Properties

Label 315.10.a.l.1.2
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-36.8299\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-39.8299 q^{2} +1074.42 q^{4} -625.000 q^{5} -2401.00 q^{7} -22401.1 q^{8} +24893.7 q^{10} +50463.3 q^{11} +3922.21 q^{13} +95631.6 q^{14} +342132. q^{16} +589429. q^{17} +796460. q^{19} -671513. q^{20} -2.00995e6 q^{22} +436793. q^{23} +390625. q^{25} -156221. q^{26} -2.57968e6 q^{28} -1.20833e6 q^{29} +3.38466e6 q^{31} -2.15768e6 q^{32} -2.34769e7 q^{34} +1.50062e6 q^{35} +1.70047e7 q^{37} -3.17229e7 q^{38} +1.40007e7 q^{40} -2.58643e7 q^{41} +1.44925e7 q^{43} +5.42188e7 q^{44} -1.73974e7 q^{46} +5.55921e7 q^{47} +5.76480e6 q^{49} -1.55586e7 q^{50} +4.21410e6 q^{52} +7.67285e7 q^{53} -3.15395e7 q^{55} +5.37851e7 q^{56} +4.81276e7 q^{58} +1.15070e8 q^{59} -1.54502e8 q^{61} -1.34811e8 q^{62} -8.92311e7 q^{64} -2.45138e6 q^{65} +2.72000e8 q^{67} +6.33295e8 q^{68} -5.97697e7 q^{70} +2.24602e7 q^{71} -8.21761e6 q^{73} -6.77297e8 q^{74} +8.55733e8 q^{76} -1.21162e8 q^{77} +5.20375e8 q^{79} -2.13832e8 q^{80} +1.03017e9 q^{82} -9.36372e7 q^{83} -3.68393e8 q^{85} -5.77233e8 q^{86} -1.13043e9 q^{88} -1.94318e8 q^{89} -9.41722e6 q^{91} +4.69299e8 q^{92} -2.21423e9 q^{94} -4.97788e8 q^{95} +1.48287e8 q^{97} -2.29611e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 15 q^{2} + 3009 q^{4} - 3750 q^{5} - 14406 q^{7} - 22041 q^{8} + 9375 q^{10} + 47796 q^{11} + 102168 q^{13} + 36015 q^{14} + 2371065 q^{16} + 38472 q^{17} + 361056 q^{19} - 1880625 q^{20} + 2068680 q^{22}+ \cdots - 86472015 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −39.8299 −1.76025 −0.880125 0.474743i \(-0.842541\pi\)
−0.880125 + 0.474743i \(0.842541\pi\)
\(3\) 0 0
\(4\) 1074.42 2.09848
\(5\) −625.000 −0.447214
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) −22401.1 −1.93359
\(9\) 0 0
\(10\) 24893.7 0.787207
\(11\) 50463.3 1.03922 0.519611 0.854403i \(-0.326077\pi\)
0.519611 + 0.854403i \(0.326077\pi\)
\(12\) 0 0
\(13\) 3922.21 0.0380878 0.0190439 0.999819i \(-0.493938\pi\)
0.0190439 + 0.999819i \(0.493938\pi\)
\(14\) 95631.6 0.665312
\(15\) 0 0
\(16\) 342132. 1.30513
\(17\) 589429. 1.71164 0.855819 0.517276i \(-0.173054\pi\)
0.855819 + 0.517276i \(0.173054\pi\)
\(18\) 0 0
\(19\) 796460. 1.40208 0.701040 0.713122i \(-0.252719\pi\)
0.701040 + 0.713122i \(0.252719\pi\)
\(20\) −671513. −0.938467
\(21\) 0 0
\(22\) −2.00995e6 −1.82929
\(23\) 436793. 0.325462 0.162731 0.986670i \(-0.447970\pi\)
0.162731 + 0.986670i \(0.447970\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −156221. −0.0670439
\(27\) 0 0
\(28\) −2.57968e6 −0.793150
\(29\) −1.20833e6 −0.317244 −0.158622 0.987339i \(-0.550705\pi\)
−0.158622 + 0.987339i \(0.550705\pi\)
\(30\) 0 0
\(31\) 3.38466e6 0.658244 0.329122 0.944287i \(-0.393247\pi\)
0.329122 + 0.944287i \(0.393247\pi\)
\(32\) −2.15768e6 −0.363758
\(33\) 0 0
\(34\) −2.34769e7 −3.01291
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) 1.70047e7 1.49163 0.745817 0.666151i \(-0.232059\pi\)
0.745817 + 0.666151i \(0.232059\pi\)
\(38\) −3.17229e7 −2.46801
\(39\) 0 0
\(40\) 1.40007e7 0.864729
\(41\) −2.58643e7 −1.42946 −0.714732 0.699398i \(-0.753451\pi\)
−0.714732 + 0.699398i \(0.753451\pi\)
\(42\) 0 0
