Defining parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.p (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(480\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 880 | 364 | 516 |
Cusp forms | 848 | 356 | 492 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)