Properties

Label 315.2.ce.a.233.15
Level $315$
Weight $2$
Character 315.233
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(53,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 233.15
Character \(\chi\) \(=\) 315.233
Dual form 315.2.ce.a.242.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.25596 - 0.604483i) q^{2} +(2.99191 - 1.72738i) q^{4} +(2.05129 - 0.890070i) q^{5} +(-1.48100 + 2.19240i) q^{7} +(2.40251 - 2.40251i) q^{8} +(4.08959 - 3.24793i) q^{10} +(-2.61609 + 1.51040i) q^{11} +(-1.77456 - 1.77456i) q^{13} +(-2.01581 + 5.84122i) q^{14} +(0.512928 - 0.888417i) q^{16} +(1.00203 - 3.73962i) q^{17} +(-3.79826 - 2.19292i) q^{19} +(4.59978 - 6.20636i) q^{20} +(-4.98879 + 4.98879i) q^{22} +(1.93742 + 7.23056i) q^{23} +(3.41555 - 3.65158i) q^{25} +(-5.07603 - 2.93065i) q^{26} +(-0.643912 + 9.11773i) q^{28} +1.25900 q^{29} +(-2.64259 - 4.57710i) q^{31} +(-1.13865 + 4.24948i) q^{32} -9.04214i q^{34} +(-1.08657 + 5.81544i) q^{35} +(-1.97321 - 7.36414i) q^{37} +(-9.89430 - 2.65117i) q^{38} +(2.78983 - 7.06663i) q^{40} +10.7696i q^{41} +(5.73749 + 5.73749i) q^{43} +(-5.21807 + 9.03797i) q^{44} +(8.74151 + 15.1407i) q^{46} +(7.80209 - 2.09056i) q^{47} +(-2.61327 - 6.49391i) q^{49} +(5.49803 - 10.3025i) q^{50} +(-8.37466 - 2.24398i) q^{52} +(1.76225 + 0.472193i) q^{53} +(-4.02199 + 5.42677i) q^{55} +(1.70915 + 8.82539i) q^{56} +(2.84025 - 0.761042i) q^{58} +(-2.97005 - 5.14428i) q^{59} +(-3.71170 + 6.42886i) q^{61} +(-8.72836 - 8.72836i) q^{62} +12.3267i q^{64} +(-5.21961 - 2.06065i) q^{65} +(-9.36375 - 2.50901i) q^{67} +(-3.46176 - 12.9195i) q^{68} +(1.06408 + 13.7762i) q^{70} -1.07298i q^{71} +(0.555728 - 2.07401i) q^{73} +(-8.90299 - 15.4204i) q^{74} -15.1521 q^{76} +(0.563028 - 7.97243i) q^{77} +(5.75001 + 3.31977i) q^{79} +(0.261408 - 2.27894i) q^{80} +(6.51003 + 24.2957i) q^{82} +(-1.25073 + 1.25073i) q^{83} +(-1.27308 - 8.56290i) q^{85} +(16.4118 + 9.47534i) q^{86} +(-2.65643 + 9.91392i) q^{88} +(2.44200 - 4.22966i) q^{89} +(6.51867 - 1.26242i) q^{91} +(18.2865 + 18.2865i) q^{92} +(16.3375 - 9.43246i) q^{94} +(-9.74317 - 1.11760i) q^{95} +(2.69087 - 2.69087i) q^{97} +(-9.82088 - 13.0703i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.25596 0.604483i 1.59521 0.427434i 0.651615 0.758550i \(-0.274092\pi\)
0.943590 + 0.331115i \(0.107425\pi\)
\(3\) 0 0
\(4\) 2.99191 1.72738i 1.49596 0.863690i
\(5\) 2.05129 0.890070i 0.917363 0.398051i
\(6\) 0 0
\(7\) −1.48100 + 2.19240i −0.559766 + 0.828651i
\(8\) 2.40251 2.40251i 0.849415 0.849415i
\(9\) 0 0
\(10\) 4.08959 3.24793i 1.29324 1.02709i
\(11\) −2.61609 + 1.51040i −0.788781 + 0.455403i −0.839533 0.543309i \(-0.817171\pi\)
0.0507524 + 0.998711i \(0.483838\pi\)
\(12\) 0 0
\(13\) −1.77456 1.77456i −0.492174 0.492174i 0.416817 0.908991i \(-0.363146\pi\)
−0.908991 + 0.416817i \(0.863146\pi\)
\(14\) −2.01581 + 5.84122i −0.538749 + 1.56113i
\(15\) 0 0
\(16\) 0.512928 0.888417i 0.128232 0.222104i
\(17\) 1.00203 3.73962i 0.243027 0.906990i −0.731337 0.682016i \(-0.761104\pi\)
0.974365 0.224974i \(-0.0722298\pi\)
\(18\) 0 0
\(19\) −3.79826 2.19292i −0.871380 0.503091i −0.00357323 0.999994i \(-0.501137\pi\)
−0.867806 + 0.496902i \(0.834471\pi\)
\(20\) 4.59978 6.20636i 1.02854 1.38779i
\(21\) 0 0
\(22\) −4.98879 + 4.98879i −1.06361 + 1.06361i
\(23\) 1.93742 + 7.23056i 0.403981 + 1.50768i 0.805928 + 0.592014i \(0.201667\pi\)
−0.401947 + 0.915663i \(0.631666\pi\)
\(24\) 0 0
\(25\) 3.41555 3.65158i 0.683110 0.730315i
\(26\) −5.07603 2.93065i −0.995491 0.574747i
\(27\) 0 0
\(28\) −0.643912 + 9.11773i −0.121688 + 1.72309i
\(29\) 1.25900 0.233790 0.116895 0.993144i \(-0.462706\pi\)
0.116895 + 0.993144i \(0.462706\pi\)
\(30\) 0 0
\(31\) −2.64259 4.57710i −0.474623 0.822072i 0.524954 0.851130i \(-0.324082\pi\)
−0.999578 + 0.0290586i \(0.990749\pi\)
\(32\) −1.13865 + 4.24948i −0.201286 + 0.751209i
\(33\) 0 0
\(34\) 9.04214i 1.55071i
\(35\) −1.08657 + 5.81544i −0.183663 + 0.982989i
\(36\) 0 0
\(37\) −1.97321 7.36414i −0.324395 1.21066i −0.914919 0.403637i \(-0.867746\pi\)
0.590525 0.807020i \(-0.298921\pi\)
\(38\) −9.89430 2.65117i −1.60507 0.430077i
\(39\) 0 0
\(40\) 2.78983 7.06663i 0.441111 1.11733i
\(41\) 10.7696i 1.68193i 0.541093 + 0.840963i \(0.318011\pi\)
−0.541093 + 0.840963i \(0.681989\pi\)
\(42\) 0 0
\(43\) 5.73749 + 5.73749i 0.874959 + 0.874959i 0.993008 0.118049i \(-0.0376640\pi\)
−0.118049 + 0.993008i \(0.537664\pi\)
\(44\) −5.21807 + 9.03797i −0.786654 + 1.36252i
\(45\) 0 0
\(46\) 8.74151 + 15.1407i 1.28886 + 2.23238i
\(47\) 7.80209 2.09056i 1.13805 0.304940i 0.359884 0.932997i \(-0.382816\pi\)
0.778168 + 0.628057i \(0.216149\pi\)
\(48\) 0 0
\(49\) −2.61327 6.49391i −0.373324 0.927701i
\(50\) 5.49803 10.3025i 0.777539 1.45699i
\(51\) 0 0
\(52\) −8.37466 2.24398i −1.16136 0.311185i
\(53\) 1.76225 + 0.472193i 0.242064 + 0.0648607i 0.377811 0.925883i \(-0.376677\pi\)
−0.135747 + 0.990743i \(0.543344\pi\)
\(54\) 0 0
\(55\) −4.02199 + 5.42677i −0.542325 + 0.731745i
\(56\) 1.70915 + 8.82539i 0.228394 + 1.17934i
\(57\) 0 0
\(58\) 2.84025 0.761042i 0.372943 0.0999298i
\(59\) −2.97005 5.14428i −0.386668 0.669729i 0.605331 0.795974i \(-0.293041\pi\)
−0.991999 + 0.126245i \(0.959707\pi\)
\(60\) 0 0
\(61\) −3.71170 + 6.42886i −0.475235 + 0.823131i −0.999598 0.0283643i \(-0.990970\pi\)
0.524363 + 0.851495i \(0.324303\pi\)
\(62\) −8.72836 8.72836i −1.10850 1.10850i
\(63\) 0 0
\(64\) 12.3267i 1.54083i
\(65\) −5.21961 2.06065i −0.647413 0.255592i
\(66\) 0 0
\(67\) −9.36375 2.50901i −1.14396 0.306524i −0.363420 0.931625i \(-0.618391\pi\)
−0.780544 + 0.625101i \(0.785058\pi\)
\(68\) −3.46176 12.9195i −0.419801 1.56672i
\(69\) 0 0
\(70\) 1.06408 + 13.7762i 0.127182 + 1.64657i
\(71\) 1.07298i 0.127339i −0.997971 0.0636696i \(-0.979720\pi\)
0.997971 0.0636696i \(-0.0202804\pi\)
\(72\) 0 0
\(73\) 0.555728 2.07401i 0.0650431 0.242744i −0.925749 0.378140i \(-0.876564\pi\)
0.990792 + 0.135396i \(0.0432306\pi\)
\(74\) −8.90299 15.4204i −1.03495 1.79259i
\(75\) 0 0
\(76\) −15.1521 −1.73806
\(77\) 0.563028 7.97243i 0.0641630 0.908543i
\(78\) 0 0
\(79\) 5.75001 + 3.31977i 0.646927 + 0.373503i 0.787278 0.616599i \(-0.211490\pi\)
