Properties

Label 315.2.ce.a.107.16
Level $315$
Weight $2$
Character 315.107
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(53,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.16
Character \(\chi\) \(=\) 315.107
Dual form 315.2.ce.a.53.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.695956 + 2.59734i) q^{2} +(-4.52979 + 2.61528i) q^{4} +(-1.27254 - 1.83865i) q^{5} +(-1.50727 + 2.17442i) q^{7} +(-6.14253 - 6.14253i) q^{8} +(3.88997 - 4.58485i) q^{10} +(-3.60099 + 2.07903i) q^{11} +(-0.702126 + 0.702126i) q^{13} +(-6.69673 - 2.40161i) q^{14} +(6.44878 - 11.1696i) q^{16} +(-1.31583 - 0.352577i) q^{17} +(5.22461 + 3.01643i) q^{19} +(10.5729 + 5.00065i) q^{20} +(-7.90609 - 7.90609i) q^{22} +(-0.205581 + 0.0550852i) q^{23} +(-1.76127 + 4.67952i) q^{25} +(-2.31231 - 1.33501i) q^{26} +(1.14092 - 13.7916i) q^{28} +0.879133 q^{29} +(4.76368 + 8.25093i) q^{31} +(16.7177 + 4.47950i) q^{32} -3.66305i q^{34} +(5.91608 + 0.00430290i) q^{35} +(-3.13636 + 0.840384i) q^{37} +(-4.19861 + 15.6694i) q^{38} +(-3.47734 + 19.1106i) q^{40} +1.25212i q^{41} +(-4.28935 + 4.28935i) q^{43} +(10.8745 - 18.8352i) q^{44} +(-0.286150 - 0.495627i) q^{46} +(-0.0279906 - 0.104462i) q^{47} +(-2.45625 - 6.55491i) q^{49} +(-13.3801 - 1.31789i) q^{50} +(1.34423 - 5.01674i) q^{52} +(-1.29555 + 4.83507i) q^{53} +(8.40502 + 3.97530i) q^{55} +(22.6150 - 4.09799i) q^{56} +(0.611838 + 2.28341i) q^{58} +(0.113063 + 0.195831i) q^{59} +(5.96760 - 10.3362i) q^{61} +(-18.1152 + 18.1152i) q^{62} +20.7441i q^{64} +(2.18445 + 0.397480i) q^{65} +(0.825199 - 3.07969i) q^{67} +(6.88254 - 1.84417i) q^{68} +(4.10616 + 15.3691i) q^{70} -9.78757i q^{71} +(-6.60621 - 1.77013i) q^{73} +(-4.36553 - 7.56133i) q^{74} -31.5552 q^{76} +(0.906979 - 10.9637i) q^{77} +(1.88223 + 1.08671i) q^{79} +(-28.7434 + 2.35676i) q^{80} +(-3.25219 + 0.871421i) q^{82} +(-3.75964 - 3.75964i) q^{83} +(1.02619 + 2.86803i) q^{85} +(-14.1261 - 8.15572i) q^{86} +(34.8897 + 9.34867i) q^{88} +(-7.19793 + 12.4672i) q^{89} +(-0.468424 - 2.58502i) q^{91} +(0.787175 - 0.787175i) q^{92} +(0.251845 - 0.145403i) q^{94} +(-1.10238 - 13.4448i) q^{95} +(3.88891 + 3.88891i) q^{97} +(15.3159 - 10.9417i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.695956 + 2.59734i 0.492115 + 1.83660i 0.545621 + 0.838032i \(0.316294\pi\)
−0.0535055 + 0.998568i \(0.517039\pi\)
\(3\) 0 0
\(4\) −4.52979 + 2.61528i −2.26490 + 1.30764i
\(5\) −1.27254 1.83865i −0.569098 0.822270i
\(6\) 0 0
\(7\) −1.50727 + 2.17442i −0.569696 + 0.821855i
\(8\) −6.14253 6.14253i −2.17171 2.17171i
\(9\) 0 0
\(10\) 3.88997 4.58485i 1.23012 1.44986i
\(11\) −3.60099 + 2.07903i −1.08574 + 0.626852i −0.932439 0.361328i \(-0.882323\pi\)
−0.153300 + 0.988180i \(0.548990\pi\)
\(12\) 0 0
\(13\) −0.702126 + 0.702126i −0.194735 + 0.194735i −0.797738 0.603004i \(-0.793970\pi\)
0.603004 + 0.797738i \(0.293970\pi\)
\(14\) −6.69673 2.40161i −1.78978 0.641856i
\(15\) 0 0
\(16\) 6.44878 11.1696i 1.61220 2.79241i
\(17\) −1.31583 0.352577i −0.319137 0.0855124i 0.0956947 0.995411i \(-0.469493\pi\)
−0.414831 + 0.909898i \(0.636159\pi\)
\(18\) 0 0
\(19\) 5.22461 + 3.01643i 1.19861 + 0.692016i 0.960245 0.279160i \(-0.0900559\pi\)
0.238363 + 0.971176i \(0.423389\pi\)
\(20\) 10.5729 + 5.00065i 2.36418 + 1.11818i
\(21\) 0 0
\(22\) −7.90609 7.90609i −1.68558 1.68558i
\(23\) −0.205581 + 0.0550852i −0.0428665 + 0.0114861i −0.280189 0.959945i \(-0.590397\pi\)
0.237322 + 0.971431i \(0.423730\pi\)
\(24\) 0 0
\(25\) −1.76127 + 4.67952i −0.352254 + 0.935904i
\(26\) −2.31231 1.33501i −0.453482 0.261818i
\(27\) 0 0
\(28\) 1.14092 13.7916i 0.215613 2.60637i
\(29\) 0.879133 0.163251 0.0816255 0.996663i \(-0.473989\pi\)
0.0816255 + 0.996663i \(0.473989\pi\)
\(30\) 0 0
\(31\) 4.76368 + 8.25093i 0.855582 + 1.48191i 0.876104 + 0.482122i \(0.160134\pi\)
−0.0205224 + 0.999789i \(0.506533\pi\)
\(32\) 16.7177 + 4.47950i 2.95530 + 0.791871i
\(33\) 0 0
\(34\) 3.66305i 0.628208i
\(35\) 5.91608 + 0.00430290i 1.00000 + 0.000727323i
\(36\) 0 0
\(37\) −3.13636 + 0.840384i −0.515614 + 0.138158i −0.507237 0.861807i \(-0.669333\pi\)
−0.00837687 + 0.999965i \(0.502666\pi\)
\(38\) −4.19861 + 15.6694i −0.681104 + 2.54191i
\(39\) 0 0
\(40\) −3.47734 + 19.1106i −0.549815 + 3.02165i
\(41\) 1.25212i 0.195548i 0.995209 + 0.0977742i \(0.0311723\pi\)
−0.995209 + 0.0977742i \(0.968828\pi\)
\(42\) 0 0
\(43\) −4.28935 + 4.28935i −0.654120 + 0.654120i −0.953982 0.299862i \(-0.903059\pi\)
0.299862 + 0.953982i \(0.403059\pi\)
\(44\) 10.8745 18.8352i 1.63939 2.83951i
\(45\) 0 0
\(46\) −0.286150 0.495627i −0.0421906 0.0730762i
\(47\) −0.0279906 0.104462i −0.00408285 0.0152374i 0.963854 0.266430i \(-0.0858440\pi\)
−0.967937 + 0.251192i \(0.919177\pi\)
\(48\) 0 0
\(49\) −2.45625 6.55491i −0.350893 0.936416i
\(50\) −13.3801 1.31789i −1.89223 0.186377i
\(51\) 0 0
\(52\) 1.34423 5.01674i 0.186411 0.695697i
\(53\) −1.29555 + 4.83507i −0.177958 + 0.664148i 0.818071 + 0.575117i \(0.195044\pi\)
−0.996029 + 0.0890305i \(0.971623\pi\)
\(54\) 0 0
\(55\) 8.40502 + 3.97530i 1.13333 + 0.536030i
\(56\) 22.6150 4.09799i 3.02205 0.547618i
\(57\) 0 0
\(58\) 0.611838 + 2.28341i 0.0803383 + 0.299827i
\(59\) 0.113063 + 0.195831i 0.0147196 + 0.0254951i 0.873291 0.487198i \(-0.161981\pi\)
−0.858572 + 0.512693i \(0.828648\pi\)
\(60\) 0 0
\(61\) 5.96760 10.3362i 0.764073 1.32341i −0.176662 0.984272i \(-0.556530\pi\)
0.940735 0.339142i \(-0.110137\pi\)
\(62\) −18.1152 + 18.1152i −2.30063 + 2.30063i
\(63\) 0 0
\(64\) 20.7441i 2.59301i
\(65\) 2.18445 + 0.397480i 0.270948 + 0.0493013i
\(66\) 0 0
\(67\) 0.825199 3.07969i 0.100814 0.376243i −0.897023 0.441985i \(-0.854275\pi\)
0.997837 + 0.0657413i \(0.0209412\pi\)
\(68\) 6.88254 1.84417i 0.834630 0.223639i
\(69\) 0 0
\(70\) 4.10616 + 15.3691i 0.490779 + 1.83696i
\(71\) 9.78757i 1.16157i −0.814057 0.580785i \(-0.802746\pi\)
0.814057 0.580785i \(-0.197254\pi\)
\(72\) 0 0
\(73\) −6.60621 1.77013i −0.773198 0.207178i −0.149414 0.988775i \(-0.547739\pi\)
−0.623784 + 0.781597i \(0.714406\pi\)
\(74\) −4.36553 7.56133i −0.507483 0.878986i
\(75\) 0 0
\(76\) −31.5552 −3.61963
\(77\) 0.906979 10.9637i 0.103360 1.24944i
\(78\) 0 0
