Properties

Label 315.10.ce
Level $315$
Weight $10$
Character orbit 315.ce
Rep. character $\chi_{315}(53,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $576$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).

Total New Old
Modular forms 1760 576 1184
Cusp forms 1696 576 1120
Eisenstein series 64 0 64

Trace form

\( 576 q - 19512 q^{7} + 102528 q^{10} + 18874368 q^{16} + 9706752 q^{22} + 5770224 q^{25} + 11043648 q^{28} + 37482048 q^{31} - 39192336 q^{37} - 77748840 q^{40} - 42418656 q^{43} + 100894320 q^{52} - 99178272 q^{55}+ \cdots - 2943105552 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)