Properties

Label 315.2.bl.g
Level 315
Weight 2
Character orbit 315.bl
Analytic conductor 2.515
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 315.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{6} ) q^{3} -2 \zeta_{6} q^{4} -\zeta_{6} q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{6} ) q^{3} -2 \zeta_{6} q^{4} -\zeta_{6} q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} + ( -2 - 2 \zeta_{6} ) q^{11} + ( -2 - 2 \zeta_{6} ) q^{12} + ( 6 - 3 \zeta_{6} ) q^{13} + ( -1 - \zeta_{6} ) q^{15} + ( -4 + 4 \zeta_{6} ) q^{16} + 3 q^{17} + ( 2 - 4 \zeta_{6} ) q^{19} + ( -2 + 2 \zeta_{6} ) q^{20} + ( -5 + 4 \zeta_{6} ) q^{21} + ( -8 + 4 \zeta_{6} ) q^{23} + ( -1 + \zeta_{6} ) q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} + ( 2 + 4 \zeta_{6} ) q^{28} + ( 1 + \zeta_{6} ) q^{29} + ( 4 - 2 \zeta_{6} ) q^{31} -6 q^{33} + ( 1 + 2 \zeta_{6} ) q^{35} -6 q^{36} + 10 q^{37} + ( 9 - 9 \zeta_{6} ) q^{39} + 12 \zeta_{6} q^{41} + ( 8 - 8 \zeta_{6} ) q^{43} + ( -4 + 8 \zeta_{6} ) q^{44} -3 q^{45} + ( -4 + 8 \zeta_{6} ) q^{48} + ( 8 - 5 \zeta_{6} ) q^{49} + ( 6 - 3 \zeta_{6} ) q^{51} + ( -6 - 6 \zeta_{6} ) q^{52} + ( 2 - 4 \zeta_{6} ) q^{53} + ( -2 + 4 \zeta_{6} ) q^{55} -6 \zeta_{6} q^{57} + ( -2 + 4 \zeta_{6} ) q^{60} + ( -4 - 4 \zeta_{6} ) q^{61} + ( -6 + 9 \zeta_{6} ) q^{63} + 8 q^{64} + ( -3 - 3 \zeta_{6} ) q^{65} + 10 \zeta_{6} q^{67} -6 \zeta_{6} q^{68} + ( -12 + 12 \zeta_{6} ) q^{69} + ( -7 + 14 \zeta_{6} ) q^{71} + ( 1 - 2 \zeta_{6} ) q^{73} + ( -1 + 2 \zeta_{6} ) q^{75} + ( -8 + 4 \zeta_{6} ) q^{76} + ( 8 + 2 \zeta_{6} ) q^{77} + ( -8 + 8 \zeta_{6} ) q^{79} + 4 q^{80} -9 \zeta_{6} q^{81} + ( 9 - 9 \zeta_{6} ) q^{83} + ( 8 + 2 \zeta_{6} ) q^{84} -3 \zeta_{6} q^{85} + 3 q^{87} -6 q^{89} + ( -15 + 12 \zeta_{6} ) q^{91} + ( 8 + 8 \zeta_{6} ) q^{92} + ( 6 - 6 \zeta_{6} ) q^{93} + ( -4 + 2 \zeta_{6} ) q^{95} + ( 4 + 4 \zeta_{6} ) q^{97} + ( -12 + 6 \zeta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} - 2q^{4} - q^{5} - 5q^{7} + 3q^{9} + O(q^{10}) \) \( 2q + 3q^{3} - 2q^{4} - q^{5} - 5q^{7} + 3q^{9} - 6q^{11} - 6q^{12} + 9q^{13} - 3q^{15} - 4q^{16} + 6q^{17} - 2q^{20} - 6q^{21} - 12q^{23} - q^{25} + 8q^{28} + 3q^{29} + 6q^{31} - 12q^{33} + 4q^{35} - 12q^{36} + 20q^{37} + 9q^{39} + 12q^{41} + 8q^{43} - 6q^{45} + 11q^{49} + 9q^{51} - 18q^{52} - 6q^{57} - 12q^{61} - 3q^{63} + 16q^{64} - 9q^{65} + 10q^{67} - 6q^{68} - 12q^{69} - 12q^{76} + 18q^{77} - 8q^{79} + 8q^{80} - 9q^{81} + 9q^{83} + 18q^{84} - 3q^{85} + 6q^{87} - 12q^{89} - 18q^{91} + 24q^{92} + 6q^{93} - 6q^{95} + 12q^{97} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