−0.140351 + 0.990102i \(0.544823\pi\)
\(80\) 0.261408 2.27894i 0.0292264 0.254793i
\(81\) 0 0
\(82\) 6.51003 + 24.2957i 0.718912 + 2.68302i
\(83\) −1.25073 + 1.25073i −0.137285 + 0.137285i −0.772410 0.635124i \(-0.780949\pi\)
0.635124 + 0.772410i \(0.280949\pi\)
\(84\) 0 0
\(85\) −1.27308 8.56290i −0.138084 0.928777i
\(86\) 16.4118 + 9.47534i 1.76973 + 1.02175i
\(87\) 0 0
\(88\) −2.65643 + 9.91392i −0.283176 + 1.05683i
\(89\) 2.44200 4.22966i 0.258851 0.448343i −0.707083 0.707130i \(-0.749989\pi\)
0.965934 + 0.258787i \(0.0833227\pi\)
\(90\) 0 0
\(91\) 6.51867 1.26242i 0.683343 0.132338i
\(92\) 18.2865 + 18.2865i 1.90650 + 1.90650i
\(93\) 0 0
\(94\) 16.3375 9.43246i 1.68509 0.972884i
\(95\) −9.74317 1.11760i −0.999628 0.114663i
\(96\) 0 0
\(97\) 2.69087 2.69087i 0.273217 0.273217i −0.557177 0.830394i \(-0.688115\pi\)
0.830394 + 0.557177i \(0.188115\pi\)
\(98\) −9.82088 13.0703i −0.992059 1.32030i
\(99\) 0 0
\(100\) 3.91136 16.8252i 0.391136 1.68252i
\(101\) 10.8964 6.29104i 1.08423 0.625982i 0.152197 0.988350i \(-0.451365\pi\)
0.932035 + 0.362368i \(0.118032\pi\)
\(102\) 0 0
\(103\) 13.2685 3.55530i 1.30739 0.350314i 0.463149 0.886280i \(-0.346719\pi\)
0.844239 + 0.535966i \(0.180053\pi\)
\(104\) −8.52678 −0.836120
\(105\) 0 0
\(106\) 4.26100 0.413865
\(107\) 2.93682 0.786918i 0.283913 0.0760742i −0.114052 0.993475i \(-0.536383\pi\)
0.397965 + 0.917401i \(0.369716\pi\)
\(108\) 0 0
\(109\) −14.3581 + 8.28967i −1.37526 + 0.794006i −0.991584 0.129462i \(-0.958675\pi\)
−0.383674 + 0.923468i \(0.625341\pi\)
\(110\) −5.79306 + 14.6738i −0.552347 + 1.39909i
\(111\) 0 0
\(112\) 1.18812 + 2.44029i 0.112267 + 0.230586i
\(113\) 13.7810 13.7810i 1.29641 1.29641i 0.365657 0.930750i \(-0.380844\pi\)
0.930750 0.365657i \(-0.119156\pi\)
\(114\) 0 0
\(115\) 10.4099 + 13.1075i 0.970730 + 1.22228i
\(116\) 3.76681 2.17477i 0.349739 0.201922i
\(117\) 0 0
\(118\) −9.80996 9.80996i −0.903080 0.903080i
\(119\) 6.71474 + 7.73523i 0.615539 + 0.709087i
\(120\) 0 0
\(121\) −0.937384 + 1.62360i −0.0852167 + 0.147600i
\(122\) −4.48732 + 16.7469i −0.406263 + 1.51619i
\(123\) 0 0
\(124\) −15.8128 9.12952i −1.42003 0.819855i
\(125\) 3.75611 10.5305i 0.335957 0.941877i
\(126\) 0 0
\(127\) 13.1848 13.1848i 1.16996 1.16996i 0.187742 0.982218i \(-0.439883\pi\)
0.982218 0.187742i \(-0.0601167\pi\)
\(128\) 5.17397 + 19.3095i 0.457319 + 1.70674i
\(129\) 0 0
\(130\) −13.0209 1.49357i −1.14201 0.130995i
\(131\) −9.06836 5.23562i −0.792306 0.457438i 0.0484676 0.998825i \(-0.484566\pi\)
−0.840774 + 0.541387i \(0.817900\pi\)
\(132\) 0 0
\(133\) 10.4330 5.07958i 0.904656 0.440456i
\(134\) −22.6409 −1.95588
\(135\) 0 0
\(136\) −6.57708 11.3918i −0.563980 0.976842i
\(137\) −4.29058 + 16.0127i −0.366569 + 1.36806i 0.498712 + 0.866768i \(0.333807\pi\)
−0.865281 + 0.501287i \(0.832860\pi\)
\(138\) 0 0
\(139\) 7.58102i 0.643014i 0.946907 + 0.321507i \(0.104189\pi\)
−0.946907 + 0.321507i \(0.895811\pi\)
\(140\) 6.79457 + 19.2762i 0.574246 + 1.62914i
\(141\) 0 0
\(142\) −0.648597 2.42060i −0.0544291 0.203132i
\(143\) 7.32270 + 1.96211i 0.612355 + 0.164080i
\(144\) 0 0
\(145\) 2.58256 1.12060i 0.214470 0.0930604i
\(146\) 5.01481i 0.415028i
\(147\) 0 0
\(148\) −18.6244 18.6244i −1.53091 1.53091i
\(149\) 1.70147 2.94704i 0.139390 0.241431i −0.787876 0.615834i \(-0.788819\pi\)
0.927266 + 0.374403i \(0.122152\pi\)
\(150\) 0 0
\(151\) −7.87968 13.6480i −0.641239 1.11066i −0.985157 0.171659i \(-0.945087\pi\)
0.343918 0.939000i \(-0.388246\pi\)
\(152\) −14.3939 + 3.85682i −1.16750 + 0.312830i
\(153\) 0 0
\(154\) −3.54903 18.3258i −0.285989 1.47674i
\(155\) −9.49465 7.03686i −0.762629 0.565214i
\(156\) 0 0
\(157\) −6.00182 1.60818i −0.478998 0.128347i 0.0112383 0.999937i \(-0.496423\pi\)
−0.490236 + 0.871590i \(0.663089\pi\)
\(158\) 14.9785 + 4.01349i 1.19163 + 0.319296i
\(159\) 0 0
\(160\) 1.44665 + 9.73038i 0.114368 + 0.769254i
\(161\) −18.7216 6.46087i −1.47547 0.509188i
\(162\) 0 0
\(163\) 3.51177 0.940977i 0.275063 0.0737030i −0.118650 0.992936i \(-0.537857\pi\)
0.393714 + 0.919233i \(0.371190\pi\)
\(164\) 18.6032 + 32.2216i 1.45266 + 2.51609i
\(165\) 0 0
\(166\) −2.06555 + 3.57764i −0.160318 + 0.277679i
\(167\) −6.11816 6.11816i −0.473437 0.473437i 0.429588 0.903025i \(-0.358659\pi\)
−0.903025 + 0.429588i \(0.858659\pi\)
\(168\) 0 0
\(169\) 6.70188i 0.515529i
\(170\) −8.04814 18.5480i −0.617264 1.42257i
\(171\) 0 0
\(172\) 27.0769 + 7.25523i 2.06459 + 0.553206i
\(173\) 6.09793 + 22.7578i 0.463617 + 1.73024i 0.661433 + 0.750004i \(0.269949\pi\)
−0.197816 + 0.980239i \(0.563385\pi\)
\(174\) 0 0
\(175\) 2.94729 + 12.8963i 0.222794 + 0.974865i
\(176\) 3.09891i 0.233589i
\(177\) 0 0
\(178\) 2.95229 11.0181i 0.221284 0.825842i
\(179\) −0.228953 0.396558i −0.0171127 0.0296401i 0.857342 0.514747i \(-0.172114\pi\)
−0.874455 + 0.485107i \(0.838781\pi\)
\(180\) 0 0
\(181\) −12.9702 −0.964070 −0.482035 0.876152i \(-0.660102\pi\)
−0.482035 + 0.876152i \(0.660102\pi\)
\(182\) 13.9428 6.78841i 1.03351 0.503190i
\(183\) 0 0
\(184\) 22.0262 + 12.7168i 1.62379 + 0.937496i
\(185\) −10.6022 13.3497i −0.779491 0.981486i
\(186\) 0 0
\(187\) 3.02692 + 11.2966i 0.221351 + 0.826091i
\(188\) 19.7320 19.7320i 1.43910 1.43910i
\(189\) 0 0
\(190\) −22.6558 + 3.36831i −1.64362 + 0.244363i
\(191\) −5.84564 3.37498i −0.422975 0.244205i 0.273374 0.961908i \(-0.411860\pi\)
−0.696350 + 0.717703i \(0.745194\pi\)
\(192\) 0 0
\(193\) −1.32128 + 4.93109i −0.0951079 + 0.354948i −0.997036 0.0769390i \(-0.975485\pi\)
0.901928 + 0.431887i \(0.142152\pi\)
\(194\) 4.44392 7.69710i 0.319055 0.552619i
\(195\) 0 0
\(196\) −19.0361 14.9151i −1.35972 1.06536i
\(197\) 5.34774 + 5.34774i 0.381011 + 0.381011i 0.871466 0.490456i \(-0.163170\pi\)
−0.490456 + 0.871466i \(0.663170\pi\)
\(198\) 0 0
\(199\) −14.9596 + 8.63693i −1.06046 + 0.612256i −0.925559 0.378603i \(-0.876404\pi\)
−0.134899 + 0.990859i \(0.543071\pi\)
\(200\) −0.567055 16.9788i −0.0400968 1.20058i
\(201\) 0 0
\(202\) 20.7790 20.7790i 1.46201 1.46201i
\(203\) −1.86458 + 2.76023i −0.130868 + 0.193730i
\(204\) 0 0
\(205\) 9.58568 + 22.0915i 0.669493 + 1.54294i
\(206\) 27.7842 16.0412i 1.93582 1.11764i
\(207\) 0 0