\(79\) 1.88223 + 1.08671i 0.211767 + 0.122264i 0.602132 0.798396i \(-0.294318\pi\)
−0.390365 + 0.920660i \(0.627651\pi\)
\(80\) −28.7434 + 2.35676i −3.21361 + 0.263493i
\(81\) 0 0
\(82\) −3.25219 + 0.871421i −0.359144 + 0.0962324i
\(83\) −3.75964 3.75964i −0.412674 0.412674i 0.469995 0.882669i \(-0.344256\pi\)
−0.882669 + 0.469995i \(0.844256\pi\)
\(84\) 0 0
\(85\) 1.02619 + 2.86803i 0.111306 + 0.311081i
\(86\) −14.1261 8.15572i −1.52326 0.879454i
\(87\) 0 0
\(88\) 34.8897 + 9.34867i 3.71925 + 0.996571i
\(89\) −7.19793 + 12.4672i −0.762979 + 1.32152i 0.178330 + 0.983971i \(0.442931\pi\)
−0.941309 + 0.337547i \(0.890403\pi\)
\(90\) 0 0
\(91\) −0.468424 2.58502i −0.0491042 0.270984i
\(92\) 0.787175 0.787175i 0.0820686 0.0820686i
\(93\) 0 0
\(94\) 0.251845 0.145403i 0.0259758 0.0149971i
\(95\) −1.10238 13.4448i −0.113101 1.37940i
\(96\) 0 0
\(97\) 3.88891 + 3.88891i 0.394859 + 0.394859i 0.876415 0.481556i \(-0.159928\pi\)
−0.481556 + 0.876415i \(0.659928\pi\)
\(98\) 15.3159 10.9417i 1.54714 1.10527i
\(99\) 0 0
\(100\) −4.26005 25.8035i −0.426005 2.58035i
\(101\) 7.89380 4.55749i 0.785463 0.453487i −0.0528999 0.998600i \(-0.516846\pi\)
0.838363 + 0.545113i \(0.183513\pi\)
\(102\) 0 0
\(103\) 2.32007 + 8.65861i 0.228603 + 0.853158i 0.980929 + 0.194367i \(0.0622652\pi\)
−0.752326 + 0.658791i \(0.771068\pi\)
\(104\) 8.62567 0.845816
\(105\) 0 0
\(106\) −13.4600 −1.30735
\(107\) 3.50023 + 13.0630i 0.338380 + 1.26285i 0.900158 + 0.435564i \(0.143451\pi\)
−0.561778 + 0.827288i \(0.689882\pi\)
\(108\) 0 0
\(109\) −3.19131 + 1.84250i −0.305672 + 0.176480i −0.644988 0.764192i \(-0.723138\pi\)
0.339316 + 0.940672i \(0.389804\pi\)
\(110\) −4.47570 + 24.5974i −0.426741 + 2.34527i
\(111\) 0 0
\(112\) 14.5674 + 30.8581i 1.37649 + 2.91581i
\(113\) 13.2212 + 13.2212i 1.24375 + 1.24375i 0.958434 + 0.285316i \(0.0920985\pi\)
0.285316 + 0.958434i \(0.407901\pi\)
\(114\) 0 0
\(115\) 0.362893 + 0.307893i 0.0338399 + 0.0287112i
\(116\) −3.98229 + 2.29918i −0.369746 + 0.213473i
\(117\) 0 0
\(118\) −0.429954 + 0.429954i −0.0395805 + 0.0395805i
\(119\) 2.74997 2.32975i 0.252090 0.213568i
\(120\) 0 0
\(121\) 3.14474 5.44685i 0.285886 0.495169i
\(122\) 30.9998 + 8.30638i 2.80659 + 0.752024i
\(123\) 0 0
\(124\) −43.1569 24.9167i −3.87561 2.23758i
\(125\) 10.8453 2.71653i 0.970033 0.242973i
\(126\) 0 0
\(127\) −5.70267 5.70267i −0.506030 0.506030i 0.407275 0.913305i \(-0.366479\pi\)
−0.913305 + 0.407275i \(0.866479\pi\)
\(128\) −20.4440 + 5.47796i −1.80701 + 0.484188i
\(129\) 0 0
\(130\) 0.487891 + 5.95040i 0.0427909 + 0.521885i
\(131\) 16.3919 + 9.46386i 1.43217 + 0.826862i 0.997286 0.0736266i \(-0.0234573\pi\)
0.434880 + 0.900488i \(0.356791\pi\)
\(132\) 0 0
\(133\) −14.4339 + 6.81393i −1.25158 + 0.590843i
\(134\) 8.57330 0.740621
\(135\) 0 0
\(136\) 5.91684 + 10.2483i 0.507365 + 0.878782i
\(137\) −11.5217 3.08722i −0.984361 0.263759i −0.269481 0.963006i \(-0.586852\pi\)
−0.714880 + 0.699247i \(0.753519\pi\)
\(138\) 0 0
\(139\) 17.0047i 1.44232i −0.692767 0.721161i \(-0.743609\pi\)
0.692767 0.721161i \(-0.256391\pi\)
\(140\) −26.8098 + 15.4527i −2.26585 + 1.30599i
\(141\) 0 0
\(142\) 25.4217 6.81172i 2.13334 0.571627i
\(143\) 1.06861 3.98809i 0.0893613 0.333501i
\(144\) 0 0
\(145\) −1.11873 1.61642i −0.0929058 0.134236i
\(146\) 18.3905i 1.52201i
\(147\) 0 0
\(148\) 12.0092 12.0092i 0.987150 0.987150i
\(149\) −5.31610 + 9.20775i −0.435512 + 0.754328i −0.997337 0.0729275i \(-0.976766\pi\)
0.561826 + 0.827256i \(0.310099\pi\)
\(150\) 0 0
\(151\) 6.91806 + 11.9824i 0.562984 + 0.975116i 0.997234 + 0.0743241i \(0.0236799\pi\)
−0.434251 + 0.900792i \(0.642987\pi\)
\(152\) −13.5638 50.6208i −1.10017 4.10589i
\(153\) 0 0
\(154\) 29.1078 5.27455i 2.34558 0.425036i
\(155\) 9.10860 19.2584i 0.731620 1.54687i
\(156\) 0 0
\(157\) 5.26351 19.6437i 0.420074 1.56774i −0.354376 0.935103i \(-0.615307\pi\)
0.774450 0.632635i \(-0.218027\pi\)
\(158\) −1.51260 + 5.64509i −0.120336 + 0.449100i
\(159\) 0 0
\(160\) −13.0378 36.4384i −1.03073 2.88071i
\(161\) 0.190088 0.530048i 0.0149810 0.0417737i
\(162\) 0 0
\(163\) 0.444770 + 1.65991i 0.0348371 + 0.130014i 0.981154 0.193225i \(-0.0618948\pi\)
−0.946317 + 0.323239i \(0.895228\pi\)
\(164\) −3.27464 5.67185i −0.255707 0.442897i
\(165\) 0 0
\(166\) 7.14854 12.3816i 0.554834 0.961001i
\(167\) −4.75534 + 4.75534i −0.367980 + 0.367980i −0.866740 0.498760i \(-0.833789\pi\)
0.498760 + 0.866740i \(0.333789\pi\)
\(168\) 0 0
\(169\) 12.0140i 0.924157i
\(170\) −6.73507 + 4.66139i −0.516556 + 0.357512i
\(171\) 0 0
\(172\) 8.21203 30.6477i 0.626161 2.33687i
\(173\) −0.263351 + 0.0705647i −0.0200222 + 0.00536494i −0.268816 0.963191i \(-0.586632\pi\)
0.248794 + 0.968556i \(0.419966\pi\)
\(174\) 0 0
\(175\) −7.52055 10.8831i −0.568500 0.822683i
\(176\) 53.6289i 4.04243i
\(177\) 0 0
\(178\) −37.3910 10.0189i −2.80257 0.750947i
\(179\) −8.58944 14.8773i −0.642005 1.11199i −0.984985 0.172642i \(-0.944770\pi\)
0.342980 0.939343i \(-0.388564\pi\)
\(180\) 0 0
\(181\) −4.07537 −0.302920 −0.151460 0.988463i \(-0.548397\pi\)
−0.151460 + 0.988463i \(0.548397\pi\)
\(182\) 6.38818 3.01572i 0.473523 0.223540i
\(183\) 0 0
\(184\) 1.60115 + 0.924424i 0.118038 + 0.0681494i
\(185\) 5.53632 + 4.69724i 0.407038 + 0.345348i
\(186\) 0 0
\(187\) 5.47132 1.46604i 0.400103 0.107207i
\(188\) 0.399990 + 0.399990i 0.0291723 + 0.0291723i
\(189\) 0 0
\(190\) 34.1535 12.2202i 2.47775 0.886548i
\(191\) 8.15870 + 4.71043i 0.590343 + 0.340834i 0.765233 0.643753i \(-0.222624\pi\)
−0.174890 + 0.984588i \(0.555957\pi\)
\(192\) 0 0
\(193\) −11.2504 3.01454i −0.809824 0.216992i −0.169931 0.985456i \(-0.554355\pi\)
−0.639893 + 0.768464i \(0.721021\pi\)
\(194\) −7.39433 + 12.8073i −0.530882 + 0.919514i
\(195\) 0 0
\(196\) 28.2692 + 23.2686i 2.01923 + 1.66204i
\(197\) 8.07168 8.07168i 0.575083 0.575083i −0.358461 0.933545i \(-0.616699\pi\)
0.933545 + 0.358461i \(0.116699\pi\)
\(198\) 0 0
\(199\) 16.4380 9.49049i 1.16526 0.672763i 0.212701 0.977117i \(-0.431774\pi\)
0.952559 + 0.304354i \(0.0984407\pi\)
\(200\) 39.5628 17.9254i 2.79751 1.26752i
\(201\) 0 0
\(202\) 17.3311 + 17.3311i 1.21941 + 1.21941i
\(203\) −1.32509 + 1.91161i −0.0930034 + 0.134169i
\(204\) 0 0