41.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 + 0.866025i −1.00000 + 1.73205i −0.500000 + 0.866025i 0 −2.50000 0.866025i 0 1.50000 + 2.59808i 0
146.1 0 1.50000 0.866025i −1.00000 1.73205i −0.500000 0.866025i 0 −2.50000 + 0.866025i 0 1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.2.bl.g yes 2
3.b odd 2 1 945.2.bl.d 2
7.b odd 2 1 315.2.bl.f 2
9.c even 3 1 945.2.bl.b 2
9.d odd 6 1 315.2.bl.f 2
21.c even 2 1 945.2.bl.b 2
63.l odd 6 1 945.2.bl.d 2
63.o even 6 1 inner 315.2.bl.g yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.2.bl.f 2 7.b odd 2 1
315.2.bl.f 2 9.d odd 6 1
315.2.bl.g yes 2 1.a even 1 1 trivial
315.2.bl.g yes 2 63.o even 6 1 inner
945.2.bl.b 2 9.c even 3 1
945.2.bl.b 2 21.c even 2 1
945.2.bl.d 2 3.b odd 2 1
945.2.bl.d 2 63.l odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(315, [\chi])\):

\( T_{2} \)
\( T_{11}^{2} + 6 T_{11} + 12 \)
\( T_{13}^{2} - 9 T_{13} + 27 \)
\( T_{17} - 3 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2 T^{2} + 4 T^{4} \)
$3$ \( 1 - 3 T + 3 T^{2} \)
$5$ \( 1 + T + T^{2} \)
$7$ \( 1 + 5 T + 7 T^{2} \)
$11$ \( 1 + 6 T + 23 T^{2} + 66 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 7 T + 13 T^{2} )( 1 - 2 T + 13 T^{2} ) \)
$17$ \( ( 1 - 3 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( 1 + 12 T + 71 T^{2} + 276 T^{3} + 529 T^{4} \)
$29$ \( 1 - 3 T + 32 T^{2} - 87 T^{3} + 841 T^{4} \)
$31$ \( 1 - 6 T + 43 T^{2} - 186 T^{3} + 961 T^{4} \)
$37$ \( ( 1 - 10 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 12 T + 103 T^{2} - 492 T^{3} + 1681 T^{4} \)
$43$ \( ( 1 - 13 T + 43 T^{2} )( 1 + 5 T + 43 T^{2} ) \)
$47$ \( 1 - 47 T^{2} + 2209 T^{4} \)
$53$ \( 1 - 94 T^{2} + 2809 T^{4} \)
$59$ \( 1 - 59 T^{2} + 3481 T^{4} \)
$61$ \( ( 1 - T + 61 T^{2} )( 1 + 13 T + 61 T^{2} ) \)
$67$ \( 1 - 10 T + 33 T^{2} - 670 T^{3} + 4489 T^{4} \)
$71$ \( 1 + 5 T^{2} + 5041 T^{4} \)
$73$ \( ( 1 - 17 T + 73 T^{2} )( 1 + 17 T + 73 T^{2} ) \)
$79$ \( 1 + 8 T - 15 T^{2} + 632 T^{3} + 6241 T^{4} \)
$83$ \( 1 - 9 T - 2 T^{2} - 747 T^{3} + 6889 T^{4} \)
$89$ \( ( 1 + 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 12 T + 145 T^{2} - 1164 T^{3} + 9409 T^{4} \)
show more
show less