\(208\) −2.48677 + 0.666328i −0.172426 + 0.0462015i
\(209\) 13.2488 0.916437
\(210\) 0 0
\(211\) 11.1106 0.764882 0.382441 0.923980i \(-0.375084\pi\)
0.382441 + 0.923980i \(0.375084\pi\)
\(212\) 6.08815 1.63131i 0.418136 0.112039i
\(213\) 0 0
\(214\) 6.14967 3.55051i 0.420383 0.242708i
\(215\) 16.8760 + 6.66247i 1.15093 + 0.454376i
\(216\) 0 0
\(217\) 13.9485 + 0.985072i 0.946888 + 0.0668711i
\(218\) −27.3804 + 27.3804i −1.85444 + 1.85444i
\(219\) 0 0
\(220\) −2.65934 + 23.1839i −0.179292 + 1.56306i
\(221\) −8.41432 + 4.85801i −0.566009 + 0.326785i
\(222\) 0 0
\(223\) −1.84347 1.84347i −0.123448 0.123448i 0.642684 0.766132i \(-0.277821\pi\)
−0.766132 + 0.642684i \(0.777821\pi\)
\(224\) −7.63024 8.78986i −0.509817 0.587297i
\(225\) 0 0
\(226\) 22.7590 39.4198i 1.51391 2.62216i
\(227\) 1.75018 6.53177i 0.116164 0.433529i −0.883208 0.468982i \(-0.844621\pi\)
0.999371 + 0.0354533i \(0.0112875\pi\)
\(228\) 0 0
\(229\) −22.0329 12.7207i −1.45597 0.840606i −0.457163 0.889383i \(-0.651135\pi\)
−0.998810 + 0.0487763i \(0.984468\pi\)
\(230\) 31.4076 + 23.2774i 2.07096 + 1.53487i
\(231\) 0 0
\(232\) 3.02475 3.02475i 0.198585 0.198585i
\(233\) −2.75243 10.2722i −0.180317 0.672954i −0.995585 0.0938688i \(-0.970077\pi\)
0.815267 0.579085i \(-0.196590\pi\)
\(234\) 0 0
\(235\) 14.1436 11.2328i 0.922625 0.732744i
\(236\) −17.7723 10.2608i −1.15688 0.667923i
\(237\) 0 0
\(238\) 19.8240 + 13.3914i 1.28500 + 0.868037i
\(239\) −15.7861 −1.02112 −0.510558 0.859843i \(-0.670561\pi\)
−0.510558 + 0.859843i \(0.670561\pi\)
\(240\) 0 0
\(241\) 1.41218 + 2.44597i 0.0909664 + 0.157559i 0.907918 0.419148i \(-0.137671\pi\)
−0.816952 + 0.576706i \(0.804338\pi\)
\(242\) −1.13326 + 4.22940i −0.0728490 + 0.271876i
\(243\) 0 0
\(244\) 25.6461i 1.64182i
\(245\) −11.1406 10.9949i −0.711746 0.702437i
\(246\) 0 0
\(247\) 2.84876 + 10.6317i 0.181262 + 0.676479i
\(248\) −17.3454 4.64768i −1.10143 0.295128i
\(249\) 0 0
\(250\) 2.10813 26.0269i 0.133330 1.64609i
\(251\) 22.0003i 1.38865i 0.719663 + 0.694324i \(0.244296\pi\)
−0.719663 + 0.694324i \(0.755704\pi\)
\(252\) 0 0
\(253\) −15.9895 15.9895i −1.00525 1.00525i
\(254\) 21.7744 37.7143i 1.36625 2.36641i
\(255\) 0 0
\(256\) 11.0179 + 19.0836i 0.688619 + 1.19272i
\(257\) 9.59086 2.56986i 0.598261 0.160304i 0.0530353 0.998593i \(-0.483110\pi\)
0.545226 + 0.838289i \(0.316444\pi\)
\(258\) 0 0
\(259\) 19.0675 + 6.58022i 1.18480 + 0.408875i
\(260\) −19.1761 + 2.85098i −1.18925 + 0.176810i
\(261\) 0 0
\(262\) −23.6227 6.32969i −1.45942 0.391049i
\(263\) 8.47285 + 2.27029i 0.522458 + 0.139992i 0.510404 0.859935i \(-0.329496\pi\)
0.0120549 + 0.999927i \(0.496163\pi\)
\(264\) 0 0
\(265\) 4.03516 0.599922i 0.247878 0.0368529i
\(266\) 20.4659 17.7659i 1.25485 1.08930i
\(267\) 0 0
\(268\) −32.3495 + 8.66803i −1.97606 + 0.529484i
\(269\) 10.3843 + 17.9862i 0.633143 + 1.09664i 0.986905 + 0.161300i \(0.0515687\pi\)
−0.353763 + 0.935335i \(0.615098\pi\)
\(270\) 0 0
\(271\) −11.8493 + 20.5237i −0.719796 + 1.24672i 0.241284 + 0.970455i \(0.422432\pi\)
−0.961080 + 0.276269i \(0.910902\pi\)
\(272\) −2.80837 2.80837i −0.170283 0.170283i
\(273\) 0 0
\(274\) 38.7176i 2.33901i
\(275\) −3.42004 + 14.7117i −0.206236 + 0.887149i
\(276\) 0 0
\(277\) 5.81419 + 1.55791i 0.349341 + 0.0936056i 0.429223 0.903199i \(-0.358788\pi\)
−0.0798818 + 0.996804i \(0.525454\pi\)
\(278\) 4.58260 + 17.1025i 0.274846 + 1.02574i
\(279\) 0 0
\(280\) 11.3612 + 16.5821i 0.678959 + 0.990972i
\(281\) 1.10459i 0.0658940i 0.999457 + 0.0329470i \(0.0104893\pi\)
−0.999457 + 0.0329470i \(0.989511\pi\)
\(282\) 0 0
\(283\) −3.59192 + 13.4052i −0.213517 + 0.796858i 0.773166 + 0.634204i \(0.218672\pi\)
−0.986683 + 0.162654i \(0.947995\pi\)
\(284\) −1.85344 3.21026i −0.109982 0.190494i
\(285\) 0 0
\(286\) 17.7058 1.04697
\(287\) −23.6113 15.9498i −1.39373 0.941485i
\(288\) 0 0
\(289\) 1.74177 + 1.00561i 0.102457 + 0.0591534i
\(290\) 5.14878 4.08914i 0.302347 0.240122i
\(291\) 0 0
\(292\) −1.91991 7.16520i −0.112354 0.419311i
\(293\) 2.68196 2.68196i 0.156682 0.156682i −0.624413 0.781095i \(-0.714662\pi\)
0.781095 + 0.624413i \(0.214662\pi\)
\(294\) 0 0
\(295\) −10.6712 7.90884i −0.621302 0.460471i
\(296\) −22.4331 12.9517i −1.30390 0.752804i
\(297\) 0 0
\(298\) 2.05702 7.67691i 0.119160 0.444712i
\(299\) 9.39299 16.2691i 0.543211 0.940868i
\(300\) 0 0
\(301\) −21.0761 + 4.08166i −1.21481 + 0.235263i
\(302\) −26.0262 26.0262i −1.49764 1.49764i
\(303\) 0 0
\(304\) −3.89646 + 2.24962i −0.223477 + 0.129025i
\(305\) −1.89163 + 16.4911i −0.108314 + 0.944277i
\(306\) 0 0
\(307\) −15.8583 + 15.8583i −0.905081 + 0.905081i −0.995870 0.0907893i \(-0.971061\pi\)
0.0907893 + 0.995870i \(0.471061\pi\)
\(308\) −12.0869 24.8254i −0.688715 1.41456i
\(309\) 0 0
\(310\) −25.6732 10.1355i −1.45814 0.575659i
\(311\) −22.0623 + 12.7377i −1.25104 + 0.722288i −0.971316 0.237793i \(-0.923576\pi\)
−0.279723 + 0.960081i \(0.590243\pi\)
\(312\) 0 0
\(313\) −6.11703 + 1.63905i −0.345755 + 0.0926448i −0.427518 0.904007i \(-0.640612\pi\)
0.0817624 + 0.996652i \(0.473945\pi\)
\(314\) −14.5120 −0.818959
\(315\) 0 0
\(316\) 22.9380 1.29036
\(317\) 2.41602 0.647369i 0.135697 0.0363599i −0.190331 0.981720i \(-0.560956\pi\)
0.326028 + 0.945360i \(0.394290\pi\)
\(318\) 0 0
\(319\) −3.29365 + 1.90159i −0.184409 + 0.106469i
\(320\) 10.9716 + 25.2855i 0.613331 + 1.41350i
\(321\) 0 0
\(322\) −46.1408 3.25855i −2.57133 0.181592i
\(323\) −12.0066 + 12.0066i −0.668068 + 0.668068i
\(324\) 0 0
\(325\) −12.5410 + 0.418842i −0.695651 + 0.0232332i
\(326\) 7.35362 4.24561i 0.407279 0.235143i
\(327\) 0 0
\(328\) 25.8740 + 25.8740i 1.42865 + 1.42865i
\(329\) −6.97155 + 20.2015i −0.384354 + 1.11374i
\(330\) 0 0
\(331\) −0.708836 + 1.22774i −0.0389611 + 0.0674827i −0.884848 0.465879i \(-0.845738\pi\)
0.845887 + 0.533362i \(0.179072\pi\)
\(332\) −1.58159 + 5.90256i −0.0868008 + 0.323945i
\(333\) 0 0
\(334\) −17.5007 10.1040i −0.957593 0.552867i
\(335\) −21.4409 + 3.18770i −1.17144 + 0.174162i
\(336\) 0 0
\(337\) 7.38849 7.38849i 0.402477 0.402477i −0.476628 0.879105i \(-0.658141\pi\)
0.879105 + 0.476628i \(0.158141\pi\)
\(338\) −4.05117 15.1192i −0.220355 0.822375i
