Properties

Label 315.10.cc
Level $315$
Weight $10$
Character orbit 315.cc
Rep. character $\chi_{315}(92,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1296$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.cc (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).

Total New Old
Modular forms 1744 1296 448
Cusp forms 1712 1296 416
Eisenstein series 32 0 32

Trace form

\( 1296 q - 296 q^{3} + 92472 q^{11} + 303104 q^{12} + 161296 q^{15} + 42467328 q^{16} - 2601544 q^{18} - 9781248 q^{20} - 38416 q^{21} - 8435544 q^{23} - 2922912 q^{25} + 1405408 q^{27} - 11065820 q^{30}+ \cdots + 5878265040 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)