\(43\) 1.44925e7 0.646449 0.323224 0.946322i \(-0.395233\pi\)
0.323224 + 0.946322i \(0.395233\pi\)
\(44\) 5.42188e7 2.18078
\(45\) 0 0
\(46\) −1.73974e7 −0.572894
\(47\) 5.55921e7 1.66178 0.830889 0.556438i \(-0.187832\pi\)
0.830889 + 0.556438i \(0.187832\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −1.55586e7 −0.352050
\(51\) 0 0
\(52\) 4.21410e6 0.0799263
\(53\) 7.67285e7 1.33572 0.667860 0.744287i \(-0.267210\pi\)
0.667860 + 0.744287i \(0.267210\pi\)
\(54\) 0 0
\(55\) −3.15395e7 −0.464754
\(56\) 5.37851e7 0.730829
\(57\) 0 0
\(58\) 4.81276e7 0.558429
\(59\) 1.15070e8 1.23631 0.618156 0.786056i \(-0.287880\pi\)
0.618156 + 0.786056i \(0.287880\pi\)
\(60\) 0 0
\(61\) −1.54502e8 −1.42873 −0.714366 0.699772i \(-0.753285\pi\)
−0.714366 + 0.699772i \(0.753285\pi\)
\(62\) −1.34811e8 −1.15867
\(63\) 0 0
\(64\) −8.92311e7 −0.664823
\(65\) −2.45138e6 −0.0170334
\(66\) 0 0
\(67\) 2.72000e8 1.64904 0.824522 0.565829i \(-0.191444\pi\)
0.824522 + 0.565829i \(0.191444\pi\)
\(68\) 6.33295e8 3.59183
\(69\) 0 0
\(70\) −5.97697e7 −0.297536
\(71\) 2.24602e7 0.104894 0.0524470 0.998624i \(-0.483298\pi\)
0.0524470 + 0.998624i \(0.483298\pi\)
\(72\) 0 0
\(73\) −8.21761e6 −0.0338682 −0.0169341 0.999857i \(-0.505391\pi\)
−0.0169341 + 0.999857i \(0.505391\pi\)
\(74\) −6.77297e8 −2.62565
\(75\) 0 0
\(76\) 8.55733e8 2.94223
\(77\) −1.21162e8 −0.392789
\(78\) 0 0
\(79\) 5.20375e8 1.50312 0.751561 0.659663i \(-0.229301\pi\)
0.751561 + 0.659663i \(0.229301\pi\)
\(80\) −2.13832e8 −0.583671
\(81\) 0 0
\(82\) 1.03017e9 2.51621
\(83\) −9.36372e7 −0.216569 −0.108285 0.994120i \(-0.534536\pi\)
−0.108285 + 0.994120i \(0.534536\pi\)
\(84\) 0 0
\(85\) −3.68393e8 −0.765467
\(86\) −5.77233e8 −1.13791
\(87\) 0 0
\(88\) −1.13043e9 −2.00943
\(89\) −1.94318e8 −0.328289 −0.164145 0.986436i \(-0.552486\pi\)
−0.164145 + 0.986436i \(0.552486\pi\)
\(90\) 0 0
\(91\) −9.41722e6 −0.0143958
\(92\) 4.69299e8 0.682974
\(93\) 0 0
\(94\) −2.21423e9 −2.92514
\(95\) −4.97788e8 −0.627030
\(96\) 0 0
\(97\) 1.48287e8 0.170071 0.0850355 0.996378i \(-0.472900\pi\)
0.0850355 + 0.996378i \(0.472900\pi\)
\(98\) −2.29611e8 −0.251464
\(99\) 0 0
\(100\) 4.19695e8 0.419695
\(101\) −1.15408e9 −1.10355 −0.551774 0.833994i \(-0.686049\pi\)
−0.551774 + 0.833994i \(0.686049\pi\)
\(102\) 0 0
\(103\) −1.93967e9 −1.69809 −0.849043 0.528324i \(-0.822821\pi\)
−0.849043 + 0.528324i \(0.822821\pi\)
\(104\) −8.78619e7 −0.0736462
\(105\) 0 0
\(106\) −3.05609e9 −2.35120
\(107\) −2.63127e9 −1.94061 −0.970306 0.241881i \(-0.922236\pi\)
−0.970306 + 0.241881i \(0.922236\pi\)
\(108\) 0 0
\(109\) 5.52674e8 0.375016 0.187508 0.982263i \(-0.439959\pi\)
0.187508 + 0.982263i \(0.439959\pi\)
\(110\) 1.25622e9 0.818083
\(111\) 0 0
\(112\) −8.21458e8 −0.493292
\(113\) −1.76808e9 −1.02011 −0.510056 0.860141i \(-0.670375\pi\)
−0.510056 + 0.860141i \(0.670375\pi\)
\(114\) 0 0
\(115\) −2.72995e8 −0.145551
\(116\) −1.29825e9 −0.665730
\(117\) 0 0
\(118\) −4.58322e9 −2.17622
\(119\) −1.41522e9 −0.646938
\(120\) 0 0
\(121\) 1.88594e8 0.0799824
\(122\) 6.15381e9 2.51493
\(123\) 0 0
\(124\) 3.63654e9 1.38131
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) 2.81244e9 0.959327 0.479664 0.877452i \(-0.340759\pi\)
0.479664 + 0.877452i \(0.340759\pi\)
\(128\) 4.65880e9 1.53401