\(205\) 2.30221 1.59338i 0.160794 0.111286i
\(206\) −20.8747 + 12.0520i −1.45441 + 0.839704i
\(207\) 0 0
\(208\) 3.31463 + 12.3703i 0.229828 + 0.857729i
\(209\) −25.0850 −1.73517
\(210\) 0 0
\(211\) 7.43148 0.511604 0.255802 0.966729i \(-0.417660\pi\)
0.255802 + 0.966729i \(0.417660\pi\)
\(212\) −6.77645 25.2901i −0.465409 1.73693i
\(213\) 0 0
\(214\) −31.4932 + 18.1826i −2.15283 + 1.24294i
\(215\) 13.3450 + 2.42824i 0.910122 + 0.165604i
\(216\) 0 0
\(217\) −25.1212 2.07816i −1.70534 0.141075i
\(218\) −7.00663 7.00663i −0.474549 0.474549i
\(219\) 0 0
\(220\) −48.4695 + 3.97416i −3.26781 + 0.267938i
\(221\) 1.17144 0.676328i 0.0787993 0.0454948i
\(222\) 0 0
\(223\) −9.70762 + 9.70762i −0.650071 + 0.650071i −0.953010 0.302939i \(-0.902032\pi\)
0.302939 + 0.953010i \(0.402032\pi\)
\(224\) −34.9385 + 29.5996i −2.33443 + 1.97771i
\(225\) 0 0
\(226\) −25.1387 + 43.5415i −1.67220 + 2.89634i
\(227\) −10.4034 2.78758i −0.690498 0.185018i −0.103527 0.994627i \(-0.533013\pi\)
−0.586971 + 0.809608i \(0.699680\pi\)
\(228\) 0 0
\(229\) 6.41630 + 3.70445i 0.424001 + 0.244797i 0.696788 0.717277i \(-0.254612\pi\)
−0.272787 + 0.962075i \(0.587945\pi\)
\(230\) −0.547146 + 1.15684i −0.0360778 + 0.0762796i
\(231\) 0 0
\(232\) −5.40010 5.40010i −0.354534 0.354534i
\(233\) −21.5398 + 5.77156i −1.41112 + 0.378107i −0.882324 0.470643i \(-0.844022\pi\)
−0.528793 + 0.848751i \(0.677355\pi\)
\(234\) 0 0
\(235\) −0.156451 + 0.184398i −0.0102057 + 0.0120288i
\(236\) −1.02431 0.591383i −0.0666766 0.0384958i
\(237\) 0 0
\(238\) 7.96503 + 5.52122i 0.516296 + 0.357888i
\(239\) 11.9368 0.772124 0.386062 0.922473i \(-0.373835\pi\)
0.386062 + 0.922473i \(0.373835\pi\)
\(240\) 0 0
\(241\) −7.36327 12.7536i −0.474310 0.821529i 0.525257 0.850943i \(-0.323969\pi\)
−0.999567 + 0.0294146i \(0.990636\pi\)
\(242\) 16.3360 + 4.37721i 1.05012 + 0.281377i
\(243\) 0 0
\(244\) 62.4277i 3.99652i
\(245\) −8.92651 + 12.8576i −0.570294 + 0.821441i
\(246\) 0 0
\(247\) −5.78625 + 1.55042i −0.368170 + 0.0986510i
\(248\) 21.4206 79.9427i 1.36021 5.07636i
\(249\) 0 0
\(250\) 14.6036 + 26.2784i 0.923613 + 1.66199i
\(251\) 18.8368i 1.18897i 0.804108 + 0.594483i \(0.202643\pi\)
−0.804108 + 0.594483i \(0.797357\pi\)
\(252\) 0 0
\(253\) 0.625770 0.625770i 0.0393418 0.0393418i
\(254\) 10.8430 18.7806i 0.680350 1.17840i
\(255\) 0 0
\(256\) −7.71224 13.3580i −0.482015 0.834874i
\(257\) 3.87251 + 14.4524i 0.241561 + 0.901517i 0.975081 + 0.221849i \(0.0712093\pi\)
−0.733520 + 0.679668i \(0.762124\pi\)
\(258\) 0 0
\(259\) 2.90000 8.08646i 0.180197 0.502468i
\(260\) −10.9346 + 3.91244i −0.678137 + 0.242639i
\(261\) 0 0
\(262\) −13.1729 + 49.1618i −0.813823 + 3.03723i
\(263\) −2.88720 + 10.7752i −0.178032 + 0.664426i 0.817983 + 0.575243i \(0.195092\pi\)
−0.996015 + 0.0891835i \(0.971574\pi\)
\(264\) 0 0
\(265\) 10.5386 3.77076i 0.647384 0.231636i
\(266\) −27.7435 32.7477i −1.70106 2.00789i
\(267\) 0 0
\(268\) 4.31625 + 16.1085i 0.263657 + 0.983980i
\(269\) −8.34045 14.4461i −0.508526 0.880793i −0.999951 0.00987349i \(-0.996857\pi\)
0.491425 0.870920i \(-0.336476\pi\)
\(270\) 0 0
\(271\) 5.86722 10.1623i 0.356408 0.617317i −0.630950 0.775824i \(-0.717335\pi\)
0.987358 + 0.158507i \(0.0506679\pi\)
\(272\) −12.4237 + 12.4237i −0.753296 + 0.753296i
\(273\) 0 0
\(274\) 32.0743i 1.93768i
\(275\) −3.38655 20.5126i −0.204217 1.23696i
\(276\) 0 0
\(277\) −3.17485 + 11.8487i −0.190758 + 0.711919i 0.802566 + 0.596563i \(0.203468\pi\)
−0.993324 + 0.115356i \(0.963199\pi\)
\(278\) 44.1671 11.8345i 2.64897 0.709789i
\(279\) 0 0
\(280\) −36.3133 36.3661i −2.17013 2.17329i
\(281\) 20.0929i 1.19864i 0.800509 + 0.599320i \(0.204562\pi\)
−0.800509 + 0.599320i \(0.795438\pi\)
\(282\) 0 0
\(283\) 30.6875 + 8.22270i 1.82418 + 0.488789i 0.997290 0.0735682i \(-0.0234387\pi\)
0.826895 + 0.562357i \(0.190105\pi\)
\(284\) 25.5972 + 44.3356i 1.51891 + 2.63084i
\(285\) 0 0
\(286\) 11.1021 0.656484
\(287\) −2.72264 1.88729i −0.160713 0.111403i
\(288\) 0 0
\(289\) −13.1153 7.57214i −0.771490 0.445420i
\(290\) 3.41981 4.03069i 0.200818 0.236691i
\(291\) 0 0
\(292\) 34.5541 9.25875i 2.02213 0.541827i
\(293\) −3.32527 3.32527i −0.194265 0.194265i 0.603271 0.797536i \(-0.293864\pi\)
−0.797536 + 0.603271i \(0.793864\pi\)
\(294\) 0 0
\(295\) 0.216188 0.457088i 0.0125869 0.0266127i
\(296\) 24.4273 + 14.1031i 1.41981 + 0.819725i
\(297\) 0 0
\(298\) −27.6155 7.39954i −1.59972 0.428644i
\(299\) 0.105667 0.183020i 0.00611087 0.0105843i
\(300\) 0 0
\(301\) −2.86164 15.7921i −0.164942 0.910242i
\(302\) −26.3078 + 26.3078i −1.51385 + 1.51385i
\(303\) 0 0
\(304\) 67.3848 38.9046i 3.86478 2.23133i
\(305\) −26.5987 + 2.18090i −1.52304 + 0.124878i
\(306\) 0 0
\(307\) −2.96830 2.96830i −0.169410 0.169410i 0.617310 0.786720i \(-0.288222\pi\)
−0.786720 + 0.617310i \(0.788222\pi\)
\(308\) 24.5648 + 52.0355i 1.39971 + 2.96500i
\(309\) 0 0
\(310\) 56.3599 + 10.2552i 3.20103 + 0.582454i
\(311\) 8.09571 4.67406i 0.459065 0.265042i −0.252586 0.967575i \(-0.581281\pi\)
0.711651 + 0.702533i \(0.247948\pi\)
\(312\) 0 0
\(313\) 5.38565 + 20.0995i 0.304415 + 1.13609i 0.933448 + 0.358714i \(0.116785\pi\)
−0.629032 + 0.777379i \(0.716549\pi\)
\(314\) 54.6846 3.08603
\(315\) 0 0
\(316\) −11.3681 −0.639507
\(317\) −3.73583 13.9423i −0.209825 0.783078i −0.987924 0.154937i \(-0.950483\pi\)
0.778099 0.628141i \(-0.216184\pi\)
\(318\) 0 0
\(319\) −3.16575 + 1.82775i −0.177248 + 0.102334i
\(320\) 38.1411 26.3977i 2.13215 1.47568i
\(321\) 0 0
\(322\) 1.50901 + 0.124833i 0.0840939 + 0.00695669i
\(323\) −5.81120 5.81120i −0.323344 0.323344i
\(324\) 0 0
\(325\) −2.04898 4.52225i −0.113657 0.250849i
\(326\) −4.00180 + 2.31044i −0.221639 + 0.127964i
\(327\) 0 0
\(328\) 7.69119 7.69119i 0.424675 0.424675i
\(329\) 0.269335 + 0.0965901i 0.0148489 + 0.00532518i
\(330\) 0 0
\(331\) −5.77389 + 10.0007i −0.317362 + 0.549687i −0.979937 0.199309i \(-0.936130\pi\)
0.662575 + 0.748996i \(0.269464\pi\)
\(332\) 26.8629 + 7.19789i 1.47429 + 0.395036i
\(333\) 0 0
\(334\) −15.6608 9.04175i −0.856919 0.494743i
\(335\) −6.71257 + 2.40178i −0.366747 + 0.131223i
\(336\) 0 0
\(337\) −20.7098 20.7098i −1.12813 1.12813i −0.990481 0.137653i \(-0.956044\pi\)