\(339\) 0 0
\(340\) −18.6003 23.4203i −1.00874 1.27015i
\(341\) 13.8265 + 7.98274i 0.748748 + 0.432290i
\(342\) 0 0
\(343\) 18.1075 + 3.88816i 0.977714 + 0.209941i
\(344\) 27.5687 1.48641
\(345\) 0 0
\(346\) 27.5134 + 47.6546i 1.47913 + 2.56193i
\(347\) −2.72987 + 10.1880i −0.146547 + 0.546922i 0.853134 + 0.521691i \(0.174699\pi\)
−0.999682 + 0.0252308i \(0.991968\pi\)
\(348\) 0 0
\(349\) 8.10936i 0.434084i −0.976162 0.217042i \(-0.930359\pi\)
0.976162 0.217042i \(-0.0696409\pi\)
\(350\) 14.4445 + 27.3119i 0.772093 + 1.45988i
\(351\) 0 0
\(352\) −3.43962 12.8368i −0.183332 0.684206i
\(353\) −10.0112 2.68249i −0.532841 0.142774i −0.0176413 0.999844i \(-0.505616\pi\)
−0.515200 + 0.857070i \(0.672282\pi\)
\(354\) 0 0
\(355\) −0.955026 2.20099i −0.0506875 0.116816i
\(356\) 16.8730i 0.894269i
\(357\) 0 0
\(358\) −0.756221 0.756221i −0.0399675 0.0399675i
\(359\) −1.45427 + 2.51888i −0.0767537 + 0.132941i −0.901848 0.432054i \(-0.857789\pi\)
0.825094 + 0.564996i \(0.191122\pi\)
\(360\) 0 0
\(361\) 0.117833 + 0.204093i 0.00620174 + 0.0107417i
\(362\) −29.2603 + 7.84028i −1.53789 + 0.412076i
\(363\) 0 0
\(364\) 17.3226 15.0373i 0.907952 0.788168i
\(365\) −0.706053 4.74902i −0.0369565 0.248575i
\(366\) 0 0
\(367\) −10.4636 2.80371i −0.546194 0.146352i −0.0248380 0.999691i \(-0.507907\pi\)
−0.521356 + 0.853339i \(0.674574\pi\)
\(368\) 7.41752 + 1.98752i 0.386665 + 0.103607i
\(369\) 0 0
\(370\) −31.9879 23.7074i −1.66297 1.23249i
\(371\) −3.64513 + 3.16424i −0.189246 + 0.164279i
\(372\) 0 0
\(373\) −17.3587 + 4.65126i −0.898801 + 0.240833i −0.678501 0.734599i \(-0.737370\pi\)
−0.220300 + 0.975432i \(0.570704\pi\)
\(374\) 13.6572 + 23.6550i 0.706199 + 1.22317i
\(375\) 0 0
\(376\) 13.7220 23.7672i 0.707658 1.22570i
\(377\) −2.23416 2.23416i −0.115065 0.115065i
\(378\) 0 0
\(379\) 7.37508i 0.378832i 0.981897 + 0.189416i \(0.0606595\pi\)
−0.981897 + 0.189416i \(0.939340\pi\)
\(380\) −31.0812 + 13.4864i −1.59443 + 0.691838i
\(381\) 0 0
\(382\) −15.2277 4.08024i −0.779114 0.208763i
\(383\) −2.37013 8.84543i −0.121108 0.451981i 0.878563 0.477626i \(-0.158503\pi\)
−0.999671 + 0.0256454i \(0.991836\pi\)
\(384\) 0 0
\(385\) −5.94109 16.8549i −0.302786 0.859004i
\(386\) 11.9230i 0.606867i
\(387\) 0 0
\(388\) 3.40269 12.6990i 0.172746 0.644695i
\(389\) −4.50787 7.80786i −0.228558 0.395874i 0.728823 0.684702i \(-0.240068\pi\)
−0.957381 + 0.288828i \(0.906734\pi\)
\(390\) 0 0
\(391\) 28.9809 1.46563
\(392\) −21.8801 9.32328i −1.10511 0.470897i
\(393\) 0 0
\(394\) 15.2969 + 8.83167i 0.770647 + 0.444933i
\(395\) 14.7497 + 1.69189i 0.742140 + 0.0851280i
\(396\) 0 0
\(397\) −3.98408 14.8688i −0.199955 0.746244i −0.990928 0.134393i \(-0.957092\pi\)
0.790973 0.611851i \(-0.209575\pi\)
\(398\) −28.5274 + 28.5274i −1.42995 + 1.42995i
\(399\) 0 0
\(400\) −1.49219 4.90743i −0.0746096 0.245371i
\(401\) 16.5088 + 9.53134i 0.824408 + 0.475972i 0.851934 0.523649i \(-0.175430\pi\)
−0.0275261 + 0.999621i \(0.508763\pi\)
\(402\) 0 0
\(403\) −3.43290 + 12.8118i −0.171005 + 0.638200i
\(404\) 21.7340 37.6445i 1.08131 1.87288i
\(405\) 0 0
\(406\) −2.53790 + 7.35408i −0.125954 + 0.364977i
\(407\) 16.2849 + 16.2849i 0.807213 + 0.807213i
\(408\) 0 0
\(409\) 14.2422 8.22271i 0.704229 0.406587i −0.104691 0.994505i \(-0.533385\pi\)
0.808921 + 0.587918i \(0.200052\pi\)
\(410\) 34.9788 + 44.0432i 1.72748 + 2.17514i
\(411\) 0 0
\(412\) 33.5570 33.5570i 1.65323 1.65323i
\(413\) 15.6770 + 1.10714i 0.771415 + 0.0544788i
\(414\) 0 0
\(415\) −1.45237 + 3.67884i −0.0712939 + 0.180587i
\(416\) 9.56155 5.52036i 0.468794 0.270658i
\(417\) 0 0
\(418\) 29.8887 8.00866i 1.46190 0.391716i
\(419\) 0.432905 0.0211488 0.0105744 0.999944i \(-0.496634\pi\)
0.0105744 + 0.999944i \(0.496634\pi\)
\(420\) 0 0
\(421\) 2.44053 0.118944 0.0594721 0.998230i \(-0.481058\pi\)
0.0594721 + 0.998230i \(0.481058\pi\)
\(422\) 25.0650 6.71614i 1.22014 0.326937i
\(423\) 0 0
\(424\) 5.36826 3.09937i 0.260706 0.150519i
\(425\) −10.2330 16.4318i −0.496374 0.797061i
\(426\) 0 0
\(427\) −8.59761 17.6587i −0.416067 0.854564i
\(428\) 7.42739 7.42739i 0.359016 0.359016i
\(429\) 0 0
\(430\) 42.0990 + 4.82901i 2.03019 + 0.232876i
\(431\) 1.41023 0.814199i 0.0679286 0.0392186i −0.465651 0.884968i \(-0.654180\pi\)
0.533580 + 0.845750i \(0.320846\pi\)
\(432\) 0 0
\(433\) 12.1563 + 12.1563i 0.584193 + 0.584193i 0.936053 0.351860i \(-0.114451\pi\)
−0.351860 + 0.936053i \(0.614451\pi\)
\(434\) 32.0628 6.20937i 1.53906 0.298059i
\(435\) 0 0
\(436\) −28.6388 + 49.6039i −1.37155 + 2.37560i
\(437\) 8.49725 31.7122i 0.406478 1.51700i
\(438\) 0 0
\(439\) 32.5150 + 18.7725i 1.55185 + 0.895964i 0.997991 + 0.0633566i \(0.0201805\pi\)
0.553864 + 0.832607i \(0.313153\pi\)
\(440\) 3.37499 + 22.7007i 0.160896 + 1.08221i
\(441\) 0 0
\(442\) −16.0458 + 16.0458i −0.763221 + 0.763221i
\(443\) 3.25374 + 12.1431i 0.154590 + 0.576937i 0.999140 + 0.0414608i \(0.0132012\pi\)
−0.844550 + 0.535476i \(0.820132\pi\)
\(444\) 0 0
\(445\) 1.24454 10.8498i 0.0589968 0.514330i
\(446\) −5.27315 3.04446i −0.249691 0.144159i
\(447\) 0 0
\(448\) −27.0250 18.2558i −1.27681 0.862507i
\(449\) 24.2617 1.14498 0.572491 0.819911i \(-0.305977\pi\)
0.572491 + 0.819911i \(0.305977\pi\)
\(450\) 0 0
\(451\) −16.2664 28.1742i −0.765953 1.32667i
\(452\) 17.4265 65.0365i 0.819673 3.05906i
\(453\) 0 0
\(454\) 15.7934i 0.741220i
\(455\) 12.2480 8.39167i 0.574196 0.393407i
\(456\) 0 0
\(457\) 8.47473 + 31.6281i 0.396431 + 1.47950i 0.819329 + 0.573323i \(0.194346\pi\)
−0.422898 + 0.906177i \(0.638987\pi\)
\(458\) −57.3947 15.3789i −2.68188 0.718608i
\(459\) 0 0
\(460\) 53.7872 + 21.2346i 2.50784 + 0.990070i
\(461\) 11.3402i 0.528165i −0.964500 0.264083i \(-0.914931\pi\)
0.964500 0.264083i \(-0.0850691\pi\)
\(462\) 0 0
\(463\) 10.8990 + 10.8990i 0.506520 + 0.506520i 0.913456 0.406937i \(-0.133403\pi\)
−0.406937 + 0.913456i \(0.633403\pi\)
\(464\) 0.645775 1.11851i 0.0299793 0.0519257i
\(465\) 0 0
\(466\) −12.4187 21.5099i −0.575287 0.996426i
\(467\) −22.3197 + 5.98056i −1.03283 + 0.276747i −0.735141 0.677914i \(-0.762884\pi\)
−0.297694 + 0.954661i \(0.596217\pi\)
\(468\) 0 0
\(469\) 19.3685 16.8133i 0.894354 0.776365i