\(129\) 0 0
\(130\) 9.76382e7 0.0299830
\(131\) 1.16151e9 0.344591 0.172295 0.985045i \(-0.444882\pi\)
0.172295 + 0.985045i \(0.444882\pi\)
\(132\) 0 0
\(133\) −1.91230e9 −0.529937
\(134\) −1.08337e10 −2.90273
\(135\) 0 0
\(136\) −1.32039e10 −3.30961
\(137\) 3.47682e8 0.0843217 0.0421609 0.999111i \(-0.486576\pi\)
0.0421609 + 0.999111i \(0.486576\pi\)
\(138\) 0 0
\(139\) −2.03085e9 −0.461436 −0.230718 0.973021i \(-0.574108\pi\)
−0.230718 + 0.973021i \(0.574108\pi\)
\(140\) 1.61230e9 0.354707
\(141\) 0 0
\(142\) −8.94586e8 −0.184640
\(143\) 1.97927e8 0.0395816
\(144\) 0 0
\(145\) 7.55205e8 0.141876
\(146\) 3.27307e8 0.0596166
\(147\) 0 0
\(148\) 1.82702e10 3.13016
\(149\) −1.97067e9 −0.327549 −0.163774 0.986498i \(-0.552367\pi\)
−0.163774 + 0.986498i \(0.552367\pi\)
\(150\) 0 0
\(151\) 2.47989e9 0.388183 0.194091 0.980983i \(-0.437824\pi\)
0.194091 + 0.980983i \(0.437824\pi\)
\(152\) −1.78416e10 −2.71105
\(153\) 0 0
\(154\) 4.82588e9 0.691406
\(155\) −2.11541e9 −0.294376
\(156\) 0 0
\(157\) −1.54180e8 −0.0202525 −0.0101262 0.999949i \(-0.503223\pi\)
−0.0101262 + 0.999949i \(0.503223\pi\)
\(158\) −2.07265e10 −2.64587
\(159\) 0 0
\(160\) 1.34855e9 0.162678
\(161\) −1.04874e9 −0.123013
\(162\) 0 0
\(163\) 5.00929e9 0.555817 0.277909 0.960607i \(-0.410359\pi\)
0.277909 + 0.960607i \(0.410359\pi\)
\(164\) −2.77891e10 −2.99970
\(165\) 0 0
\(166\) 3.72956e9 0.381216
\(167\) 4.54470e9 0.452148 0.226074 0.974110i \(-0.427411\pi\)
0.226074 + 0.974110i \(0.427411\pi\)
\(168\) 0 0
\(169\) −1.05891e10 −0.998549
\(170\) 1.46731e10 1.34741
\(171\) 0 0
\(172\) 1.55710e10 1.35656
\(173\) 1.12736e10 0.956877 0.478438 0.878121i \(-0.341203\pi\)
0.478438 + 0.878121i \(0.341203\pi\)
\(174\) 0 0
\(175\) −9.37891e8 −0.0755929
\(176\) 1.72651e10 1.35632
\(177\) 0 0
\(178\) 7.73964e9 0.577871
\(179\) −9.15200e8 −0.0666312 −0.0333156 0.999445i \(-0.510607\pi\)
−0.0333156 + 0.999445i \(0.510607\pi\)
\(180\) 0 0
\(181\) 1.27927e10 0.885947 0.442974 0.896535i \(-0.353924\pi\)
0.442974 + 0.896535i \(0.353924\pi\)
\(182\) 3.75087e8 0.0253402
\(183\) 0 0
\(184\) −9.78465e9 −0.629311
\(185\) −1.06280e10 −0.667079
\(186\) 0 0
\(187\) 2.97445e10 1.77877
\(188\) 5.97293e10 3.48720
\(189\) 0 0
\(190\) 1.98268e10 1.10373
\(191\) −2.16679e10 −1.17806 −0.589028 0.808112i \(-0.700489\pi\)
−0.589028 + 0.808112i \(0.700489\pi\)
\(192\) 0 0
\(193\) −2.49369e10 −1.29370 −0.646850 0.762617i \(-0.723914\pi\)
−0.646850 + 0.762617i \(0.723914\pi\)
\(194\) −5.90625e9 −0.299367
\(195\) 0 0
\(196\) 6.19382e9 0.299782
\(197\) −1.60189e10 −0.757767 −0.378883 0.925444i \(-0.623692\pi\)
−0.378883 + 0.925444i \(0.623692\pi\)
\(198\) 0 0
\(199\) −5.80085e9 −0.262212 −0.131106 0.991368i \(-0.541853\pi\)
−0.131106 + 0.991368i \(0.541853\pi\)
\(200\) −8.75044e9 −0.386719
\(201\) 0 0
\(202\) 4.59670e10 1.94252
\(203\) 2.90119e9 0.119907
\(204\) 0 0
\(205\) 1.61652e10 0.639276
\(206\) 7.72567e10 2.98905
\(207\) 0 0
\(208\) 1.34191e9 0.0497094
\(209\) 4.01920e10 1.45707
\(210\) 0 0
\(211\) −5.24698e10 −1.82238 −0.911188 0.411991i \(-0.864834\pi\)
−0.911188 + 0.411991i \(0.864834\pi\)
\(212\) 8.24387e10 2.80298
\(213\) 0 0
\(214\) 1.04803e11 3.41596
\(215\) −9.05779e9 −0.289101
\(216\) 0 0
\(217\) −8.12656e9 −0.248793