−0.137653 0.990481i \(-0.543956\pi\)
\(338\) −31.2046 + 8.36124i −1.69731 + 0.454792i
\(339\) 0 0
\(340\) −12.1491 10.3078i −0.658878 0.559019i
\(341\) −34.3079 19.8077i −1.85788 1.07265i
\(342\) 0 0
\(343\) 17.9554 + 4.53912i 0.969500 + 0.245089i
\(344\) 52.6950 2.84112
\(345\) 0 0
\(346\) −0.366562 0.634904i −0.0197065 0.0341326i
\(347\) −20.5602 5.50909i −1.10373 0.295743i −0.339447 0.940625i \(-0.610240\pi\)
−0.764282 + 0.644882i \(0.776907\pi\)
\(348\) 0 0
\(349\) 6.84619i 0.366468i 0.983069 + 0.183234i \(0.0586566\pi\)
−0.983069 + 0.183234i \(0.941343\pi\)
\(350\) 23.0331 27.1076i 1.23117 1.44896i
\(351\) 0 0
\(352\) −69.5133 + 18.6260i −3.70507 + 0.992771i
\(353\) −5.27279 + 19.6783i −0.280642 + 1.04737i 0.671323 + 0.741165i \(0.265726\pi\)
−0.951965 + 0.306206i \(0.900940\pi\)
\(354\) 0 0
\(355\) −17.9959 + 12.4551i −0.955124 + 0.661048i
\(356\) 75.2983i 3.99080i
\(357\) 0 0
\(358\) 32.6637 32.6637i 1.72633 1.72633i
\(359\) −7.96815 + 13.8012i −0.420543 + 0.728402i −0.995993 0.0894353i \(-0.971494\pi\)
0.575450 + 0.817837i \(0.304827\pi\)
\(360\) 0 0
\(361\) 8.69770 + 15.0649i 0.457774 + 0.792887i
\(362\) −2.83628 10.5851i −0.149072 0.556343i
\(363\) 0 0
\(364\) 8.88240 + 10.4845i 0.465564 + 0.549539i
\(365\) 5.15203 + 14.3991i 0.269670 + 0.753682i
\(366\) 0 0
\(367\) −2.90688 + 10.8486i −0.151738 + 0.566294i 0.847625 + 0.530596i \(0.178032\pi\)
−0.999363 + 0.0356974i \(0.988635\pi\)
\(368\) −0.710465 + 2.65149i −0.0370356 + 0.138219i
\(369\) 0 0
\(370\) −8.34731 + 17.6488i −0.433956 + 0.917518i
\(371\) −8.56074 10.1049i −0.444451 0.524618i
\(372\) 0 0
\(373\) −7.97059 29.7467i −0.412702 1.54022i −0.789395 0.613885i \(-0.789606\pi\)
0.376694 0.926338i \(-0.377061\pi\)
\(374\) 7.61560 + 13.1906i 0.393793 + 0.682070i
\(375\) 0 0
\(376\) −0.469731 + 0.813598i −0.0242245 + 0.0419581i
\(377\) −0.617263 + 0.617263i −0.0317906 + 0.0317906i
\(378\) 0 0
\(379\) 5.79809i 0.297828i 0.988850 + 0.148914i \(0.0475777\pi\)
−0.988850 + 0.148914i \(0.952422\pi\)
\(380\) 40.1553 + 58.0190i 2.05992 + 2.97631i
\(381\) 0 0
\(382\) −6.55650 + 24.4692i −0.335460 + 1.25195i
\(383\) 9.09525 2.43707i 0.464746 0.124528i −0.0188451 0.999822i \(-0.505999\pi\)
0.483591 + 0.875294i \(0.339332\pi\)
\(384\) 0 0
\(385\) −21.3127 + 12.2842i −1.08619 + 0.626062i
\(386\) 31.3192i 1.59411i
\(387\) 0 0
\(388\) −27.7865 7.44538i −1.41065 0.377982i
\(389\) 4.94348 + 8.56236i 0.250644 + 0.434129i 0.963703 0.266975i \(-0.0860242\pi\)
−0.713059 + 0.701104i \(0.752691\pi\)
\(390\) 0 0
\(391\) 0.289932 0.0146625
\(392\) −25.1762 + 55.3513i −1.27159 + 2.79566i
\(393\) 0 0
\(394\) 26.5825 + 15.3474i 1.33920 + 0.773190i
\(395\) −0.397144 4.84364i −0.0199825 0.243710i
\(396\) 0 0
\(397\) 20.9026 5.60083i 1.04907 0.281097i 0.307202 0.951644i \(-0.400607\pi\)
0.741867 + 0.670547i \(0.233940\pi\)
\(398\) 36.0902 + 36.0902i 1.80904 + 1.80904i
\(399\) 0 0
\(400\) 40.9104 + 49.8500i 2.04552 + 2.49250i
\(401\) 18.9003 + 10.9121i 0.943836 + 0.544924i 0.891161 0.453688i \(-0.149892\pi\)
0.0526753 + 0.998612i \(0.483225\pi\)
\(402\) 0 0
\(403\) −9.13790 2.44849i −0.455191 0.121968i
\(404\) −23.8382 + 41.2890i −1.18599 + 2.05420i
\(405\) 0 0
\(406\) −5.88731 2.11133i −0.292182 0.104784i
\(407\) 9.54680 9.54680i 0.473217 0.473217i
\(408\) 0 0
\(409\) 2.24712 1.29738i 0.111113 0.0641512i −0.443414 0.896317i \(-0.646233\pi\)
0.554527 + 0.832166i \(0.312899\pi\)
\(410\) 5.74079 + 4.87072i 0.283517 + 0.240548i
\(411\) 0 0
\(412\) −33.1541 33.1541i −1.63338 1.63338i
\(413\) −0.596238 0.0493239i −0.0293390 0.00242707i
\(414\) 0 0
\(415\) −2.12836 + 11.6970i −0.104477 + 0.574182i
\(416\) −14.8831 + 8.59278i −0.729705 + 0.421295i
\(417\) 0 0
\(418\) −17.4581 65.1544i −0.853902 3.18681i
\(419\) −9.23892 −0.451351 −0.225675 0.974203i \(-0.572459\pi\)
−0.225675 + 0.974203i \(0.572459\pi\)
\(420\) 0 0
\(421\) −4.60198 −0.224287 −0.112143 0.993692i \(-0.535772\pi\)
−0.112143 + 0.993692i \(0.535772\pi\)
\(422\) 5.17199 + 19.3021i 0.251768 + 0.939612i
\(423\) 0 0
\(424\) 37.6575 21.7416i 1.82881 1.05586i
\(425\) 3.96743 5.53649i 0.192449 0.268559i
\(426\) 0 0
\(427\) 13.4805 + 28.5556i 0.652365 + 1.38190i
\(428\) −50.0188 50.0188i −2.41775 2.41775i
\(429\) 0 0
\(430\) 2.98057 + 36.3515i 0.143736 + 1.75303i
\(431\) −1.04639 + 0.604133i −0.0504027 + 0.0291000i −0.524990 0.851109i \(-0.675931\pi\)
0.474587 + 0.880209i \(0.342597\pi\)
\(432\) 0 0
\(433\) 21.2085 21.2085i 1.01922 1.01922i 0.0194062 0.999812i \(-0.493822\pi\)
0.999812 0.0194062i \(-0.00617756\pi\)
\(434\) −12.0856 66.6947i −0.580126 3.20145i
\(435\) 0 0
\(436\) 9.63732 16.6923i 0.461544 0.799417i
\(437\) −1.24024 0.332321i −0.0593287 0.0158971i
\(438\) 0 0
\(439\) 7.26004 + 4.19158i 0.346503 + 0.200053i 0.663144 0.748492i \(-0.269222\pi\)
−0.316641 + 0.948545i \(0.602555\pi\)
\(440\) −27.2097 76.0465i −1.29717 3.62538i
\(441\) 0 0
\(442\) 2.57193 + 2.57193i 0.122334 + 0.122334i
\(443\) 5.19257 1.39135i 0.246707 0.0661048i −0.133347 0.991069i \(-0.542572\pi\)
0.380053 + 0.924965i \(0.375906\pi\)
\(444\) 0 0
\(445\) 32.0824 2.63054i 1.52085 0.124699i
\(446\) −31.9701 18.4580i −1.51383 0.874010i
\(447\) 0 0
\(448\) −45.1064 31.2670i −2.13108 1.47723i
\(449\) 3.34892 0.158045 0.0790227 0.996873i \(-0.474820\pi\)
0.0790227 + 0.996873i \(0.474820\pi\)
\(450\) 0 0
\(451\) −2.60320 4.50887i −0.122580 0.212315i
\(452\) −94.4666 25.3123i −4.44334 1.19059i
\(453\) 0 0
\(454\) 28.9613i 1.35922i
\(455\) −4.15686 + 4.15081i −0.194876 + 0.194593i
\(456\) 0 0
\(457\) −1.01059 + 0.270788i −0.0472736 + 0.0126669i −0.282378 0.959303i \(-0.591123\pi\)
0.235105 + 0.971970i \(0.424457\pi\)
\(458\) −5.15628 + 19.2435i −0.240937 + 0.899189i
\(459\) 0 0
\(460\) −2.44905 0.445626i −0.114188 0.0207774i
\(461\) 23.0551i 1.07378i 0.843651 + 0.536891i \(0.180401\pi\)
−0.843651 + 0.536891i \(0.819599\pi\)
\(462\) 0 0
\(463\) −25.8069 + 25.8069i −1.19935 + 1.19935i −0.224987 + 0.974362i \(0.572234\pi\)
−0.974362 + 0.224987i \(0.927766\pi\)
\(464\) 5.66934 9.81958i 0.263192 0.455863i
\(465\) 0 0
\(466\) −29.9815 51.9294i −1.38886 2.40558i
\(467\) 6.24612 + 23.3108i 0.289036 + 1.07870i 0.945839 + 0.324635i \(0.105242\pi\)
