Properties

Label 315.2.j.b
Level 315
Weight 2
Character orbit 315.j
Analytic conductor 2.515
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 315.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - 2 \zeta_{6} ) q^{4} -\zeta_{6} q^{5} + ( 2 + \zeta_{6} ) q^{7} +O(q^{10})\) \( q + ( 2 - 2 \zeta_{6} ) q^{4} -\zeta_{6} q^{5} + ( 2 + \zeta_{6} ) q^{7} - q^{13} -4 \zeta_{6} q^{16} + ( 6 - 6 \zeta_{6} ) q^{17} -5 \zeta_{6} q^{19} -2 q^{20} + 6 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + ( 6 - 4 \zeta_{6} ) q^{28} + 6 q^{29} + ( -5 + 5 \zeta_{6} ) q^{31} + ( 1 - 3 \zeta_{6} ) q^{35} + 7 \zeta_{6} q^{37} -12 q^{41} - q^{43} + 6 \zeta_{6} q^{47} + ( 3 + 5 \zeta_{6} ) q^{49} + ( -2 + 2 \zeta_{6} ) q^{52} + ( -6 + 6 \zeta_{6} ) q^{59} -2 \zeta_{6} q^{61} -8 q^{64} + \zeta_{6} q^{65} + ( 7 - 7 \zeta_{6} ) q^{67} -12 \zeta_{6} q^{68} -12 q^{71} + ( -11 + 11 \zeta_{6} ) q^{73} -10 q^{76} + 13 \zeta_{6} q^{79} + ( -4 + 4 \zeta_{6} ) q^{80} + 12 q^{83} -6 q^{85} + 6 \zeta_{6} q^{89} + ( -2 - \zeta_{6} ) q^{91} + 12 q^{92} + ( -5 + 5 \zeta_{6} ) q^{95} -10 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{4} - q^{5} + 5q^{7} + O(q^{10}) \) \( 2q + 2q^{4} - q^{5} + 5q^{7} - 2q^{13} - 4q^{16} + 6q^{17} - 5q^{19} - 4q^{20} + 6q^{23} - q^{25} + 8q^{28} + 12q^{29} - 5q^{31} - q^{35} + 7q^{37} - 24q^{41} - 2q^{43} + 6q^{47} + 11q^{49} - 2q^{52} - 6q^{59} - 2q^{61} - 16q^{64} + q^{65} + 7q^{67} - 12q^{68} - 24q^{71} - 11q^{73} - 20q^{76} + 13q^{79} - 4q^{80} + 24q^{83} - 12q^{85} + 6q^{89} - 5q^{91} + 24q^{92} - 5q^{95} - 20q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
46.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 1.00000 1.73205i −0.500000 0.866025i 0 2.50000 + 0.866025i 0 0 0
226.1 0 0 1.00000 + 1.73205i −0.500000 + 0.866025i 0 2.50000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.2.j.b 2
3.b odd 2 1 105.2.i.a 2
7.c even 3 1 inner 315.2.j.b 2
7.c even 3 1 2205.2.a.f 1
7.d odd 6 1 2205.2.a.d 1
12.b even 2 1 1680.2.bg.m 2
15.d odd 2 1 525.2.i.c 2
15.e even 4 2 525.2.r.b 4
21.c even 2 1 735.2.i.c 2
21.g even 6 1 735.2.a.d 1
21.g even 6 1 735.2.i.c 2
21.h odd 6 1 105.2.i.a 2
21.h odd 6 1 735.2.a.e 1
84.n even 6 1 1680.2.bg.m 2
105.o odd 6 1 525.2.i.c 2
105.o odd 6 1 3675.2.a.h 1
105.p even 6 1 3675.2.a.i 1
105.x even 12 2 525.2.r.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.i.a 2 3.b odd 2 1
105.2.i.a 2 21.h odd 6 1
315.2.j.b 2 1.a even 1 1 trivial
315.2.j.b 2 7.c even 3 1 inner
525.2.i.c 2 15.d odd 2 1
525.2.i.c 2 105.o odd 6 1
525.2.r.b 4 15.e even 4 2
525.2.r.b 4 105.x even 12 2
735.2.a.d 1 21.g even 6 1
735.2.a.e 1 21.h odd 6 1
735.2.i.c 2 21.c even 2 1
735.2.i.c 2 21.g even 6 1
1680.2.bg.m 2 12.b even 2 1
1680.2.bg.m 2 84.n even 6 1
2205.2.a.d 1 7.d odd 6 1
2205.2.a.f 1 7.c even 3 1
3675.2.a.h 1 105.o odd 6 1
3675.2.a.i 1 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(315, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 2 T^{2} + 4 T^{4} \)
$3$ \( \)
$5$ \( 1 + T + T^{2} \)
$7$ \( 1 - 5 T + 7 T^{2} \)
$11$ \( 1 - 11 T^{2} + 121 T^{4} \)
$13$ \( ( 1 + T + 13 T^{2} )^{2} \)
$17$ \( 1 - 6 T + 19 T^{2} - 102 T^{3} + 289 T^{4} \)
$19$ \( 1 + 5 T + 6 T^{2} + 95 T^{3} + 361 T^{4} \)
$23$ \( 1 - 6 T + 13 T^{2} - 138 T^{3} + 529 T^{4} \)
$29$ \( ( 1 - 6 T + 29 T^{2} )^{2} \)
$31$ \( 1 + 5 T - 6 T^{2} + 155 T^{3} + 961 T^{4} \)
$37$ \( 1 - 7 T + 12 T^{2} - 259 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 12 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + T + 43 T^{2} )^{2} \)
$47$ \( 1 - 6 T - 11 T^{2} - 282 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 53 T^{2} + 2809 T^{4} \)
$59$ \( 1 + 6 T - 23 T^{2} + 354 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 2 T - 57 T^{2} + 122 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 7 T - 18 T^{2} - 469 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 12 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 11 T + 48 T^{2} + 803 T^{3} + 5329 T^{4} \)
$79$ \( ( 1 - 17 T + 79 T^{2} )( 1 + 4 T + 79 T^{2} ) \)
$83$ \( ( 1 - 12 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 6 T - 53 T^{2} - 534 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 + 10 T + 97 T^{2} )^{2} \)
show more
show less