\(218\) −2.20129e10 −0.660122
\(219\) 0 0
\(220\) −3.38867e10 −0.975276
\(221\) 2.31186e9 0.0651924
\(222\) 0 0
\(223\) 5.96053e10 1.61403 0.807017 0.590528i \(-0.201080\pi\)
0.807017 + 0.590528i \(0.201080\pi\)
\(224\) 5.18060e9 0.137488
\(225\) 0 0
\(226\) 7.04223e10 1.79565
\(227\) −2.06726e9 −0.0516749 −0.0258375 0.999666i \(-0.508225\pi\)
−0.0258375 + 0.999666i \(0.508225\pi\)
\(228\) 0 0
\(229\) −8.49346e9 −0.204092 −0.102046 0.994780i \(-0.532539\pi\)
−0.102046 + 0.994780i \(0.532539\pi\)
\(230\) 1.08734e10 0.256206
\(231\) 0 0
\(232\) 2.70679e10 0.613421
\(233\) 8.34761e10 1.85550 0.927749 0.373205i \(-0.121741\pi\)
0.927749 + 0.373205i \(0.121741\pi\)
\(234\) 0 0
\(235\) −3.47451e10 −0.743170
\(236\) 1.23633e11 2.59437
\(237\) 0 0
\(238\) 5.63681e10 1.13877
\(239\) −5.10768e9 −0.101259 −0.0506294 0.998718i \(-0.516123\pi\)
−0.0506294 + 0.998718i \(0.516123\pi\)
\(240\) 0 0
\(241\) 4.21633e10 0.805115 0.402557 0.915395i \(-0.368121\pi\)
0.402557 + 0.915395i \(0.368121\pi\)
\(242\) −7.51169e9 −0.140789
\(243\) 0 0
\(244\) −1.66000e11 −2.99816
\(245\) −3.60300e9 −0.0638877
\(246\) 0 0
\(247\) 3.12388e9 0.0534021
\(248\) −7.58202e10 −1.27278
\(249\) 0 0
\(250\) 9.72409e9 0.157441
\(251\) 8.09322e10 1.28703 0.643516 0.765432i \(-0.277475\pi\)
0.643516 + 0.765432i \(0.277475\pi\)
\(252\) 0 0
\(253\) 2.20420e10 0.338227
\(254\) −1.12019e11 −1.68866
\(255\) 0 0
\(256\) −1.39873e11 −2.03542
\(257\) −8.44717e10 −1.20785 −0.603924 0.797042i \(-0.706397\pi\)
−0.603924 + 0.797042i \(0.706397\pi\)
\(258\) 0 0
\(259\) −4.08284e10 −0.563785
\(260\) −2.63381e9 −0.0357441
\(261\) 0 0
\(262\) −4.62629e10 −0.606565
\(263\) 9.05095e10 1.16652 0.583261 0.812284i \(-0.301776\pi\)
0.583261 + 0.812284i \(0.301776\pi\)
\(264\) 0 0
\(265\) −4.79553e10 −0.597352
\(266\) 7.61668e10 0.932821
\(267\) 0 0
\(268\) 2.92242e11 3.46048
\(269\) −7.22101e10 −0.840838 −0.420419 0.907330i \(-0.638117\pi\)
−0.420419 + 0.907330i \(0.638117\pi\)
\(270\) 0 0
\(271\) 7.70659e10 0.867961 0.433981 0.900922i \(-0.357109\pi\)
0.433981 + 0.900922i \(0.357109\pi\)
\(272\) 2.01662e11 2.23391
\(273\) 0 0
\(274\) −1.38481e10 −0.148427
\(275\) 1.97122e10 0.207844
\(276\) 0 0
\(277\) −1.06723e11 −1.08917 −0.544587 0.838704i \(-0.683314\pi\)
−0.544587 + 0.838704i \(0.683314\pi\)
\(278\) 8.08886e10 0.812243
\(279\) 0 0
\(280\) −3.36157e10 −0.326837
\(281\) −6.23369e10 −0.596440 −0.298220 0.954497i \(-0.596393\pi\)
−0.298220 + 0.954497i \(0.596393\pi\)
\(282\) 0 0
\(283\) −1.05619e11 −0.978822 −0.489411 0.872053i \(-0.662788\pi\)
−0.489411 + 0.872053i \(0.662788\pi\)
\(284\) 2.41317e10 0.220118
\(285\) 0 0
\(286\) −7.88343e9 −0.0696735
\(287\) 6.21002e10 0.540287
\(288\) 0 0
\(289\) 2.28839e11 1.92970
\(290\) −3.00797e10 −0.249737
\(291\) 0 0
\(292\) −8.82917e9 −0.0710717
\(293\) 9.77547e10 0.774878 0.387439 0.921895i \(-0.373360\pi\)
0.387439 + 0.921895i \(0.373360\pi\)
\(294\) 0 0
\(295\) −7.19187e10 −0.552895
\(296\) −3.80926e11 −2.88421
\(297\) 0 0
\(298\) 7.84917e10 0.576568
\(299\) 1.71319e9 0.0123961
\(300\) 0 0
\(301\) −3.47964e10 −0.244335
\(302\) −9.87738e10 −0.683299
\(303\) 0 0
\(304\) 2.72494e11 1.82990
\(305\) 9.65640e10 0.638949
\(306\) 0 0
\(307\) −2.48236e11 −1.59493 −0.797467 0.603363i \(-0.793827\pi\)