−0.656803 + 0.754062i \(0.728092\pi\)
\(468\) 0 0
\(469\) 5.45274 + 6.43626i 0.251784 + 0.297199i
\(470\) −0.587828 0.278024i −0.0271145 0.0128243i
\(471\) 0 0
\(472\) 0.508405 1.89740i 0.0234013 0.0873347i
\(473\) 6.52821 24.3636i 0.300167 1.12024i
\(474\) 0 0
\(475\) −23.3174 + 19.1359i −1.06988 + 0.878016i
\(476\) −6.36386 + 17.7452i −0.291687 + 0.813351i
\(477\) 0 0
\(478\) 8.30746 + 31.0039i 0.379974 + 1.41808i
\(479\) 9.61925 + 16.6610i 0.439515 + 0.761262i 0.997652 0.0684867i \(-0.0218171\pi\)
−0.558137 + 0.829749i \(0.688484\pi\)
\(480\) 0 0
\(481\) 1.61206 2.79218i 0.0735038 0.127312i
\(482\) 28.0009 28.0009i 1.27540 1.27540i
\(483\) 0 0
\(484\) 32.8975i 1.49534i
\(485\) 2.20154 12.0991i 0.0999670 0.549394i
\(486\) 0 0
\(487\) 7.55036 28.1783i 0.342140 1.27688i −0.553779 0.832664i \(-0.686815\pi\)
0.895918 0.444219i \(-0.146519\pi\)
\(488\) −100.147 + 26.8342i −4.53342 + 1.21473i
\(489\) 0 0
\(490\) −39.6080 14.2369i −1.78931 0.643158i
\(491\) 7.79240i 0.351666i 0.984420 + 0.175833i \(0.0562619\pi\)
−0.984420 + 0.175833i \(0.943738\pi\)
\(492\) 0 0
\(493\) −1.15679 0.309962i −0.0520993 0.0139600i
\(494\) −8.05396 13.9499i −0.362365 0.627634i
\(495\) 0 0
\(496\) 122.880 5.51746
\(497\) 21.2823 + 14.7525i 0.954643 + 0.661742i
\(498\) 0 0
\(499\) −4.52229 2.61095i −0.202446 0.116882i 0.395350 0.918530i \(-0.370623\pi\)
−0.597796 + 0.801649i \(0.703957\pi\)
\(500\) −42.0225 + 40.6687i −1.87930 + 1.81876i
\(501\) 0 0
\(502\) −48.9256 + 13.1096i −2.18366 + 0.585109i
\(503\) −25.6241 25.6241i −1.14252 1.14252i −0.987987 0.154535i \(-0.950612\pi\)
−0.154535 0.987987i \(-0.549388\pi\)
\(504\) 0 0
\(505\) −18.4248 8.71435i −0.819894 0.387783i
\(506\) 2.06085 + 1.18983i 0.0916159 + 0.0528945i
\(507\) 0 0
\(508\) 40.7460 + 10.9178i 1.80781 + 0.484401i
\(509\) 17.7901 30.8133i 0.788532 1.36578i −0.138335 0.990385i \(-0.544175\pi\)
0.926866 0.375391i \(-0.122492\pi\)
\(510\) 0 0
\(511\) 13.8064 11.6966i 0.610758 0.517429i
\(512\) −0.604217 + 0.604217i −0.0267029 + 0.0267029i
\(513\) 0 0
\(514\) −34.8428 + 20.1165i −1.53685 + 0.887300i
\(515\) 12.9678 15.2842i 0.571428 0.673504i
\(516\) 0 0
\(517\) 0.317975 + 0.317975i 0.0139845 + 0.0139845i
\(518\) 23.0216 + 1.90447i 1.01151 + 0.0836775i
\(519\) 0 0
\(520\) −10.9765 15.8596i −0.481353 0.695489i
\(521\) 20.0749 11.5902i 0.879495 0.507777i 0.00900344 0.999959i \(-0.497134\pi\)
0.870492 + 0.492183i \(0.163801\pi\)
\(522\) 0 0
\(523\) 0.305268 + 1.13928i 0.0133485 + 0.0498171i 0.972279 0.233824i \(-0.0751241\pi\)
−0.958930 + 0.283642i \(0.908457\pi\)
\(524\) −99.0025 −4.32494
\(525\) 0 0
\(526\) −29.9962 −1.30790
\(527\) −3.35912 12.5364i −0.146326 0.546095i
\(528\) 0 0
\(529\) −19.8794 + 11.4774i −0.864320 + 0.499015i
\(530\) 17.1284 + 24.7482i 0.744010 + 1.07499i
\(531\) 0 0
\(532\) 47.5623 68.6144i 2.06209 2.97481i
\(533\) −0.879147 0.879147i −0.0380801 0.0380801i
\(534\) 0 0
\(535\) 19.5642 23.0590i 0.845833 0.996926i
\(536\) −23.9859 + 13.8483i −1.03603 + 0.598153i
\(537\) 0 0
\(538\) 31.7169 31.7169i 1.36741 1.36741i
\(539\) 22.4728 + 18.4975i 0.967971 + 0.796745i
\(540\) 0 0
\(541\) 4.51761 7.82473i 0.194227 0.336411i −0.752420 0.658684i \(-0.771113\pi\)
0.946647 + 0.322273i \(0.104447\pi\)
\(542\) 30.4784 + 8.16666i 1.30916 + 0.350788i
\(543\) 0 0
\(544\) −20.4184 11.7886i −0.875430 0.505430i
\(545\) 7.44880 + 3.52304i 0.319072 + 0.150911i
\(546\) 0 0
\(547\) 22.6405 + 22.6405i 0.968036 + 0.968036i 0.999505 0.0314683i \(-0.0100183\pi\)
−0.0314683 + 0.999505i \(0.510018\pi\)
\(548\) 60.2646 16.1479i 2.57438 0.689802i
\(549\) 0 0
\(550\) 50.9215 23.0719i 2.17130 0.983791i
\(551\) 4.59313 + 2.65184i 0.195674 + 0.112972i
\(552\) 0 0
\(553\) −5.19999 + 2.45480i −0.221126 + 0.104389i
\(554\) −32.9847 −1.40139
\(555\) 0 0
\(556\) 44.4721 + 77.0279i 1.88604 + 3.26671i
\(557\) 29.0377 + 7.78063i 1.23037 + 0.329676i 0.814723 0.579851i \(-0.196889\pi\)
0.415645 + 0.909527i \(0.363556\pi\)
\(558\) 0 0
\(559\) 6.02334i 0.254760i
\(560\) 38.1996 66.0526i 1.61423 2.79123i
\(561\) 0 0
\(562\) −52.1881 + 13.9838i −2.20142 + 0.589870i
\(563\) 4.47706 16.7086i 0.188685 0.704184i −0.805126 0.593104i \(-0.797902\pi\)
0.993811 0.111080i \(-0.0354310\pi\)
\(564\) 0 0
\(565\) 7.48465 41.1338i 0.314882 1.73051i
\(566\) 85.4287i 3.59084i
\(567\) 0 0
\(568\) −60.1204 + 60.1204i −2.52260 + 2.52260i
\(569\) −7.00255 + 12.1288i −0.293562 + 0.508465i −0.974649 0.223738i \(-0.928174\pi\)
0.681087 + 0.732202i \(0.261507\pi\)
\(570\) 0 0
\(571\) −2.55183 4.41990i −0.106791 0.184967i 0.807678 0.589624i \(-0.200724\pi\)
−0.914468 + 0.404657i \(0.867391\pi\)
\(572\) 5.58940 + 20.8599i 0.233705 + 0.872197i
\(573\) 0 0
\(574\) 3.00710 8.38511i 0.125514 0.349988i
\(575\) 0.104311 1.05904i 0.00435008 0.0441650i
\(576\) 0 0
\(577\) −3.25944 + 12.1644i −0.135692 + 0.506411i 0.864302 + 0.502974i \(0.167761\pi\)
−0.999994 + 0.00343709i \(0.998906\pi\)
\(578\) 10.5398 39.3349i 0.438396 1.63612i
\(579\) 0 0
\(580\) 9.29501 + 4.39624i 0.385954 + 0.182544i
\(581\) 13.8419 2.50825i 0.574258 0.104060i
\(582\) 0 0
\(583\) −5.38699 20.1045i −0.223106 0.832644i
\(584\) 29.7058 + 51.4519i 1.22923 + 2.12910i
\(585\) 0 0
\(586\) 6.32263 10.9511i 0.261186 0.452387i
\(587\) 29.0630 29.0630i 1.19956 1.19956i 0.225260 0.974299i \(-0.427677\pi\)
0.974299 0.225260i \(-0.0723232\pi\)
\(588\) 0 0
\(589\) 57.4772i 2.36831i
\(590\) 1.33767 + 0.243401i 0.0550710 + 0.0100206i
\(591\) 0 0
\(592\) −10.8389 + 40.4514i −0.445477 + 1.66254i
\(593\) −27.3282 + 7.32257i −1.12224 + 0.300702i −0.771788 0.635880i \(-0.780637\pi\)
−0.350448 + 0.936582i \(0.613971\pi\)
\(594\) 0 0
\(595\) −7.78306 2.09153i −0.319074 0.0857445i
\(596\) 55.6122i 2.27797i
\(597\) 0 0
\(598\) 0.548907 + 0.147079i 0.0224465 + 0.00601451i
\(599\) 13.6860 + 23.7049i 0.559195 + 0.968554i 0.997564 + 0.0697592i \(0.0222231\pi\)
−0.438369 + 0.898795i \(0.644444\pi\)
\(600\) 0 0
\(601\) −39.4893 −1.61080 −0.805401 0.592731i \(-0.798050\pi\)
−0.805401 + 0.592731i \(0.798050\pi\)
\(602\) 39.0260 18.4233i 1.59058 0.750877i
\(603\) 0 0
\(604\) −62.6747 36.1853i −2.55020 1.47236i
\(605\) −14.0167 + 1.14927i −0.569859 + 0.0467245i
\(606\) 0 0