\(470\) 25.1173 33.8902i 1.15858 1.56324i
\(471\) 0 0
\(472\) −19.4948 5.22361i −0.897319 0.240436i
\(473\) −23.6757 6.34388i −1.08861 0.291692i
\(474\) 0 0
\(475\) −20.9808 + 6.37958i −0.962664 + 0.292715i
\(476\) 33.4516 + 11.5442i 1.53325 + 0.529127i
\(477\) 0 0
\(478\) −35.6128 + 9.54242i −1.62889 + 0.436460i
\(479\) −4.96946 8.60736i −0.227061 0.393280i 0.729875 0.683581i \(-0.239578\pi\)
−0.956936 + 0.290300i \(0.906245\pi\)
\(480\) 0 0
\(481\) −9.56651 + 16.5697i −0.436195 + 0.755512i
\(482\) 4.66437 + 4.66437i 0.212456 + 0.212456i
\(483\) 0 0
\(484\) 6.47687i 0.294403i
\(485\) 3.12469 7.91482i 0.141885 0.359393i
\(486\) 0 0
\(487\) 4.47934 + 1.20024i 0.202978 + 0.0543879i 0.358876 0.933385i \(-0.383160\pi\)
−0.155897 + 0.987773i \(0.549827\pi\)
\(488\) 6.52798 + 24.3628i 0.295508 + 1.10285i
\(489\) 0 0
\(490\) −31.7790 18.0697i −1.43563 0.816307i
\(491\) 1.99747i 0.0901445i 0.998984 + 0.0450722i \(0.0143518\pi\)
−0.998984 + 0.0450722i \(0.985648\pi\)
\(492\) 0 0
\(493\) 1.26155 4.70817i 0.0568173 0.212045i
\(494\) 12.8534 + 22.2627i 0.578300 + 1.00165i
\(495\) 0 0
\(496\) −5.42183 −0.243448
\(497\) 2.35240 + 1.58908i 0.105520 + 0.0712801i
\(498\) 0 0
\(499\) −0.178762 0.103208i −0.00800250 0.00462025i 0.495993 0.868326i \(-0.334804\pi\)
−0.503996 + 0.863706i \(0.668137\pi\)
\(500\) −6.95224 37.9946i −0.310914 1.69917i
\(501\) 0 0
\(502\) 13.2988 + 49.6319i 0.593555 + 2.21518i
\(503\) 20.3423 20.3423i 0.907017 0.907017i −0.0890134 0.996030i \(-0.528371\pi\)
0.996030 + 0.0890134i \(0.0283714\pi\)
\(504\) 0 0
\(505\) 16.7522 22.6033i 0.745462 1.00583i
\(506\) −45.7371 26.4063i −2.03326 1.17391i
\(507\) 0 0
\(508\) 16.6726 62.2228i 0.739725 2.76069i
\(509\) −2.36278 + 4.09245i −0.104728 + 0.181395i −0.913627 0.406553i \(-0.866731\pi\)
0.808899 + 0.587948i \(0.200064\pi\)
\(510\) 0 0
\(511\) 3.72402 + 4.28999i 0.164741 + 0.189778i
\(512\) 8.12052 + 8.12052i 0.358880 + 0.358880i
\(513\) 0 0
\(514\) 20.0832 11.5950i 0.885831 0.511435i
\(515\) 24.0531 19.1029i 1.05991 0.841773i
\(516\) 0 0
\(517\) −17.2534 + 17.2534i −0.758803 + 0.758803i
\(518\) 46.9932 + 3.31875i 2.06476 + 0.145817i
\(519\) 0 0
\(520\) −17.4909 + 7.58943i −0.767025 + 0.332819i
\(521\) −10.9951 + 6.34804i −0.481705 + 0.278113i −0.721127 0.692803i \(-0.756375\pi\)
0.239422 + 0.970916i \(0.423042\pi\)
\(522\) 0 0
\(523\) −31.6604 + 8.48338i −1.38441 + 0.370952i −0.872722 0.488217i \(-0.837647\pi\)
−0.511691 + 0.859170i \(0.670981\pi\)
\(524\) −36.1756 −1.58034
\(525\) 0 0
\(526\) 20.4868 0.893266
\(527\) −19.7645 + 5.29590i −0.860957 + 0.230693i
\(528\) 0 0
\(529\) −28.6089 + 16.5173i −1.24386 + 0.718145i
\(530\) 8.74053 3.79259i 0.379664 0.164739i
\(531\) 0 0
\(532\) 22.4402 33.2194i 0.972908 1.44025i
\(533\) 19.1112 19.1112i 0.827800 0.827800i
\(534\) 0 0
\(535\) 5.32384 4.22817i 0.230170 0.182800i
\(536\) −28.5244 + 16.4686i −1.23207 + 0.711334i
\(537\) 0 0
\(538\) 34.2989 + 34.2989i 1.47873 + 1.47873i
\(539\) 16.6449 + 13.0416i 0.716948 + 0.561740i
\(540\) 0 0
\(541\) 21.0600 36.4771i 0.905442 1.56827i 0.0851189 0.996371i \(-0.472873\pi\)
0.820323 0.571901i \(-0.193794\pi\)
\(542\) −14.3255 + 53.4633i −0.615331 + 2.29645i
\(543\) 0 0
\(544\) 14.7505 + 8.51619i 0.632421 + 0.365129i
\(545\) −22.0742 + 29.7842i −0.945556 + 1.27582i
\(546\) 0 0
\(547\) 19.7948 19.7948i 0.846364 0.846364i −0.143313 0.989677i \(-0.545776\pi\)
0.989677 + 0.143313i \(0.0457757\pi\)
\(548\) 14.8229 + 55.3200i 0.633205 + 2.36315i
\(549\) 0 0
\(550\) 1.17748 + 35.2564i 0.0502081 + 1.50334i
\(551\) −4.78199 2.76089i −0.203720 0.117618i
\(552\) 0 0
\(553\) −15.7940 + 7.68975i −0.671631 + 0.327002i
\(554\) 14.0583 0.597280
\(555\) 0 0
\(556\) 13.0953 + 22.6818i 0.555365 + 0.961921i
\(557\) 10.6149 39.6153i 0.449767 1.67855i −0.253266 0.967397i \(-0.581505\pi\)
0.703033 0.711157i \(-0.251829\pi\)
\(558\) 0 0
\(559\) 20.3630i 0.861264i
\(560\) 4.60921 + 3.94823i 0.194775 + 0.166843i
\(561\) 0 0
\(562\) 0.667703 + 2.49190i 0.0281654 + 0.105115i
\(563\) −6.90950 1.85140i −0.291201 0.0780270i 0.110261 0.993903i \(-0.464831\pi\)
−0.401462 + 0.915876i \(0.631498\pi\)
\(564\) 0 0
\(565\) 16.0027 40.5348i 0.673239 1.70531i
\(566\) 32.4129i 1.36242i
\(567\) 0 0
\(568\) −2.57784 2.57784i −0.108164 0.108164i
\(569\) −19.8667 + 34.4101i −0.832855 + 1.44255i 0.0629097 + 0.998019i \(0.479962\pi\)
−0.895765 + 0.444528i \(0.853371\pi\)
\(570\) 0 0
\(571\) −13.4380 23.2753i −0.562362 0.974040i −0.997290 0.0735743i \(-0.976559\pi\)
0.434928 0.900465i \(-0.356774\pi\)
\(572\) 25.2982 6.77863i 1.05777 0.283429i
\(573\) 0 0
\(574\) −62.9074 21.7095i −2.62571 0.906135i
\(575\) 33.0203 + 17.6217i 1.37704 + 0.734876i
\(576\) 0 0
\(577\) 15.3466 + 4.11210i 0.638886 + 0.171189i 0.563699 0.825980i \(-0.309378\pi\)
0.0751873 + 0.997169i \(0.476045\pi\)
\(578\) 4.53723 + 1.21575i 0.188724 + 0.0505684i
\(579\) 0 0
\(580\) 5.79111 7.81379i 0.240463 0.324450i
\(581\) −0.889770 4.59443i −0.0369139 0.190609i
\(582\) 0 0
\(583\) −5.32340 + 1.42640i −0.220473 + 0.0590755i
\(584\) −3.64767 6.31796i −0.150942 0.261439i
\(585\) 0 0
\(586\) 4.42920 7.67160i 0.182969 0.316911i
\(587\) 4.67480 + 4.67480i 0.192950 + 0.192950i 0.796969 0.604020i \(-0.206435\pi\)
−0.604020 + 0.796969i \(0.706435\pi\)
\(588\) 0 0
\(589\) 23.1800i 0.955116i
\(590\) −28.8546 11.3915i −1.18792 0.468980i
\(591\) 0 0
\(592\) −7.55454 2.02423i −0.310490 0.0831955i
\(593\) 2.56925 + 9.58856i 0.105506 + 0.393755i 0.998402 0.0565085i \(-0.0179968\pi\)
−0.892896 + 0.450263i \(0.851330\pi\)
\(594\) 0 0
\(595\) 20.6588 + 9.89057i 0.846926 + 0.405474i
\(596\) 11.7564i 0.481559i
\(597\) 0 0
\(598\) 11.3558 42.3804i 0.464373 1.73307i
\(599\) −8.98437 15.5614i −0.367092 0.635821i 0.622018 0.783003i \(-0.286313\pi\)
−0.989109 + 0.147182i \(0.952980\pi\)
\(600\) 0 0
\(601\) 39.8874 1.62704 0.813520 0.581538i \(-0.197549\pi\)
0.813520 + 0.581538i \(0.197549\pi\)
\(602\) −45.0796 + 21.9482i −1.83731 + 0.894543i
\(603\) 0 0
\(604\) −47.1506 27.2224i −1.91853 1.10766i
\(605\) −0.477728 + 4.16480i −0.0194224 + 0.169323i
\(606\) 0 0
\(607\) −8.29542 30.9589i −0.336701 1.25658i −0.902014 0.431708i \(-0.857911\pi\)