−0.797467 + 0.603363i \(0.793827\pi\)
\(308\) −1.30179e11 −0.824259
\(309\) 0 0
\(310\) 8.42566e10 0.518175
\(311\) 1.63257e11 0.989578 0.494789 0.869013i \(-0.335245\pi\)
0.494789 + 0.869013i \(0.335245\pi\)
\(312\) 0 0
\(313\) 1.54423e11 0.909415 0.454707 0.890641i \(-0.349744\pi\)
0.454707 + 0.890641i \(0.349744\pi\)
\(314\) 6.14096e9 0.0356494
\(315\) 0 0
\(316\) 5.59101e11 3.15427
\(317\) −1.41436e11 −0.786669 −0.393335 0.919395i \(-0.628679\pi\)
−0.393335 + 0.919395i \(0.628679\pi\)
\(318\) 0 0
\(319\) −6.09762e10 −0.329687
\(320\) 5.57694e10 0.297318
\(321\) 0 0
\(322\) 4.17712e10 0.216533
\(323\) 4.69457e11 2.39985
\(324\) 0 0
\(325\) 1.53211e9 0.00761755
\(326\) −1.99520e11 −0.978377
\(327\) 0 0
\(328\) 5.79390e11 2.76400
\(329\) −1.33477e11 −0.628093
\(330\) 0 0
\(331\) 1.93663e11 0.886791 0.443395 0.896326i \(-0.353774\pi\)
0.443395 + 0.896326i \(0.353774\pi\)
\(332\) −1.00606e11 −0.454466
\(333\) 0 0
\(334\) −1.81015e11 −0.795893
\(335\) −1.70000e11 −0.737475
\(336\) 0 0
\(337\) 2.00520e10 0.0846881 0.0423440 0.999103i \(-0.486517\pi\)
0.0423440 + 0.999103i \(0.486517\pi\)
\(338\) 4.21763e11 1.75770
\(339\) 0 0
\(340\) −3.95809e11 −1.60632
\(341\) 1.70801e11 0.684062
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) −3.24648e11 −1.24997
\(345\) 0 0
\(346\) −4.49027e11 −1.68434
\(347\) 4.57822e11 1.69517 0.847587 0.530656i \(-0.178055\pi\)
0.847587 + 0.530656i \(0.178055\pi\)
\(348\) 0 0
\(349\) 1.79006e11 0.645880 0.322940 0.946419i \(-0.395329\pi\)
0.322940 + 0.946419i \(0.395329\pi\)
\(350\) 3.73561e10 0.133062
\(351\) 0 0
\(352\) −1.08884e11 −0.378026
\(353\) 2.73777e11 0.938448 0.469224 0.883079i \(-0.344534\pi\)
0.469224 + 0.883079i \(0.344534\pi\)
\(354\) 0 0
\(355\) −1.40376e10 −0.0469100
\(356\) −2.08779e11 −0.688908
\(357\) 0 0
\(358\) 3.64523e10 0.117287
\(359\) −7.70608e9 −0.0244855 −0.0122427 0.999925i \(-0.503897\pi\)
−0.0122427 + 0.999925i \(0.503897\pi\)
\(360\) 0 0
\(361\) 3.11661e11 0.965830
\(362\) −5.09531e11 −1.55949
\(363\) 0 0
\(364\) −1.01180e10 −0.0302093
\(365\) 5.13601e9 0.0151463
\(366\) 0 0
\(367\) −1.03107e11 −0.296682 −0.148341 0.988936i \(-0.547393\pi\)
−0.148341 + 0.988936i \(0.547393\pi\)
\(368\) 1.49441e11 0.424769
\(369\) 0 0
\(370\) 4.23311e11 1.17423
\(371\) −1.84225e11 −0.504855
\(372\) 0 0
\(373\) −1.33782e11 −0.357856 −0.178928 0.983862i \(-0.557263\pi\)
−0.178928 + 0.983862i \(0.557263\pi\)
\(374\) −1.18472e12 −3.13108
\(375\) 0 0
\(376\) −1.24533e12 −3.21320
\(377\) −4.73931e9 −0.0120831
\(378\) 0 0
\(379\) −3.30128e11 −0.821875 −0.410937 0.911664i \(-0.634798\pi\)
−0.410937 + 0.911664i \(0.634798\pi\)
\(380\) −5.34833e11 −1.31581
\(381\) 0 0
\(382\) 8.63029e11 2.07367
\(383\) −3.48502e11 −0.827583 −0.413791 0.910372i \(-0.635796\pi\)
−0.413791 + 0.910372i \(0.635796\pi\)
\(384\) 0 0
\(385\) 7.57264e10 0.175661
\(386\) 9.93232e11 2.27724
\(387\) 0 0
\(388\) 1.59323e11 0.356890
\(389\) −1.72150e11 −0.381183 −0.190591 0.981669i \(-0.561041\pi\)
−0.190591 + 0.981669i \(0.561041\pi\)
\(390\) 0 0
\(391\) 2.57458e11 0.557072
\(392\) −1.29138e11 −0.276228
\(393\) 0 0
\(394\) 6.38032e11 1.33386
\(395\) −3.25234e11 −0.672217
\(396\) 0 0
\(397\) −6.89676e11 −1.39344 −0.696719 0.717344i \(-0.745357\pi\)