\(607\) −3.88660 + 1.04141i −0.157752 + 0.0422696i −0.336831 0.941565i \(-0.609355\pi\)
0.179079 + 0.983835i \(0.442688\pi\)
\(608\) 73.8314 + 73.8314i 2.99426 + 2.99426i
\(609\) 0 0
\(610\) −24.1761 67.5681i −0.978861 2.73575i
\(611\) 0.0929988 + 0.0536929i 0.00376233 + 0.00217218i
\(612\) 0 0
\(613\) 17.6850 + 4.73869i 0.714292 + 0.191394i 0.597623 0.801777i \(-0.296112\pi\)
0.116668 + 0.993171i \(0.462779\pi\)
\(614\) 5.64388 9.77549i 0.227769 0.394507i
\(615\) 0 0
\(616\) −72.9163 + 61.7740i −2.93788 + 2.48895i
\(617\) 21.3229 21.3229i 0.858426 0.858426i −0.132727 0.991153i \(-0.542373\pi\)
0.991153 + 0.132727i \(0.0423732\pi\)
\(618\) 0 0
\(619\) 2.61954 1.51239i 0.105288 0.0607883i −0.446431 0.894818i \(-0.647305\pi\)
0.551720 + 0.834030i \(0.313972\pi\)
\(620\) 9.10598 + 111.058i 0.365705 + 4.46020i
\(621\) 0 0
\(622\) 17.7744 + 17.7744i 0.712688 + 0.712688i
\(623\) −16.2597 34.4428i −0.651431 1.37992i
\(624\) 0 0
\(625\) −18.7958 16.4838i −0.751834 0.659353i
\(626\) −48.4572 + 27.9768i −1.93674 + 1.11818i
\(627\) 0 0
\(628\) 27.5311 + 102.747i 1.09861 + 4.10007i
\(629\) 4.42323 0.176366
\(630\) 0 0
\(631\) 40.5296 1.61346 0.806730 0.590921i \(-0.201235\pi\)
0.806730 + 0.590921i \(0.201235\pi\)
\(632\) −4.88653 18.2368i −0.194376 0.725420i
\(633\) 0 0
\(634\) 33.6130 19.4065i 1.33494 0.770729i
\(635\) −3.22833 + 17.7421i −0.128112 + 0.704074i
\(636\) 0 0
\(637\) 6.32697 + 2.87778i 0.250684 + 0.114022i
\(638\) −6.95051 6.95051i −0.275173 0.275173i
\(639\) 0 0
\(640\) 36.0879 + 30.6185i 1.42650 + 1.21030i
\(641\) 37.2313 21.4955i 1.47055 0.849022i 0.471096 0.882082i \(-0.343859\pi\)
0.999453 + 0.0330603i \(0.0105253\pi\)
\(642\) 0 0
\(643\) 31.4639 31.4639i 1.24082 1.24082i 0.281152 0.959663i \(-0.409283\pi\)
0.959663 0.281152i \(-0.0907166\pi\)
\(644\) 0.525164 + 2.89814i 0.0206944 + 0.114203i
\(645\) 0 0
\(646\) 11.0493 19.1380i 0.434730 0.752975i
\(647\) −16.5816 4.44301i −0.651888 0.174673i −0.0823057 0.996607i \(-0.526228\pi\)
−0.569582 + 0.821934i \(0.692895\pi\)
\(648\) 0 0
\(649\) −0.814279 0.470124i −0.0319632 0.0184540i
\(650\) 10.3198 8.46920i 0.404778 0.332189i
\(651\) 0 0
\(652\) −6.35583 6.35583i −0.248913 0.248913i
\(653\) 26.6769 7.14804i 1.04395 0.279724i 0.304198 0.952609i \(-0.401611\pi\)
0.739748 + 0.672884i \(0.234945\pi\)
\(654\) 0 0
\(655\) −3.45864 42.1821i −0.135140 1.64819i
\(656\) 13.9857 + 8.07466i 0.546051 + 0.315262i
\(657\) 0 0
\(658\) −0.0634320 + 0.766779i −0.00247284 + 0.0298922i
\(659\) 6.44855 0.251200 0.125600 0.992081i \(-0.459914\pi\)
0.125600 + 0.992081i \(0.459914\pi\)
\(660\) 0 0
\(661\) 3.39721 + 5.88414i 0.132136 + 0.228867i 0.924500 0.381182i \(-0.124483\pi\)
−0.792364 + 0.610049i \(0.791150\pi\)
\(662\) −29.9936 8.03675i −1.16573 0.312357i
\(663\) 0 0
\(664\) 46.1875i 1.79242i
\(665\) 30.8962 + 17.8679i 1.19810 + 0.692888i
\(666\) 0 0
\(667\) −0.180733 + 0.0484272i −0.00699800 + 0.00187511i
\(668\) 9.10418 33.9772i 0.352251 1.31462i
\(669\) 0 0
\(670\) −10.9099 15.7633i −0.421486 0.608990i
\(671\) 49.6273i 1.91584i
\(672\) 0 0
\(673\) 15.7865 15.7865i 0.608524 0.608524i −0.334036 0.942560i \(-0.608411\pi\)
0.942560 + 0.334036i \(0.108411\pi\)
\(674\) 39.3773 68.2035i 1.51676 2.62710i
\(675\) 0 0
\(676\) −31.4200 54.4211i −1.20846 2.09312i
\(677\) −4.56513 17.0373i −0.175452 0.654797i −0.996474 0.0839000i \(-0.973262\pi\)
0.821022 0.570897i \(-0.193404\pi\)
\(678\) 0 0
\(679\) −14.3178 + 2.59449i −0.549467 + 0.0995673i
\(680\) 11.3136 23.9204i 0.433855 0.917304i
\(681\) 0 0
\(682\) 27.5705 102.895i 1.05573 3.94004i
\(683\) −6.77169 + 25.2723i −0.259111 + 0.967017i 0.706645 + 0.707568i \(0.250208\pi\)
−0.965757 + 0.259449i \(0.916459\pi\)
\(684\) 0 0
\(685\) 8.98548 + 25.1129i 0.343318 + 0.959515i
\(686\) 0.706516 + 49.7954i 0.0269749 + 1.90120i
\(687\) 0 0
\(688\) 20.2493 + 75.5716i 0.771999 + 2.88114i
\(689\) −2.48519 4.30447i −0.0946781 0.163987i
\(690\) 0 0
\(691\) −6.25564 + 10.8351i −0.237976 + 0.412186i −0.960133 0.279543i \(-0.909817\pi\)
0.722158 + 0.691729i \(0.243151\pi\)
\(692\) 1.00838 1.00838i 0.0383328 0.0383328i
\(693\) 0 0
\(694\) 57.2360i 2.17265i
\(695\) −31.2658 + 21.6392i −1.18598 + 0.820823i
\(696\) 0 0
\(697\) 0.441469 1.64758i 0.0167218 0.0624067i
\(698\) −17.7819 + 4.76465i −0.673055 + 0.180344i
\(699\) 0 0
\(700\) 62.5288 + 29.6297i 2.36336 + 1.11990i
\(701\) 15.0496i 0.568417i −0.958763 0.284208i \(-0.908269\pi\)
0.958763 0.284208i \(-0.0917307\pi\)
\(702\) 0 0
\(703\) −18.9212 5.06992i −0.713627 0.191216i
\(704\) −43.1275 74.6991i −1.62543 2.81533i
\(705\) 0 0
\(706\) −54.7810 −2.06171
\(707\) −1.98821 + 24.0339i −0.0747743 + 0.903887i
\(708\) 0 0
\(709\) 36.3774 + 21.0025i 1.36618 + 0.788766i 0.990438 0.137958i \(-0.0440539\pi\)
0.375744 + 0.926724i \(0.377387\pi\)
\(710\) −44.8745 38.0734i −1.68411 1.42887i
\(711\) 0 0
\(712\) 120.794 32.3665i 4.52693 1.21299i
\(713\) −1.43382 1.43382i −0.0536972 0.0536972i
\(714\) 0 0
\(715\) −8.69255 + 3.11022i −0.325083 + 0.116316i
\(716\) 77.8167 + 44.9275i 2.90815 + 1.67902i
\(717\) 0 0
\(718\) −41.3921 11.0910i −1.54474 0.413911i
\(719\) 20.7737 35.9811i 0.774729 1.34187i −0.160217 0.987082i \(-0.551220\pi\)
0.934947 0.354788i \(-0.115447\pi\)
\(720\) 0 0
\(721\) −22.3245 8.00608i −0.831406 0.298162i
\(722\) −33.0754 + 33.0754i −1.23094 + 1.23094i
\(723\) 0 0
\(724\) 18.4606 10.6582i 0.686082 0.396110i
\(725\) −1.54839 + 4.11392i −0.0575058 + 0.152787i
\(726\) 0 0
\(727\) 5.40873 + 5.40873i 0.200599 + 0.200599i 0.800256 0.599658i \(-0.204697\pi\)
−0.599658 + 0.800256i \(0.704697\pi\)
\(728\) −13.0012 + 18.7559i −0.481858 + 0.695139i
\(729\) 0 0
\(730\) −33.8138 + 23.4027i −1.25150 + 0.866174i
\(731\) 7.15640 4.13175i 0.264689 0.152818i
\(732\) 0 0
\(733\) 9.15765 + 34.1768i 0.338246 + 1.26235i 0.900307 + 0.435255i \(0.143342\pi\)
−0.562062 + 0.827095i \(0.689992\pi\)
\(734\) −30.2007 −1.11473
\(735\) 0 0
\(736\) −3.68359 −0.135779
\(737\) 3.43123 + 12.8055i 0.126391 + 0.471698i
\(738\) 0 0
\(739\) −17.4398 + 10.0689i −0.641535 + 0.370390i −0.785205 0.619235i \(-0.787443\pi\)
0.143671 + 0.989626i \(0.454109\pi\)
\(740\) −37.3630 6.79851i −1.37349 0.249918i