0.565313 0.824877i \(-0.308755\pi\)
\(608\) 13.6437 13.6437i 0.553323 0.553323i
\(609\) 0 0
\(610\) 5.70114 + 38.3467i 0.230833 + 1.55261i
\(611\) −17.5551 10.1354i −0.710203 0.410036i
\(612\) 0 0
\(613\) −4.35747 + 16.2623i −0.175996 + 0.656828i 0.820383 + 0.571814i \(0.193760\pi\)
−0.996380 + 0.0850137i \(0.972907\pi\)
\(614\) −26.1896 + 45.3618i −1.05693 + 1.83065i
\(615\) 0 0
\(616\) −17.8011 20.5065i −0.717229 0.826231i
\(617\) 10.1234 + 10.1234i 0.407552 + 0.407552i 0.880884 0.473332i \(-0.156949\pi\)
−0.473332 + 0.880884i \(0.656949\pi\)
\(618\) 0 0
\(619\) −28.0328 + 16.1847i −1.12673 + 0.650520i −0.943111 0.332477i \(-0.892115\pi\)
−0.183622 + 0.982997i \(0.558782\pi\)
\(620\) −40.5625 4.65277i −1.62903 0.186860i
\(621\) 0 0
\(622\) −42.0720 + 42.0720i −1.68693 + 1.68693i
\(623\) 5.65653 + 11.6180i 0.226624 + 0.465465i
\(624\) 0 0
\(625\) −1.66803 24.9443i −0.0667211 0.997772i
\(626\) −12.8090 + 7.39529i −0.511951 + 0.295575i
\(627\) 0 0
\(628\) −20.7349 + 5.55589i −0.827411 + 0.221704i
\(629\) −29.5163 −1.17689
\(630\) 0 0
\(631\) −8.76242 −0.348827 −0.174413 0.984673i \(-0.555803\pi\)
−0.174413 + 0.984673i \(0.555803\pi\)
\(632\) 21.7902 5.83867i 0.866768 0.232250i
\(633\) 0 0
\(634\) 5.05911 2.92088i 0.200923 0.116003i
\(635\) 15.3104 38.7811i 0.607574 1.53898i
\(636\) 0 0
\(637\) −6.88643 + 16.1612i −0.272850 + 0.640331i
\(638\) −6.28087 + 6.28087i −0.248662 + 0.248662i
\(639\) 0 0
\(640\) 27.8001 + 35.0042i 1.09890 + 1.38366i
\(641\) 3.35536 1.93722i 0.132529 0.0765156i −0.432270 0.901744i \(-0.642287\pi\)
0.564799 + 0.825229i \(0.308954\pi\)
\(642\) 0 0
\(643\) −22.2135 22.2135i −0.876016 0.876016i 0.117103 0.993120i \(-0.462639\pi\)
−0.993120 + 0.117103i \(0.962639\pi\)
\(644\) −67.1739 + 13.0091i −2.64702 + 0.512629i
\(645\) 0 0
\(646\) −19.8287 + 34.3444i −0.780151 + 1.35126i
\(647\) 0.903571 3.37217i 0.0355231 0.132574i −0.945887 0.324496i \(-0.894805\pi\)
0.981410 + 0.191922i \(0.0614720\pi\)
\(648\) 0 0
\(649\) 15.5399 + 8.97194i 0.609993 + 0.352179i
\(650\) −28.0389 + 8.52573i −1.09978 + 0.334407i
\(651\) 0 0
\(652\) 8.88149 8.88149i 0.347826 0.347826i
\(653\) −5.37079 20.0441i −0.210175 0.784385i −0.987809 0.155668i \(-0.950247\pi\)
0.777634 0.628717i \(-0.216420\pi\)
\(654\) 0 0
\(655\) −23.2619 2.66828i −0.908916 0.104258i
\(656\) 9.56788 + 5.52402i 0.373563 + 0.215677i
\(657\) 0 0
\(658\) −3.51612 + 49.7879i −0.137073 + 1.94093i
\(659\) 8.70064 0.338929 0.169464 0.985536i \(-0.445796\pi\)
0.169464 + 0.985536i \(0.445796\pi\)
\(660\) 0 0
\(661\) −21.7101 37.6029i −0.844424 1.46258i −0.886121 0.463455i \(-0.846610\pi\)
0.0416969 0.999130i \(-0.486724\pi\)
\(662\) −0.856958 + 3.19821i −0.0333066 + 0.124302i
\(663\) 0 0
\(664\) 6.00977i 0.233224i
\(665\) 16.8799 19.7058i 0.654574 0.764157i
\(666\) 0 0
\(667\) 2.43921 + 9.10326i 0.0944466 + 0.352480i
\(668\) −28.8734 7.73660i −1.11714 0.299338i
\(669\) 0 0
\(670\) −46.4430 + 20.1520i −1.79425 + 0.778540i
\(671\) 22.4246i 0.865693i
\(672\) 0 0
\(673\) 12.2145 + 12.2145i 0.470833 + 0.470833i 0.902184 0.431351i \(-0.141963\pi\)
−0.431351 + 0.902184i \(0.641963\pi\)
\(674\) 12.2019 21.1344i 0.470001 0.814065i
\(675\) 0 0
\(676\) −11.5767 20.0514i −0.445258 0.771209i
\(677\) −20.3087 + 5.44169i −0.780526 + 0.209141i −0.627017 0.779006i \(-0.715724\pi\)
−0.153509 + 0.988147i \(0.549057\pi\)
\(678\) 0 0
\(679\) 1.91429 + 9.88467i 0.0734637 + 0.379339i
\(680\) −23.6310 17.5139i −0.906207 0.671626i
\(681\) 0 0
\(682\) 36.0175 + 9.65086i 1.37918 + 0.369551i
\(683\) 17.0354 + 4.56461i 0.651840 + 0.174660i 0.569561 0.821949i \(-0.307113\pi\)
0.0822793 + 0.996609i \(0.473780\pi\)
\(684\) 0 0
\(685\) 5.45119 + 36.6655i 0.208279 + 1.40092i
\(686\) 43.2002 2.17415i 1.64939 0.0830093i
\(687\) 0 0
\(688\) 8.04020 2.15437i 0.306530 0.0821344i
\(689\) −2.28928 3.96515i −0.0872146 0.151060i
\(690\) 0 0
\(691\) 15.0811 26.1213i 0.573714 0.993701i −0.422467 0.906378i \(-0.638836\pi\)
0.996180 0.0873225i \(-0.0278310\pi\)
\(692\) 57.5559 + 57.5559i 2.18795 + 2.18795i
\(693\) 0 0
\(694\) 24.6340i 0.935093i
\(695\) 6.74764 + 15.5508i 0.255953 + 0.589877i
\(696\) 0 0
\(697\) 40.2741 + 10.7914i 1.52549 + 0.408754i
\(698\) −4.90197 18.2944i −0.185542 0.692454i
\(699\) 0 0
\(700\) 31.0948 + 33.4934i 1.17527 + 1.26593i
\(701\) 25.9117i 0.978670i −0.872096 0.489335i \(-0.837240\pi\)
0.872096 0.489335i \(-0.162760\pi\)
\(702\) 0 0
\(703\) −8.65422 + 32.2980i −0.326400 + 1.21814i
\(704\) −18.6182 32.2477i −0.701700 1.21538i
\(705\) 0 0
\(706\) −24.2063 −0.911018
\(707\) −2.34510 + 33.2064i −0.0881964 + 1.24885i
\(708\) 0 0
\(709\) −12.4525 7.18943i −0.467662 0.270005i 0.247599 0.968863i \(-0.420359\pi\)
−0.715260 + 0.698858i \(0.753692\pi\)
\(710\) −3.48496 4.38804i −0.130788 0.164680i
\(711\) 0 0
\(712\) −4.29488 16.0287i −0.160958 0.600702i
\(713\) 27.9752 27.9752i 1.04768 1.04768i
\(714\) 0 0
\(715\) 16.7674 2.49286i 0.627064 0.0932278i
\(716\) −1.37001 0.790977i −0.0511998 0.0295602i
\(717\) 0 0
\(718\) −1.75817 + 6.56158i −0.0656143 + 0.244876i
\(719\) 3.38386 5.86102i 0.126197 0.218579i −0.796003 0.605292i \(-0.793056\pi\)
0.922200 + 0.386713i \(0.126390\pi\)
\(720\) 0 0
\(721\) −11.8561 + 34.3554i −0.441544 + 1.27946i
\(722\) 0.389198 + 0.389198i 0.0144844 + 0.0144844i
\(723\) 0 0
\(724\) −38.8058 + 22.4045i −1.44221 + 0.832658i
\(725\) 4.30017 4.59732i 0.159704 0.170740i
\(726\) 0 0
\(727\) 16.4806 16.4806i 0.611233 0.611233i −0.332034 0.943267i \(-0.607735\pi\)
0.943267 + 0.332034i \(0.107735\pi\)
\(728\) 12.6282 18.6941i 0.468032 0.692851i
\(729\) 0 0
\(730\) −4.46353 10.2868i −0.165203 0.380732i
\(731\) 27.2051 15.7069i 1.00622 0.580940i
\(732\) 0 0
\(733\) 50.6311 13.5666i 1.87010 0.501093i 0.870137 0.492810i \(-0.164030\pi\)
0.999966 0.00828279i \(-0.00263652\pi\)
\(734\) −25.3002 −0.933848
\(735\) 0 0
\(736\) −32.9322 −1.21390
\(737\) 28.2860 7.57921i 1.04193 0.279184i
\(738\) 0 0
\(739\) 37.8928 21.8774i 1.39391 0.804773i 0.400163 0.916444i \(-0.368954\pi\)
0.993745 + 0.111671i \(0.0356203\pi\)
\(740\) −54.7809 21.6269i −2.01378 0.795021i
\(741\) 0 0
\(742\) −6.31055 + 9.34183i −0.231668 + 0.342949i