−0.696719 + 0.717344i \(0.745357\pi\)
\(398\) 2.31047e11 0.461559
\(399\) 0 0
\(400\) 1.33645e11 0.261026
\(401\) −3.89787e11 −0.752797 −0.376399 0.926458i \(-0.622838\pi\)
−0.376399 + 0.926458i \(0.622838\pi\)
\(402\) 0 0
\(403\) 1.32753e10 0.0250710
\(404\) −1.23997e12 −2.31577
\(405\) 0 0
\(406\) −1.15554e11 −0.211066
\(407\) 8.58115e11 1.55014
\(408\) 0 0
\(409\) −5.70543e11 −1.00817 −0.504084 0.863654i \(-0.668170\pi\)
−0.504084 + 0.863654i \(0.668170\pi\)
\(410\) −6.43858e11 −1.12528
\(411\) 0 0
\(412\) −2.08402e12 −3.56339
\(413\) −2.76283e11 −0.467282
\(414\) 0 0
\(415\) 5.85233e10 0.0968528
\(416\) −8.46288e9 −0.0138547
\(417\) 0 0
\(418\) −1.60084e12 −2.56481
\(419\) 3.80518e11 0.603132 0.301566 0.953445i \(-0.402491\pi\)
0.301566 + 0.953445i \(0.402491\pi\)
\(420\) 0 0
\(421\) 3.64852e11 0.566041 0.283020 0.959114i \(-0.408664\pi\)
0.283020 + 0.959114i \(0.408664\pi\)
\(422\) 2.08986e12 3.20784
\(423\) 0 0
\(424\) −1.71881e12 −2.58274
\(425\) 2.30246e11 0.342327
\(426\) 0 0
\(427\) 3.70960e11 0.540010
\(428\) −2.82709e12 −4.07233
\(429\) 0 0
\(430\) 3.60771e11 0.508889
\(431\) −7.18123e11 −1.00242 −0.501211 0.865325i \(-0.667112\pi\)
−0.501211 + 0.865325i \(0.667112\pi\)
\(432\) 0 0
\(433\) 8.28850e11 1.13313 0.566566 0.824017i \(-0.308272\pi\)
0.566566 + 0.824017i \(0.308272\pi\)
\(434\) 3.23680e11 0.437938
\(435\) 0 0
\(436\) 5.93804e11 0.786962
\(437\) 3.47888e11 0.456324
\(438\) 0 0
\(439\) 2.28406e10 0.0293506 0.0146753 0.999892i \(-0.495329\pi\)
0.0146753 + 0.999892i \(0.495329\pi\)
\(440\) 7.06522e11 0.898645
\(441\) 0 0
\(442\) −9.20813e10 −0.114755
\(443\) 6.10715e11 0.753393 0.376697 0.926337i \(-0.377060\pi\)
0.376697 + 0.926337i \(0.377060\pi\)
\(444\) 0 0
\(445\) 1.21448e11 0.146815
\(446\) −2.37407e12 −2.84110
\(447\) 0 0
\(448\) 2.14244e11 0.251280
\(449\) 7.13843e11 0.828885 0.414442 0.910076i \(-0.363977\pi\)
0.414442 + 0.910076i \(0.363977\pi\)
\(450\) 0 0
\(451\) −1.30520e12 −1.48553
\(452\) −1.89966e12 −2.14068
\(453\) 0 0
\(454\) 8.23389e10 0.0909607
\(455\) 5.88576e9 0.00643801
\(456\) 0 0
\(457\) 8.16711e11 0.875882 0.437941 0.899004i \(-0.355708\pi\)
0.437941 + 0.899004i \(0.355708\pi\)
\(458\) 3.38294e11 0.359252
\(459\) 0 0
\(460\) −2.93312e11 −0.305435
\(461\) 1.15418e11 0.119020 0.0595100 0.998228i \(-0.481046\pi\)
0.0595100 + 0.998228i \(0.481046\pi\)
\(462\) 0 0
\(463\) 1.89097e12 1.91236 0.956181 0.292776i \(-0.0945790\pi\)
0.956181 + 0.292776i \(0.0945790\pi\)
\(464\) −4.13407e11 −0.414044
\(465\) 0 0
\(466\) −3.32484e12 −3.26614
\(467\) 1.41788e12 1.37948 0.689739 0.724058i \(-0.257725\pi\)
0.689739 + 0.724058i \(0.257725\pi\)
\(468\) 0 0
\(469\) −6.53072e11 −0.623280
\(470\) 1.38389e12 1.30816
\(471\) 0 0
\(472\) −2.57770e12 −2.39052
\(473\) 7.31337e11 0.671804
\(474\) 0 0
\(475\) 3.11117e11 0.280416
\(476\) −1.52054e12 −1.35758
\(477\) 0 0
\(478\) 2.03438e11 0.178241
\(479\) 5.70763e11 0.495388 0.247694 0.968838i \(-0.420327\pi\)
0.247694 + 0.968838i \(0.420327\pi\)
\(480\) 0 0
\(481\) 6.66961e10 0.0568130
\(482\) −1.67936e12 −1.41720
\(483\) 0 0
\(484\) 2.02629e11 0.167841
\(485\) −9.26794e10 −0.0760580
\(486\) 0 0
\(487\) −4.98222e11 −0.401367 −0.200684 0.979656i \(-0.564316\pi\)
−0.200684 + 0.979656i \(0.564316\pi\)