\(741\) 0 0
\(742\) 20.2879 29.2677i 0.744792 1.07445i
\(743\) 4.81639 + 4.81639i 0.176696 + 0.176696i 0.789914 0.613218i \(-0.210125\pi\)
−0.613218 + 0.789914i \(0.710125\pi\)
\(744\) 0 0
\(745\) 23.6948 1.94281i 0.868110 0.0711789i
\(746\) 71.7151 41.4047i 2.62568 1.51594i
\(747\) 0 0
\(748\) −20.9498 + 20.9498i −0.766002 + 0.766002i
\(749\) −33.6804 12.0786i −1.23066 0.441342i
\(750\) 0 0
\(751\) 1.34330 2.32666i 0.0490177 0.0849012i −0.840476 0.541850i \(-0.817724\pi\)
0.889493 + 0.456948i \(0.151058\pi\)
\(752\) −1.34731 0.361011i −0.0491314 0.0131647i
\(753\) 0 0
\(754\) −2.03283 1.17366i −0.0740313 0.0427420i
\(755\) 13.2280 27.9680i 0.481415 1.01786i
\(756\) 0 0
\(757\) 26.4395 + 26.4395i 0.960959 + 0.960959i 0.999266 0.0383075i \(-0.0121966\pi\)
−0.0383075 + 0.999266i \(0.512197\pi\)
\(758\) −15.0596 + 4.03521i −0.546990 + 0.146566i
\(759\) 0 0
\(760\) −75.8135 + 89.3563i −2.75005 + 3.24129i
\(761\) −22.8320 13.1820i −0.827658 0.477849i 0.0253919 0.999678i \(-0.491917\pi\)
−0.853050 + 0.521829i \(0.825250\pi\)
\(762\) 0 0
\(763\) 0.803794 9.71643i 0.0290993 0.351758i
\(764\) −49.2763 −1.78275
\(765\) 0 0
\(766\) 12.6598 + 21.9274i 0.457417 + 0.792270i
\(767\) −0.216883 0.0581136i −0.00783119 0.00209836i
\(768\) 0 0
\(769\) 3.56245i 0.128465i −0.997935 0.0642326i \(-0.979540\pi\)
0.997935 0.0642326i \(-0.0204600\pi\)
\(770\) −46.7390 46.8071i −1.68436 1.68681i
\(771\) 0 0
\(772\) 58.8460 15.7677i 2.11791 0.567493i
\(773\) 0.795756 2.96980i 0.0286214 0.106816i −0.950137 0.311831i \(-0.899058\pi\)
0.978759 + 0.205015i \(0.0657243\pi\)
\(774\) 0 0
\(775\) −47.0005 + 7.75960i −1.68831 + 0.278733i
\(776\) 47.7755i 1.71504i
\(777\) 0 0
\(778\) −18.7989 + 18.7989i −0.673975 + 0.673975i
\(779\) −3.77693 + 6.54184i −0.135323 + 0.234386i
\(780\) 0 0
\(781\) 20.3487 + 35.2449i 0.728132 + 1.26116i
\(782\) 0.201780 + 0.753053i 0.00721563 + 0.0269291i
\(783\) 0 0
\(784\) −89.0557 14.8358i −3.18056 0.529851i
\(785\) −42.8159 + 15.3197i −1.52817 + 0.546783i
\(786\) 0 0
\(787\) −10.9823 + 40.9866i −0.391478 + 1.46101i 0.436220 + 0.899840i \(0.356317\pi\)
−0.827698 + 0.561174i \(0.810350\pi\)
\(788\) −15.4533 + 57.6727i −0.550503 + 2.05450i
\(789\) 0 0
\(790\) 12.3042 4.40248i 0.437764 0.156633i
\(791\) −48.6766 + 8.82056i −1.73074 + 0.313623i
\(792\) 0 0
\(793\) 3.06730 + 11.4473i 0.108923 + 0.406506i
\(794\) 29.0945 + 50.3932i 1.03253 + 1.78839i
\(795\) 0 0
\(796\) −49.6405 + 85.9799i −1.75946 + 3.04748i
\(797\) 37.3428 37.3428i 1.32275 1.32275i 0.411208 0.911542i \(-0.365107\pi\)
0.911542 0.411208i \(-0.134893\pi\)
\(798\) 0 0
\(799\) 0.147324i 0.00521195i
\(800\) −50.4063 + 70.3413i −1.78213 + 2.48694i
\(801\) 0 0
\(802\) −15.1887 + 56.6849i −0.536331 + 2.00161i
\(803\) 27.4690 7.36031i 0.969361 0.259740i
\(804\) 0 0
\(805\) −1.21647 + 0.325004i −0.0428749 + 0.0114549i
\(806\) 25.4383i 0.896027i
\(807\) 0 0
\(808\) −76.4825 20.4934i −2.69064 0.720956i
\(809\) 10.5010 + 18.1884i 0.369197 + 0.639468i 0.989440 0.144941i \(-0.0462993\pi\)
−0.620243 + 0.784410i \(0.712966\pi\)
\(810\) 0 0
\(811\) −36.4188 −1.27884 −0.639419 0.768858i \(-0.720825\pi\)
−0.639419 + 0.768858i \(0.720825\pi\)
\(812\) 1.00302 12.1247i 0.0351990 0.425493i
\(813\) 0 0
\(814\) 31.4405 + 18.1522i 1.10199 + 0.636233i
\(815\) 2.48600 2.93008i 0.0870807 0.102636i
\(816\) 0 0
\(817\) −35.3487 + 9.47166i −1.23670 + 0.331371i
\(818\) 4.93364 + 4.93364i 0.172501 + 0.172501i
\(819\) 0 0
\(820\) −6.26142 + 13.2386i −0.218658 + 0.462311i
\(821\) −21.3394 12.3203i −0.744751 0.429982i 0.0790431 0.996871i \(-0.474814\pi\)
−0.823794 + 0.566889i \(0.808147\pi\)
\(822\) 0 0
\(823\) −17.4572 4.67764i −0.608519 0.163052i −0.0586159 0.998281i \(-0.518669\pi\)
−0.549903 + 0.835228i \(0.685335\pi\)
\(824\) 38.9347 67.4368i 1.35635 2.34927i
\(825\) 0 0
\(826\) −0.286844 1.58296i −0.00998059 0.0550783i
\(827\) −25.8068 + 25.8068i −0.897391 + 0.897391i −0.995205 0.0978136i \(-0.968815\pi\)
0.0978136 + 0.995205i \(0.468815\pi\)
\(828\) 0 0
\(829\) −21.1695 + 12.2222i −0.735248 + 0.424496i −0.820339 0.571878i \(-0.806215\pi\)
0.0850911 + 0.996373i \(0.472882\pi\)
\(830\) −31.8623 + 2.61249i −1.10596 + 0.0906808i
\(831\) 0 0
\(832\) −14.5650 14.5650i −0.504949 0.504949i
\(833\) 0.920907 + 9.49119i 0.0319075 + 0.328850i
\(834\) 0 0
\(835\) 14.7948 + 2.69204i 0.511995 + 0.0931618i
\(836\) 113.630 65.6042i 3.92997 2.26897i
\(837\) 0 0
\(838\) −6.42988 23.9966i −0.222117 0.828950i
\(839\) 34.3012 1.18421 0.592105 0.805861i \(-0.298297\pi\)
0.592105 + 0.805861i \(0.298297\pi\)
\(840\) 0 0
\(841\) −28.2271 −0.973349
\(842\) −3.20278 11.9529i −0.110375 0.411925i
\(843\) 0 0
\(844\) −33.6631 + 19.4354i −1.15873 + 0.668993i
\(845\) 22.0896 15.2884i 0.759906 0.525936i
\(846\) 0 0
\(847\) 7.10379 + 15.0479i 0.244089 + 0.517052i
\(848\) 45.6511 + 45.6511i 1.56767 + 1.56767i
\(849\) 0 0
\(850\) 17.1413 + 6.45163i 0.587943 + 0.221289i
\(851\) 0.598482 0.345534i 0.0205157 0.0118447i
\(852\) 0 0
\(853\) 38.7234 38.7234i 1.32586 1.32586i 0.416919 0.908944i \(-0.363110\pi\)
0.908944 0.416919i \(-0.136890\pi\)
\(854\) −64.7869 + 54.8868i −2.21696 + 1.87819i
\(855\) 0 0
\(856\) 58.7399 101.740i 2.00769 3.47742i
\(857\) −36.7630 9.85063i −1.25580 0.336491i −0.431226 0.902244i \(-0.641919\pi\)
−0.824575 + 0.565753i \(0.808586\pi\)
\(858\) 0 0
\(859\) 21.3839 + 12.3460i 0.729608 + 0.421239i 0.818279 0.574822i \(-0.194929\pi\)
−0.0886709 + 0.996061i \(0.528262\pi\)
\(860\) −66.8006 + 23.9015i −2.27788 + 0.815033i
\(861\) 0 0
\(862\) −2.29738 2.29738i −0.0782491 0.0782491i
\(863\) −14.5822 + 3.90728i −0.496382 + 0.133005i −0.498321 0.866993i \(-0.666050\pi\)
0.00193811 + 0.999998i \(0.499383\pi\)
\(864\) 0 0
\(865\) 0.464869 + 0.394414i 0.0158060 + 0.0134105i
\(866\) 69.8461 + 40.3257i 2.37347 + 1.37032i
\(867\) 0 0
\(868\) 119.229 56.2853i 4.04689 1.91045i
\(869\) −9.03718 −0.306565
\(870\) 0 0
\(871\) 1.58293 + 2.74172i 0.0536357 + 0.0928997i
\(872\) 30.9204 + 8.28509i 1.04710 + 0.280569i
\(873\) 0 0
\(874\) 3.45261i 0.116786i
\(875\) −10.4400 + 27.6768i −0.352935 + 0.935648i
\(876\) 0 0
\(877\) 37.5967 10.0740i 1.26955 0.340175i 0.439692 0.898149i \(-0.355088\pi\)
