Properties

Label 315.2.a.c
Level $315$
Weight $2$
Character orbit 315.a
Self dual yes
Analytic conductor $2.515$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.51528766367\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + ( - 2 \beta + 1) q^{4} - q^{5} - q^{7} + (\beta - 3) q^{8} + ( - \beta + 1) q^{10} + ( - 2 \beta - 2) q^{11} + (2 \beta - 2) q^{13} + ( - \beta + 1) q^{14} + 3 q^{16} + ( - 4 \beta - 2) q^{17}+ \cdots + (\beta - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{7} - 6 q^{8} + 2 q^{10} - 4 q^{11} - 4 q^{13} + 2 q^{14} + 6 q^{16} - 4 q^{17} - 2 q^{20} - 4 q^{22} - 4 q^{23} + 2 q^{25} + 12 q^{26} - 2 q^{28} - 16 q^{29} + 6 q^{32}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.41421 0 3.82843 −1.00000 0 −1.00000 −4.41421 0 2.41421
1.2 0.414214 0 −1.82843 −1.00000 0 −1.00000 −1.58579 0 −0.414214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.2.a.c 2
3.b odd 2 1 315.2.a.f yes 2
4.b odd 2 1 5040.2.a.bu 2
5.b even 2 1 1575.2.a.u 2
5.c odd 4 2 1575.2.d.h 4
7.b odd 2 1 2205.2.a.p 2
12.b even 2 1 5040.2.a.bx 2
15.d odd 2 1 1575.2.a.m 2
15.e even 4 2 1575.2.d.j 4
21.c even 2 1 2205.2.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.2.a.c 2 1.a even 1 1 trivial
315.2.a.f yes 2 3.b odd 2 1
1575.2.a.m 2 15.d odd 2 1
1575.2.a.u 2 5.b even 2 1
1575.2.d.h 4 5.c odd 4 2
1575.2.d.j 4 15.e even 4 2
2205.2.a.p 2 7.b odd 2 1
2205.2.a.y 2 21.c even 2 1
5040.2.a.bu 2 4.b odd 2 1
5040.2.a.bx 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$19$ \( T^{2} - 8 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$29$ \( (T + 8)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 72 \) Copy content Toggle raw display
$37$ \( (T + 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$43$ \( T^{2} + 8T - 16 \) Copy content Toggle raw display
$47$ \( (T - 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 16T + 56 \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( (T - 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 8T - 112 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 68 \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 196 \) Copy content Toggle raw display
$79$ \( T^{2} - 32 \) Copy content Toggle raw display
$83$ \( (T - 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 92 \) Copy content Toggle raw display
$97$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
show more
show less