\(488\) 3.46103e12 2.76259
\(489\) 0 0
\(490\) 1.43507e11 0.112458
\(491\) 2.24762e12 1.74525 0.872624 0.488393i \(-0.162417\pi\)
0.872624 + 0.488393i \(0.162417\pi\)
\(492\) 0 0
\(493\) −7.12224e11 −0.543007
\(494\) −1.24424e11 −0.0940010
\(495\) 0 0
\(496\) 1.15800e12 0.859093
\(497\) −5.39269e10 −0.0396462
\(498\) 0 0
\(499\) 1.47577e11 0.106553 0.0532767 0.998580i \(-0.483033\pi\)
0.0532767 + 0.998580i \(0.483033\pi\)
\(500\) −2.62310e11 −0.187693
\(501\) 0 0
\(502\) −3.22352e12 −2.26550
\(503\) 3.17462e11 0.221124 0.110562 0.993869i \(-0.464735\pi\)
0.110562 + 0.993869i \(0.464735\pi\)
\(504\) 0 0
\(505\) 7.21302e11 0.493521
\(506\) −8.77930e11 −0.595364
\(507\) 0 0
\(508\) 3.02174e12 2.01313
\(509\) −2.74584e12 −1.81320 −0.906598 0.421995i \(-0.861330\pi\)
−0.906598 + 0.421995i \(0.861330\pi\)
\(510\) 0 0
\(511\) 1.97305e10 0.0128010
\(512\) 3.18583e12 2.04884
\(513\) 0 0
\(514\) 3.36450e12 2.12611
\(515\) 1.21229e12 0.759407
\(516\) 0 0
\(517\) 2.80536e12 1.72696
\(518\) 1.62619e12 0.992402
\(519\) 0 0
\(520\) 5.49137e10 0.0329356
\(521\) 2.48978e12 1.48044 0.740220 0.672364i \(-0.234721\pi\)
0.740220 + 0.672364i \(0.234721\pi\)
\(522\) 0 0
\(523\) 9.38103e11 0.548268 0.274134 0.961692i \(-0.411609\pi\)
0.274134 + 0.961692i \(0.411609\pi\)
\(524\) 1.24795e12 0.723115
\(525\) 0 0
\(526\) −3.60498e12 −2.05337
\(527\) 1.99502e12 1.12668
\(528\) 0 0
\(529\) −1.61036e12 −0.894075
\(530\) 1.91006e12 1.05149
\(531\) 0 0
\(532\) −2.05462e12 −1.11206
\(533\) −1.01445e11 −0.0544451
\(534\) 0 0
\(535\) 1.64454e12 0.867868
\(536\) −6.09311e12 −3.18858
\(537\) 0 0
\(538\) 2.87612e12 1.48008
\(539\) 2.90911e11 0.148460
\(540\) 0 0
\(541\) 1.53540e12 0.770609 0.385304 0.922790i \(-0.374096\pi\)
0.385304 + 0.922790i \(0.374096\pi\)
\(542\) −3.06952e12 −1.52783
\(543\) 0 0
\(544\) −1.27180e12 −0.622622
\(545\) −3.45421e11 −0.167712
\(546\) 0 0
\(547\) 7.20289e11 0.344004 0.172002 0.985097i \(-0.444976\pi\)
0.172002 + 0.985097i \(0.444976\pi\)
\(548\) 3.73556e11 0.176947
\(549\) 0 0
\(550\) −7.85135e11 −0.365858
\(551\) −9.62385e11 −0.444802
\(552\) 0 0
\(553\) −1.24942e12 −0.568127
\(554\) 4.25075e12 1.91722
\(555\) 0 0
\(556\) −2.18199e12 −0.968313
\(557\) 1.48402e11 0.0653269 0.0326634 0.999466i \(-0.489601\pi\)
0.0326634 + 0.999466i \(0.489601\pi\)
\(558\) 0 0
\(559\) 5.68424e10 0.0246218
\(560\) 5.13411e11 0.220607
\(561\) 0 0
\(562\) 2.48287e12 1.04988
\(563\) 2.14987e12 0.901828 0.450914 0.892567i \(-0.351098\pi\)
0.450914 + 0.892567i \(0.351098\pi\)
\(564\) 0 0
\(565\) 1.10505e12 0.456208
\(566\) 4.20680e12 1.72297
\(567\) 0 0
\(568\) −5.03133e11 −0.202822
\(569\) −1.79224e12 −0.716788 −0.358394 0.933570i \(-0.616676\pi\)
−0.358394 + 0.933570i \(0.616676\pi\)
\(570\) 0 0
\(571\) −1.07595e12 −0.423575 −0.211787 0.977316i \(-0.567928\pi\)
−0.211787 + 0.977316i \(0.567928\pi\)
\(572\) 2.12657e11 0.0830611
\(573\) 0 0
\(574\) −2.47344e12 −0.951039
\(575\) 1.70622e11 0.0650923
\(576\) 0 0
\(577\) 1.49614e12 0.561928 0.280964 0.959718i \(-0.409346\pi\)
0.280964 + 0.959718i \(0.409346\pi\)
\(578\) −9.11464e12 −3.39676
\(579\) 0 0
\(580\) 8.11407e11 0.297723
\(581\) 2.24823e11 0.0818555
\(582\) 0 0
\(583\) 3.87197e12 1.38811
\(584\) 1.84084e11 0.0654874
\(585\) 0 0