0.829859 + 0.557973i \(0.188421\pi\)
\(878\) −5.83432 + 21.7740i −0.196899 + 0.734836i
\(879\) 0 0
\(880\) 98.6048 68.2450i 3.32397 2.30054i
\(881\) 40.0097i 1.34796i −0.738750 0.673980i \(-0.764583\pi\)
0.738750 0.673980i \(-0.235417\pi\)
\(882\) 0 0
\(883\) 20.2833 20.2833i 0.682587 0.682587i −0.277995 0.960582i \(-0.589670\pi\)
0.960582 + 0.277995i \(0.0896700\pi\)
\(884\) −3.53757 + 6.12725i −0.118981 + 0.206082i
\(885\) 0 0
\(886\) 7.22761 + 12.5186i 0.242816 + 0.420570i
\(887\) −2.09272 7.81012i −0.0702665 0.262238i 0.921852 0.387542i \(-0.126676\pi\)
−0.992118 + 0.125304i \(0.960009\pi\)
\(888\) 0 0
\(889\) 20.9955 3.80454i 0.704167 0.127600i
\(890\) 29.1604 + 81.4984i 0.977458 + 2.73183i
\(891\) 0 0
\(892\) 18.5854 69.3616i 0.622285 2.32240i
\(893\) 0.168864 0.630208i 0.00565080 0.0210891i
\(894\) 0 0
\(895\) −16.4238 + 34.7250i −0.548988 + 1.16073i
\(896\) 18.9033 52.7108i 0.631516 1.76094i
\(897\) 0 0
\(898\) 2.33070 + 8.69830i 0.0777765 + 0.290266i
\(899\) 4.18791 + 7.25367i 0.139675 + 0.241923i
\(900\) 0 0
\(901\) 3.40946 5.90537i 0.113586 0.196736i
\(902\) 9.89938 9.89938i 0.329613 0.329613i
\(903\) 0 0
\(904\) 162.424i 5.40213i
\(905\) 5.18609 + 7.49319i 0.172391 + 0.249082i
\(906\) 0 0
\(907\) 3.38781 12.6435i 0.112491 0.419820i −0.886596 0.462544i \(-0.846937\pi\)
0.999087 + 0.0427234i \(0.0136034\pi\)
\(908\) 54.4155 14.5806i 1.80584 0.483874i
\(909\) 0 0
\(910\) −13.6741 7.90800i −0.453291 0.262148i
\(911\) 18.3815i 0.609005i 0.952512 + 0.304502i \(0.0984901\pi\)
−0.952512 + 0.304502i \(0.901510\pi\)
\(912\) 0 0
\(913\) 21.3548 + 5.72201i 0.706742 + 0.189371i
\(914\) −1.40666 2.43640i −0.0465281 0.0805891i
\(915\) 0 0
\(916\) −38.7527 −1.28042
\(917\) −45.2855 + 21.3783i −1.49546 + 0.705974i
\(918\) 0 0
\(919\) −33.5697 19.3815i −1.10736 0.639336i −0.169218 0.985579i \(-0.554124\pi\)
−0.938145 + 0.346242i \(0.887457\pi\)
\(920\) −0.337838 4.12032i −0.0111382 0.135843i
\(921\) 0 0
\(922\) −59.8820 + 16.0453i −1.97211 + 0.528425i
\(923\) 6.87211 + 6.87211i 0.226198 + 0.226198i
\(924\) 0 0
\(925\) 1.59138 16.1568i 0.0523243 0.531232i
\(926\) −84.9899 49.0689i −2.79294 1.61251i
\(927\) 0 0
\(928\) 14.6971 + 3.93808i 0.482456 + 0.129274i
\(929\) −4.37286 + 7.57402i −0.143469 + 0.248496i −0.928801 0.370580i \(-0.879159\pi\)
0.785332 + 0.619075i \(0.212492\pi\)
\(930\) 0 0
\(931\) 6.93949 41.6559i 0.227433 1.36522i
\(932\) 82.4764 82.4764i 2.70160 2.70160i
\(933\) 0 0
\(934\) −56.1993 + 32.4467i −1.83890 + 1.06169i
\(935\) −9.65801 8.19425i −0.315851 0.267981i
\(936\) 0 0
\(937\) 10.8936 + 10.8936i 0.355879 + 0.355879i 0.862291 0.506413i \(-0.169029\pi\)
−0.506413 + 0.862291i \(0.669029\pi\)
\(938\) −12.9223 + 18.6420i −0.421929 + 0.608683i
\(939\) 0 0
\(940\) 0.226438 1.24445i 0.00738558 0.0405894i
\(941\) −47.6405 + 27.5052i −1.55304 + 0.896646i −0.555143 + 0.831755i \(0.687337\pi\)
−0.997892 + 0.0648907i \(0.979330\pi\)
\(942\) 0 0
\(943\) −0.0689733 0.257412i −0.00224608 0.00838249i
\(944\) 2.91648 0.0949234
\(945\) 0 0
\(946\) 67.8240 2.20515
\(947\) −11.1538 41.6265i −0.362449 1.35268i −0.870846 0.491556i \(-0.836428\pi\)
0.508396 0.861123i \(-0.330238\pi\)
\(948\) 0 0
\(949\) 5.88125 3.39554i 0.190913 0.110224i
\(950\) −65.9305 47.2456i −2.13907 1.53285i
\(951\) 0 0
\(952\) −31.2024 2.58123i −1.01128 0.0836580i
\(953\) 15.9728 + 15.9728i 0.517408 + 0.517408i 0.916786 0.399378i \(-0.130774\pi\)
−0.399378 + 0.916786i \(0.630774\pi\)
\(954\) 0 0
\(955\) −1.72146 20.9952i −0.0557052 0.679389i
\(956\) −54.0710 + 31.2179i −1.74878 + 1.00966i
\(957\) 0 0
\(958\) −36.5799 + 36.5799i −1.18184 + 1.18184i
\(959\) 24.0792 20.3997i 0.777559 0.658740i
\(960\) 0 0
\(961\) −29.8853 + 51.7628i −0.964040 + 1.66977i
\(962\) 8.37417 + 2.24385i 0.269994 + 0.0723447i
\(963\) 0 0
\(964\) 66.7081 + 38.5140i 2.14852 + 1.24045i
\(965\) 8.77396 + 24.5217i 0.282444 + 0.789383i
\(966\) 0 0
\(967\) 16.1296 + 16.1296i 0.518694 + 0.518694i 0.917176 0.398482i \(-0.130463\pi\)
−0.398482 + 0.917176i \(0.630463\pi\)
\(968\) −52.7742 + 14.1408i −1.69623 + 0.454502i
\(969\) 0 0
\(970\) 32.9578 2.70231i 1.05821 0.0867660i
\(971\) −38.0747 21.9824i −1.22187 0.705449i −0.256557 0.966529i \(-0.582588\pi\)
−0.965317 + 0.261080i \(0.915921\pi\)
\(972\) 0 0
\(973\) 36.9755 + 25.6308i 1.18538 + 0.821685i
\(974\) 78.4436 2.51349
\(975\) 0 0
\(976\) −76.9676 133.312i −2.46367 4.26720i
\(977\) 55.7479 + 14.9376i 1.78353 + 0.477896i 0.991220 0.132221i \(-0.0422108\pi\)
0.792312 + 0.610117i \(0.208877\pi\)
\(978\) 0 0
\(979\) 59.8589i 1.91310i
\(980\) 6.80909 81.5874i 0.217508 2.60622i
\(981\) 0 0
\(982\) −20.2395 + 5.42317i −0.645870 + 0.173060i
\(983\) 1.79419 6.69600i 0.0572257 0.213569i −0.931392 0.364017i \(-0.881405\pi\)
0.988618 + 0.150448i \(0.0480716\pi\)
\(984\) 0 0
\(985\) −25.1125 4.56944i −0.800152 0.145595i
\(986\) 3.22031i 0.102556i
\(987\) 0 0
\(988\) 22.1557 22.1557i 0.704868 0.704868i
\(989\) 0.645528 1.11809i 0.0205266 0.0355531i
\(990\) 0 0
\(991\) −14.8019 25.6376i −0.470197 0.814405i 0.529222 0.848483i \(-0.322484\pi\)
−0.999419 + 0.0340783i \(0.989150\pi\)
\(992\) 42.6778 + 159.276i 1.35502 + 5.05701i
\(993\) 0 0
\(994\) −23.5059 + 65.5447i −0.745561 + 2.07895i
\(995\) −38.3678 18.1467i −1.21634 0.575289i
\(996\) 0 0
\(997\) 4.53622 16.9294i 0.143663 0.536159i −0.856148 0.516731i \(-0.827149\pi\)
0.999811 0.0194282i \(-0.00618457\pi\)
\(998\) 3.63421 13.5631i 0.115039 0.429331i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.107.16 yes 64
3.2 odd 2 inner 315.2.ce.a.107.1 yes 64
5.3 odd 4 inner 315.2.ce.a.233.16 yes 64
7.4 even 3 inner 315.2.ce.a.242.1 yes 64
15.8 even 4 inner 315.2.ce.a.233.1 yes 64
21.11 odd 6 inner 315.2.ce.a.242.16 yes 64
35.18 odd 12 inner 315.2.ce.a.53.1 64
105.53 even 12 inner 315.2.ce.a.53.16 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.1 64 35.18 odd 12 inner
315.2.ce.a.53.16 yes 64 105.53 even 12 inner
315.2.ce.a.107.1 yes 64 3.2 odd 2 inner
315.2.ce.a.107.16 yes 64 1.1 even 1 trivial
315.2.ce.a.233.1 yes 64 15.8 even 4 inner
315.2.ce.a.233.16 yes 64 5.3 odd 4 inner
315.2.ce.a.242.1 yes 64 7.4 even 3 inner
315.2.ce.a.242.16 yes 64 21.11 odd 6 inner