\(743\) −16.4879 + 16.4879i −0.604881 + 0.604881i −0.941604 0.336723i \(-0.890681\pi\)
0.336723 + 0.941604i \(0.390681\pi\)
\(744\) 0 0
\(745\) 0.867138 7.55965i 0.0317695 0.276964i
\(746\) −36.3490 + 20.9861i −1.33083 + 0.768356i
\(747\) 0 0
\(748\) 28.5699 + 28.5699i 1.04462 + 1.04462i
\(749\) −2.62419 + 7.60411i −0.0958859 + 0.277848i
\(750\) 0 0
\(751\) −1.48307 + 2.56876i −0.0541181 + 0.0937353i −0.891815 0.452400i \(-0.850568\pi\)
0.837697 + 0.546135i \(0.183901\pi\)
\(752\) 2.14462 8.00382i 0.0782061 0.291869i
\(753\) 0 0
\(754\) −6.39070 3.68967i −0.232736 0.134370i
\(755\) −28.3111 20.9825i −1.03035 0.763631i
\(756\) 0 0
\(757\) −31.2106 + 31.2106i −1.13437 + 1.13437i −0.144925 + 0.989443i \(0.546294\pi\)
−0.989443 + 0.144925i \(0.953706\pi\)
\(758\) 4.45811 + 16.6379i 0.161926 + 0.604316i
\(759\) 0 0
\(760\) −26.0931 + 20.7230i −0.946495 + 0.751702i
\(761\) 34.8304 + 20.1094i 1.26260 + 0.728963i 0.973577 0.228358i \(-0.0733357\pi\)
0.289025 + 0.957322i \(0.406669\pi\)
\(762\) 0 0
\(763\) 3.09012 43.7558i 0.111870 1.58407i
\(764\) −23.3195 −0.843670
\(765\) 0 0
\(766\) −10.6938 18.5223i −0.386384 0.669236i
\(767\) −3.85830 + 14.3994i −0.139315 + 0.519931i
\(768\) 0 0
\(769\) 24.6136i 0.887589i −0.896129 0.443794i \(-0.853632\pi\)
0.896129 0.443794i \(-0.146368\pi\)
\(770\) −23.5913 34.4326i −0.850173 1.24087i
\(771\) 0 0
\(772\) 4.56471 + 17.0357i 0.164288 + 0.613130i
\(773\) −49.7233 13.3233i −1.78842 0.479206i −0.796345 0.604843i \(-0.793236\pi\)
−0.992076 + 0.125637i \(0.959903\pi\)
\(774\) 0 0
\(775\) −25.7395 5.98370i −0.924592 0.214941i
\(776\) 12.9297i 0.464149i
\(777\) 0 0
\(778\) −14.8893 14.8893i −0.533807 0.533807i
\(779\) 23.6169 40.9056i 0.846162 1.46560i
\(780\) 0 0
\(781\) 1.62063 + 2.80701i 0.0579906 + 0.100443i
\(782\) 65.3798 17.5185i 2.33798 0.626459i
\(783\) 0 0
\(784\) −7.10972 1.00924i −0.253918 0.0360442i
\(785\) −13.7429 + 2.04320i −0.490503 + 0.0729248i
\(786\) 0 0
\(787\) 24.8118 + 6.64831i 0.884446 + 0.236987i 0.672324 0.740257i \(-0.265296\pi\)
0.212121 + 0.977243i \(0.431963\pi\)
\(788\) 25.2375 + 6.76238i 0.899050 + 0.240900i
\(789\) 0 0
\(790\) 34.2976 5.09914i 1.22025 0.181419i
\(791\) 9.80382 + 50.6232i 0.348584 + 1.79995i
\(792\) 0 0
\(793\) 17.9950 4.82175i 0.639022 0.171225i
\(794\) −17.9759 31.1351i −0.637940 1.10494i
\(795\) 0 0
\(796\) −29.8386 + 51.6819i −1.05760 + 1.83182i
\(797\) 1.12818 + 1.12818i 0.0399621 + 0.0399621i 0.726805 0.686843i \(-0.241004\pi\)
−0.686843 + 0.726805i \(0.741004\pi\)
\(798\) 0 0
\(799\) 31.2716i 1.10631i
\(800\) 11.6282 + 18.6722i 0.411119 + 0.660161i
\(801\) 0 0
\(802\) 43.0047 + 11.5231i 1.51855 + 0.406893i
\(803\) 1.67874 + 6.26516i 0.0592416 + 0.221093i
\(804\) 0 0
\(805\) −44.1541 + 3.41049i −1.55623 + 0.120204i
\(806\) 30.9780i 1.09115i
\(807\) 0 0
\(808\) 11.0644 41.2930i 0.389245 1.45268i
\(809\) 18.4134 + 31.8929i 0.647381 + 1.12130i 0.983746 + 0.179565i \(0.0574689\pi\)
−0.336366 + 0.941731i \(0.609198\pi\)
\(810\) 0 0
\(811\) 9.33779 0.327894 0.163947 0.986469i \(-0.447577\pi\)
0.163947 + 0.986469i \(0.447577\pi\)
\(812\) −0.810683 + 11.4792i −0.0284494 + 0.402841i
\(813\) 0 0
\(814\) 46.5821 + 26.8942i 1.63270 + 0.942640i
\(815\) 6.36612 5.05594i 0.222995 0.177102i
\(816\) 0 0
\(817\) −9.21057 34.3743i −0.322237 1.20261i
\(818\) 27.1593 27.1593i 0.949602 0.949602i
\(819\) 0 0
\(820\) 66.8399 + 49.5376i 2.33415 + 1.72993i
\(821\) 13.7473 + 7.93699i 0.479783 + 0.277003i 0.720326 0.693636i \(-0.243992\pi\)
−0.240543 + 0.970639i \(0.577325\pi\)
\(822\) 0 0
\(823\) 3.54133 13.2164i 0.123443 0.460696i −0.876336 0.481700i \(-0.840020\pi\)
0.999779 + 0.0210040i \(0.00668627\pi\)
\(824\) 23.3362 40.4194i 0.812954 1.40808i
\(825\) 0 0
\(826\) 36.0360 6.97882i 1.25385 0.242824i
\(827\) −1.84947 1.84947i −0.0643124 0.0643124i 0.674219 0.738531i \(-0.264480\pi\)
−0.738531 + 0.674219i \(0.764480\pi\)
\(828\) 0 0
\(829\) −28.8636 + 16.6644i −1.00247 + 0.578778i −0.908979 0.416842i \(-0.863137\pi\)
−0.0934940 + 0.995620i \(0.529804\pi\)
\(830\) −1.05269 + 9.17725i −0.0365393 + 0.318547i
\(831\) 0 0
\(832\) 21.8744 21.8744i 0.758359 0.758359i
\(833\) −26.9033 + 3.26554i −0.932144 + 0.113144i
\(834\) 0 0
\(835\) −17.9957 7.10451i −0.622767 0.245862i
\(836\) 39.6392 22.8857i 1.37095 0.791518i
\(837\) 0 0
\(838\) 0.976617 0.261684i 0.0337367 0.00903971i
\(839\) 26.2661 0.906808 0.453404 0.891305i \(-0.350210\pi\)
0.453404 + 0.891305i \(0.350210\pi\)
\(840\) 0 0
\(841\) −27.4149 −0.945342
\(842\) 5.50574 1.47526i 0.189740 0.0508408i
\(843\) 0 0
\(844\) 33.2418 19.1922i 1.14423 0.660621i
\(845\) −5.96514 13.7475i −0.205207 0.472928i
\(846\) 0 0
\(847\) −2.17131 4.45967i −0.0746071 0.153236i
\(848\) 1.32341 1.32341i 0.0454461 0.0454461i
\(849\) 0 0
\(850\) −33.0181 30.8839i −1.13251 1.05931i
\(851\) 49.4239 28.5349i 1.69423 0.978164i
\(852\) 0 0
\(853\) −19.2905 19.2905i −0.660495 0.660495i 0.295002 0.955497i \(-0.404680\pi\)
−0.955497 + 0.295002i \(0.904680\pi\)
\(854\) −30.0702 34.6402i −1.02898 1.18536i
\(855\) 0 0
\(856\) 5.16515 8.94630i 0.176541 0.305778i
\(857\) −8.71601 + 32.5286i −0.297733 + 1.11116i 0.641289 + 0.767299i \(0.278400\pi\)
−0.939022 + 0.343856i \(0.888267\pi\)
\(858\) 0 0
\(859\) 3.29570 + 1.90278i 0.112448 + 0.0649219i 0.555169 0.831737i \(-0.312654\pi\)
−0.442721 + 0.896659i \(0.645987\pi\)
\(860\) 62.0001 9.21777i 2.11419 0.314323i
\(861\) 0 0
\(862\) 2.68926 2.68926i 0.0915967 0.0915967i
\(863\) −7.13565 26.6306i −0.242901 0.906517i −0.974427 0.224704i \(-0.927858\pi\)
0.731527 0.681813i \(-0.238808\pi\)
\(864\) 0 0
\(865\) 32.7646 + 41.2552i 1.11403 + 1.40272i
\(866\) 34.7723 + 20.0758i 1.18161 + 0.682204i
\(867\) 0 0
\(868\) 43.4344 21.1472i 1.47426 0.717782i
\(869\) −20.0567 −0.680378
\(870\) 0 0
\(871\) 12.1641 + 21.0689i 0.412166 + 0.713893i
\(872\) −14.5795 + 54.4115i −0.493725 + 1.84261i
\(873\) 0 0
\(874\) 76.6778i 2.59367i
\(875\) 17.5243 + 23.8306i 0.592430 + 0.805622i
\(876\) 0 0
\(877\) 4.47261 + 16.6920i 0.151029 + 0.563649i 0.999413 + 0.0342666i \(0.0109095\pi\)
−0.848384 + 0.529382i \(0.822424\pi\)
\(878\) 84.7002 + 22.6953i 2.85849 + 0.765931i
