Defining parameters
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(315, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 440 | 96 | 344 |
Cusp forms | 424 | 96 | 328 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(315, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
315.10.b.a | $48$ | $162.236$ | None | \(0\) | \(0\) | \(-30000\) | \(1824\) | ||
315.10.b.b | $48$ | $162.236$ | None | \(0\) | \(0\) | \(30000\) | \(1824\) |
Decomposition of \(S_{10}^{\mathrm{old}}(315, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)