Properties

Label 315.10.bb
Level $315$
Weight $10$
Character orbit 315.bb
Rep. character $\chi_{315}(89,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $288$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).

Total New Old
Modular forms 880 288 592
Cusp forms 848 288 560
Eisenstein series 32 0 32

Trace form

\( 288 q - 36864 q^{4} + O(q^{10}) \) \( 288 q - 36864 q^{4} - 153792 q^{10} - 9437184 q^{16} - 1608336 q^{19} - 4028940 q^{25} + 41219496 q^{31} + 234735516 q^{40} + 227050056 q^{46} - 121901400 q^{49} + 502477344 q^{61} + 7143186384 q^{64} - 780913188 q^{70} + 730366056 q^{79} - 107366688 q^{85} - 1700500392 q^{91} - 3617490456 q^{94} + O(q^{100}) \)

Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)