\(879\) 0 0
\(880\) 2.75824 + 6.35674i 0.0929803 + 0.214286i
\(881\) 55.6733i 1.87568i 0.347064 + 0.937841i \(0.387178\pi\)
−0.347064 + 0.937841i \(0.612822\pi\)
\(882\) 0 0
\(883\) −13.5326 13.5326i −0.455408 0.455408i 0.441737 0.897145i \(-0.354362\pi\)
−0.897145 + 0.441737i \(0.854362\pi\)
\(884\) −16.7833 + 29.0695i −0.564483 + 0.977713i
\(885\) 0 0
\(886\) 14.6806 + 25.4276i 0.493205 + 0.854256i
\(887\) −45.5036 + 12.1926i −1.52786 + 0.409389i −0.922321 0.386426i \(-0.873710\pi\)
−0.605540 + 0.795815i \(0.707043\pi\)
\(888\) 0 0
\(889\) 9.37967 + 48.4330i 0.314584 + 1.62439i
\(890\) −3.75089 25.2290i −0.125730 0.845679i
\(891\) 0 0
\(892\) −8.69989 2.33113i −0.291294 0.0780519i
\(893\) −34.2188 9.16890i −1.14509 0.306825i
\(894\) 0 0
\(895\) −0.822612 0.609670i −0.0274969 0.0203790i
\(896\) −49.9969 17.2540i −1.67028 0.576416i
\(897\) 0 0
\(898\) 54.7335 14.6658i 1.82648 0.489404i
\(899\) −3.32701 5.76256i −0.110962 0.192192i
\(900\) 0 0
\(901\) 3.53164 6.11698i 0.117656 0.203786i
\(902\) −53.7271 53.7271i −1.78892 1.78892i
\(903\) 0 0
\(904\) 66.2179i 2.20237i
\(905\) −26.6057 + 11.5444i −0.884402 + 0.383749i
\(906\) 0 0
\(907\) −0.409732 0.109787i −0.0136049 0.00364543i 0.252010 0.967725i \(-0.418908\pi\)
−0.265615 + 0.964079i \(0.585575\pi\)
\(908\) −6.04646 22.5657i −0.200659 0.748870i
\(909\) 0 0
\(910\) 22.5584 26.3350i 0.747805 0.872997i
\(911\) 0.818653i 0.0271232i −0.999908 0.0135616i \(-0.995683\pi\)
0.999908 0.0135616i \(-0.00431692\pi\)
\(912\) 0 0
\(913\) 1.38292 5.16112i 0.0457679 0.170808i
\(914\) 38.2373 + 66.2290i 1.26478 + 2.19066i
\(915\) 0 0
\(916\) −87.8939 −2.90410
\(917\) 24.9088 12.1275i 0.822563 0.400487i
\(918\) 0 0
\(919\) 15.9425 + 9.20443i 0.525896 + 0.303626i 0.739343 0.673328i \(-0.235136\pi\)
−0.213448 + 0.976954i \(0.568469\pi\)
\(920\) 56.5008 + 6.48099i 1.86278 + 0.213672i
\(921\) 0 0
\(922\) −6.85495 25.5830i −0.225756 0.842532i
\(923\) −1.90406 + 1.90406i −0.0626730 + 0.0626730i
\(924\) 0 0
\(925\) −33.6303 17.9472i −1.10576 0.590102i
\(926\) 31.1760 + 17.9995i 1.02451 + 0.591499i
\(927\) 0 0
\(928\) −1.43355 + 5.35009i −0.0470586 + 0.175625i
\(929\) −18.2734 + 31.6505i −0.599532 + 1.03842i 0.393358 + 0.919386i \(0.371313\pi\)
−0.992890 + 0.119035i \(0.962020\pi\)
\(930\) 0 0
\(931\) −4.31480 + 30.3962i −0.141412 + 0.996196i
\(932\) −25.9790 25.9790i −0.850971 0.850971i
\(933\) 0 0
\(934\) −46.7373 + 26.9838i −1.52929 + 0.882938i
\(935\) 16.2639 + 20.4785i 0.531886 + 0.669717i
\(936\) 0 0
\(937\) −9.73540 + 9.73540i −0.318042 + 0.318042i −0.848015 0.529973i \(-0.822202\pi\)
0.529973 + 0.848015i \(0.322202\pi\)
\(938\) 33.5312 49.6380i 1.09483 1.62074i
\(939\) 0 0
\(940\) 22.9131 58.0387i 0.747342 1.89302i
\(941\) 26.9972 15.5869i 0.880084 0.508117i 0.00939807 0.999956i \(-0.497008\pi\)
0.870686 + 0.491839i \(0.163675\pi\)
\(942\) 0 0
\(943\) −77.8701 + 20.8652i −2.53580 + 0.679465i
\(944\) −6.09369 −0.198333
\(945\) 0 0
\(946\) −57.2462 −1.86123
\(947\) −7.55291 + 2.02380i −0.245437 + 0.0657645i −0.379440 0.925216i \(-0.623883\pi\)
0.134003 + 0.990981i \(0.457217\pi\)
\(948\) 0 0
\(949\) −4.66662 + 2.69427i −0.151485 + 0.0874598i
\(950\) −43.4755 + 27.0746i −1.41053 + 0.878416i
\(951\) 0 0
\(952\) 34.7162 + 2.45172i 1.12516 + 0.0794608i
\(953\) −14.8359 + 14.8359i −0.480583 + 0.480583i −0.905318 0.424735i \(-0.860367\pi\)
0.424735 + 0.905318i \(0.360367\pi\)
\(954\) 0 0
\(955\) −14.9950 1.72002i −0.485228 0.0556587i
\(956\) −47.2305 + 27.2686i −1.52754 + 0.881928i
\(957\) 0 0
\(958\) −16.4139 16.4139i −0.530310 0.530310i
\(959\) −28.7519 33.1215i −0.928447 1.06955i
\(960\) 0 0
\(961\) 1.53342 2.65597i 0.0494653 0.0856764i
\(962\) −11.5656 + 43.1634i −0.372889 + 1.39164i
\(963\) 0 0
\(964\) 8.45023 + 4.87874i 0.272164 + 0.157134i
\(965\) 1.67869 + 11.2911i 0.0540389 + 0.363474i
\(966\) 0 0
\(967\) −38.1841 + 38.1841i −1.22792 + 1.22792i −0.263167 + 0.964750i \(0.584767\pi\)
−0.964750 + 0.263167i \(0.915233\pi\)
\(968\) 1.64863 + 6.15277i 0.0529890 + 0.197758i
\(969\) 0 0
\(970\) 2.26480 19.7443i 0.0727183 0.633953i
\(971\) −34.5090 19.9238i −1.10745 0.639384i −0.169279 0.985568i \(-0.554144\pi\)
−0.938167 + 0.346184i \(0.887477\pi\)
\(972\) 0 0
\(973\) −16.6207 11.2275i −0.532834 0.359938i
\(974\) 10.8308 0.347040
\(975\) 0 0
\(976\) 3.80767 + 6.59508i 0.121881 + 0.211103i
\(977\) −4.27984 + 15.9726i −0.136924 + 0.511008i 0.863058 + 0.505104i \(0.168546\pi\)
−0.999983 + 0.00590397i \(0.998121\pi\)
\(978\) 0 0
\(979\) 14.7536i 0.471526i
\(980\) −52.3240 13.6517i −1.67143 0.436086i
\(981\) 0 0
\(982\) 1.20744 + 4.50621i 0.0385308 + 0.143799i
\(983\) −0.859334 0.230258i −0.0274085 0.00734408i 0.245089 0.969501i \(-0.421183\pi\)
−0.272497 + 0.962157i \(0.587850\pi\)
\(984\) 0 0
\(985\) 15.7296 + 6.20988i 0.501187 + 0.197863i
\(986\) 11.3840i 0.362541i
\(987\) 0 0
\(988\) 26.8882 + 26.8882i 0.855428 + 0.855428i
\(989\) −30.3693 + 52.6012i −0.965689 + 1.67262i
\(990\) 0 0
\(991\) −25.8144 44.7119i −0.820021 1.42032i −0.905665 0.423993i \(-0.860628\pi\)
0.0856440 0.996326i \(-0.472705\pi\)
\(992\) 22.4593 6.01795i 0.713083 0.191070i
\(993\) 0 0
\(994\) 6.26750 + 2.16292i 0.198793 + 0.0686038i
\(995\) −22.9990 + 31.0319i −0.729116 + 0.983778i
\(996\) 0 0
\(997\) −22.7144 6.08631i −0.719373 0.192755i −0.119481 0.992836i \(-0.538123\pi\)
−0.599892 + 0.800081i \(0.704790\pi\)
\(998\) −0.465669 0.124776i −0.0147405 0.00394970i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.233.15 yes 64
3.2 odd 2 inner 315.2.ce.a.233.2 yes 64
5.2 odd 4 inner 315.2.ce.a.107.15 yes 64
7.4 even 3 inner 315.2.ce.a.53.2 64
15.2 even 4 inner 315.2.ce.a.107.2 yes 64
21.11 odd 6 inner 315.2.ce.a.53.15 yes 64
35.32 odd 12 inner 315.2.ce.a.242.2 yes 64
105.32 even 12 inner 315.2.ce.a.242.15 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.2 64 7.4 even 3 inner
315.2.ce.a.53.15 yes 64 21.11 odd 6 inner
315.2.ce.a.107.2 yes 64 15.2 even 4 inner
315.2.ce.a.107.15 yes 64 5.2 odd 4 inner
315.2.ce.a.233.2 yes 64 3.2 odd 2 inner
315.2.ce.a.233.15 yes 64 1.1 even 1 trivial
315.2.ce.a.242.2 yes 64 35.32 odd 12 inner
315.2.ce.a.242.15 yes 64 105.32 even 12 inner