Properties

Label 315.2.i.b
Level 315
Weight 2
Character orbit 315.i
Analytic conductor 2.515
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 315.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{6} ) q^{3} + 2 \zeta_{6} q^{4} + \zeta_{6} q^{5} + ( -1 + \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{6} ) q^{3} + 2 \zeta_{6} q^{4} + \zeta_{6} q^{5} + ( -1 + \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} + ( 2 + 2 \zeta_{6} ) q^{12} + \zeta_{6} q^{13} + ( 1 + \zeta_{6} ) q^{15} + ( -4 + 4 \zeta_{6} ) q^{16} -3 q^{17} + 2 q^{19} + ( -2 + 2 \zeta_{6} ) q^{20} + ( -1 + 2 \zeta_{6} ) q^{21} -6 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} -2 q^{28} + ( 9 - 9 \zeta_{6} ) q^{29} + 4 \zeta_{6} q^{31} - q^{35} + 6 q^{36} -4 q^{37} + ( 1 + \zeta_{6} ) q^{39} + ( 4 - 4 \zeta_{6} ) q^{43} + 3 q^{45} + ( -4 + 8 \zeta_{6} ) q^{48} -\zeta_{6} q^{49} + ( -6 + 3 \zeta_{6} ) q^{51} + ( -2 + 2 \zeta_{6} ) q^{52} -6 q^{53} + ( 4 - 2 \zeta_{6} ) q^{57} -6 \zeta_{6} q^{59} + ( -2 + 4 \zeta_{6} ) q^{60} + ( -14 + 14 \zeta_{6} ) q^{61} + 3 \zeta_{6} q^{63} -8 q^{64} + ( -1 + \zeta_{6} ) q^{65} -14 \zeta_{6} q^{67} -6 \zeta_{6} q^{68} + ( -6 - 6 \zeta_{6} ) q^{69} + 9 q^{71} + 11 q^{73} + ( -1 + 2 \zeta_{6} ) q^{75} + 4 \zeta_{6} q^{76} + ( -8 + 8 \zeta_{6} ) q^{79} -4 q^{80} -9 \zeta_{6} q^{81} + ( -9 + 9 \zeta_{6} ) q^{83} + ( -4 + 2 \zeta_{6} ) q^{84} -3 \zeta_{6} q^{85} + ( 9 - 18 \zeta_{6} ) q^{87} -12 q^{89} - q^{91} + ( 12 - 12 \zeta_{6} ) q^{92} + ( 4 + 4 \zeta_{6} ) q^{93} + 2 \zeta_{6} q^{95} + ( -2 + 2 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} + 2q^{4} + q^{5} - q^{7} + 3q^{9} + O(q^{10}) \) \( 2q + 3q^{3} + 2q^{4} + q^{5} - q^{7} + 3q^{9} + 6q^{12} + q^{13} + 3q^{15} - 4q^{16} - 6q^{17} + 4q^{19} - 2q^{20} - 6q^{23} - q^{25} - 4q^{28} + 9q^{29} + 4q^{31} - 2q^{35} + 12q^{36} - 8q^{37} + 3q^{39} + 4q^{43} + 6q^{45} - q^{49} - 9q^{51} - 2q^{52} - 12q^{53} + 6q^{57} - 6q^{59} - 14q^{61} + 3q^{63} - 16q^{64} - q^{65} - 14q^{67} - 6q^{68} - 18q^{69} + 18q^{71} + 22q^{73} + 4q^{76} - 8q^{79} - 8q^{80} - 9q^{81} - 9q^{83} - 6q^{84} - 3q^{85} - 24q^{89} - 2q^{91} + 12q^{92} + 12q^{93} + 2q^{95} - 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
106.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 0.866025i 1.00000 + 1.73205i 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 1.50000 2.59808i 0
211.1 0 1.50000 + 0.866025i 1.00000 1.73205i 0.500000 0.866025i 0 −0.500000 0.866025i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.2.i.b 2
3.b odd 2 1 945.2.i.a 2
9.c even 3 1 inner 315.2.i.b 2
9.c even 3 1 2835.2.a.c 1
9.d odd 6 1 945.2.i.a 2
9.d odd 6 1 2835.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.2.i.b 2 1.a even 1 1 trivial
315.2.i.b 2 9.c even 3 1 inner
945.2.i.a 2 3.b odd 2 1
945.2.i.a 2 9.d odd 6 1
2835.2.a.c 1 9.c even 3 1
2835.2.a.f 1 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(315, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 2 T^{2} + 4 T^{4} \)
$3$ \( 1 - 3 T + 3 T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 1 + T + T^{2} \)
$11$ \( 1 - 11 T^{2} + 121 T^{4} \)
$13$ \( 1 - T - 12 T^{2} - 13 T^{3} + 169 T^{4} \)
$17$ \( ( 1 + 3 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 - 2 T + 19 T^{2} )^{2} \)
$23$ \( 1 + 6 T + 13 T^{2} + 138 T^{3} + 529 T^{4} \)
$29$ \( 1 - 9 T + 52 T^{2} - 261 T^{3} + 841 T^{4} \)
$31$ \( ( 1 - 11 T + 31 T^{2} )( 1 + 7 T + 31 T^{2} ) \)
$37$ \( ( 1 + 4 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 41 T^{2} + 1681 T^{4} \)
$43$ \( 1 - 4 T - 27 T^{2} - 172 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 47 T^{2} + 2209 T^{4} \)
$53$ \( ( 1 + 6 T + 53 T^{2} )^{2} \)
$59$ \( 1 + 6 T - 23 T^{2} + 354 T^{3} + 3481 T^{4} \)
$61$ \( ( 1 + T + 61 T^{2} )( 1 + 13 T + 61 T^{2} ) \)
$67$ \( 1 + 14 T + 129 T^{2} + 938 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 9 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 11 T + 73 T^{2} )^{2} \)
$79$ \( 1 + 8 T - 15 T^{2} + 632 T^{3} + 6241 T^{4} \)
$83$ \( 1 + 9 T - 2 T^{2} + 747 T^{3} + 6889 T^{4} \)
$89$ \( ( 1 + 12 T + 89 T^{2} )^{2} \)
$97$ \( 1 + 2 T - 93 T^{2} + 194 T^{3} + 9409 T^{4} \)
show more
show less