245.2.a.h | 2 | 21.h | odd | 6 | 1 | ||
245.2.e.e | 4 | 21.c | even | 2 | 1 | ||
245.2.e.e | 4 | 21.g | even | 6 | 1 | ||
315.2.j.e | 4 | 1.a | even | 1 | 1 | trivial | |
315.2.j.e | 4 | 7.c | even | 3 | 1 | inner | |
560.2.q.k | 4 | 12.b | even | 2 | 1 | ||
560.2.q.k | 4 | 84.n | even | 6 | 1 | ||
1225.2.a.k | 2 | 105.o | odd | 6 | 1 | ||
1225.2.a.m | 2 | 105.p | even | 6 | 1 | ||
1225.2.b.g | 4 | 105.x | even | 12 | 2 | ||
1225.2.b.h | 4 | 105.w | odd | 12 | 2 | ||
2205.2.a.n | 2 | 7.c | even | 3 | 1 | ||
2205.2.a.q | 2 | 7.d | odd | 6 | 1 | ||
3920.2.a.bq | 2 | 84.n | even | 6 | 1 | ||
3920.2.a.bv | 2 | 84.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 2T_{2}^{3} + 5T_{2}^{2} + 2T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(315, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 2 T^{3} + 5 T^{2} + 2 T + 1 \)
$3$
\( T^{4} \)
$5$
\( (T^{2} - T + 1)^{2} \)
$7$
\( T^{4} - 2 T^{3} - 3 T^{2} - 14 T + 49 \)
$11$
\( T^{4} - 4 T^{3} + 20 T^{2} + 16 T + 16 \)
$13$
\( (T^{2} + 4 T - 4)^{2} \)
$17$
\( T^{4} - 4 T^{3} + 20 T^{2} + 16 T + 16 \)
$19$
\( T^{4} + 8T^{2} + 64 \)
$23$
\( T^{4} + 2 T^{3} + 5 T^{2} - 2 T + 1 \)
$29$
\( (T - 1)^{4} \)
$31$
\( (T^{2} - 6 T + 36)^{2} \)
$37$
\( T^{4} \)
$41$
\( (T^{2} - 10 T + 17)^{2} \)
$43$
\( (T^{2} - 10 T + 23)^{2} \)
$47$
\( (T^{2} - 2 T + 4)^{2} \)
$53$
\( T^{4} + 8 T^{3} + 56 T^{2} + 64 T + 64 \)
$59$
\( T^{4} + 8 T^{3} + 120 T^{2} + \cdots + 3136 \)
$61$
\( T^{4} - 6 T^{3} + 99 T^{2} + \cdots + 3969 \)
$67$
\( T^{4} + 22 T^{3} + 365 T^{2} + \cdots + 14161 \)
$71$
\( (T^{2} - 8 T - 56)^{2} \)
$73$
\( T^{4} + 4 T^{3} + 20 T^{2} - 16 T + 16 \)
$79$
\( T^{4} + 24 T^{3} + 440 T^{2} + \cdots + 18496 \)
$83$
\( (T^{2} + 2 T - 161)^{2} \)
$89$
\( T^{4} + 6 T^{3} + 59 T^{2} - 138 T + 529 \)
$97$
\( (T^{2} - 12 T + 4)^{2} \)
show more
show less