Properties

Label 315.10.bh
Level $315$
Weight $10$
Character orbit 315.bh
Rep. character $\chi_{315}(169,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $648$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.bh (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).

Total New Old
Modular forms 872 648 224
Cusp forms 856 648 208
Eisenstein series 16 0 16

Trace form

\( 648 q + 82944 q^{4} - 1592 q^{5} + 38560 q^{9} + 218844 q^{11} - 307328 q^{14} + 566440 q^{15} - 21233664 q^{16} + 4003194 q^{20} - 19208 q^{21} + 2072916 q^{24} + 1461456 q^{25} + 13748512 q^{26} - 21441128 q^{29}+ \cdots + 2902544784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)