\(586\) −3.89356e12 −1.36398
\(587\) −1.36578e12 −0.474797 −0.237399 0.971412i \(-0.576295\pi\)
−0.237399 + 0.971412i \(0.576295\pi\)
\(588\) 0 0
\(589\) 2.69575e12 0.922912
\(590\) 2.86451e12 0.973233
\(591\) 0 0
\(592\) 5.81786e12 1.94677
\(593\) −6.11529e11 −0.203082 −0.101541 0.994831i \(-0.532377\pi\)
−0.101541 + 0.994831i \(0.532377\pi\)
\(594\) 0 0
\(595\) 8.84513e11 0.289319
\(596\) −2.11733e12 −0.687354
\(597\) 0 0
\(598\) −6.82362e10 −0.0218202
\(599\) 1.09965e12 0.349007 0.174504 0.984657i \(-0.444168\pi\)
0.174504 + 0.984657i \(0.444168\pi\)
\(600\) 0 0
\(601\) 2.88372e12 0.901607 0.450804 0.892623i \(-0.351137\pi\)
0.450804 + 0.892623i \(0.351137\pi\)
\(602\) 1.38594e12 0.430090
\(603\) 0 0
\(604\) 2.66445e12 0.814593
\(605\) −1.17871e11 −0.0357692
\(606\) 0 0
\(607\) −4.15300e12 −1.24169 −0.620844 0.783934i \(-0.713210\pi\)
−0.620844 + 0.783934i \(0.713210\pi\)
\(608\) −1.71851e12 −0.510018
\(609\) 0 0
\(610\) −3.84613e12 −1.12471
\(611\) 2.18044e11 0.0632934
\(612\) 0 0
\(613\) 3.47765e12 0.994751 0.497375 0.867535i \(-0.334297\pi\)
0.497375 + 0.867535i \(0.334297\pi\)
\(614\) 9.88722e12 2.80748
\(615\) 0 0
\(616\) 2.71417e12 0.759494
\(617\) −6.57646e12 −1.82687 −0.913437 0.406979i \(-0.866582\pi\)
−0.913437 + 0.406979i \(0.866582\pi\)
\(618\) 0 0
\(619\) 9.01386e11 0.246776 0.123388 0.992359i \(-0.460624\pi\)
0.123388 + 0.992359i \(0.460624\pi\)
\(620\) −2.27284e12 −0.617741
\(621\) 0 0
\(622\) −6.50251e12 −1.74190
\(623\) 4.66556e11 0.124082
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −6.15064e12 −1.60080
\(627\) 0 0
\(628\) −1.65654e11 −0.0424994
\(629\) 1.00231e13 2.55314
\(630\) 0 0
\(631\) −4.67767e12 −1.17462 −0.587310 0.809362i \(-0.699813\pi\)
−0.587310 + 0.809362i \(0.699813\pi\)
\(632\) −1.16570e13 −2.90643
\(633\) 0 0
\(634\) 5.63337e12 1.38473
\(635\) −1.75778e12 −0.429024
\(636\) 0 0
\(637\) 2.26107e10 0.00544111
\(638\) 2.42867e12 0.580332
\(639\) 0 0
\(640\) −2.91175e12 −0.686031
\(641\) −3.76634e12 −0.881167 −0.440583 0.897712i \(-0.645228\pi\)
−0.440583 + 0.897712i \(0.645228\pi\)
\(642\) 0 0
\(643\) −3.77493e12 −0.870882 −0.435441 0.900217i \(-0.643408\pi\)
−0.435441 + 0.900217i \(0.643408\pi\)
\(644\) −1.12679e12 −0.258140
\(645\) 0 0
\(646\) −1.86984e13 −4.22434
\(647\) −5.06343e12 −1.13599 −0.567996 0.823031i \(-0.692281\pi\)
−0.567996 + 0.823031i \(0.692281\pi\)
\(648\) 0 0
\(649\) 5.80681e12 1.28480
\(650\) −6.10239e10 −0.0134088
\(651\) 0 0
\(652\) 5.38208e12 1.16637
\(653\) −3.01881e12 −0.649721 −0.324860 0.945762i \(-0.605317\pi\)
−0.324860 + 0.945762i \(0.605317\pi\)
\(654\) 0 0
\(655\) −7.25946e11 −0.154106
\(656\) −8.84899e12 −1.86563
\(657\) 0 0
\(658\) 5.31636e12 1.10560
\(659\) −1.25826e12 −0.259889 −0.129944 0.991521i \(-0.541480\pi\)
−0.129944 + 0.991521i \(0.541480\pi\)
\(660\) 0 0
\(661\) 4.12094e12 0.839634 0.419817 0.907609i \(-0.362094\pi\)
0.419817 + 0.907609i \(0.362094\pi\)
\(662\) −7.71358e12 −1.56097
\(663\) 0 0
\(664\) 2.09758e12 0.418757
\(665\) 1.19519e12 0.236995
\(666\) 0 0
\(667\) −5.27789e11 −0.103251
\(668\) 4.88291e12 0.948823
\(669\) 0 0
\(670\) 6.77108e12 1.29814
\(671\) −7.79670e12 −1.48477
\(672\) 0 0
\(673\) −6.41884e12 −1.20612 −0.603058 0.797697i \(-0.706051\pi\)
−0.603058 + 0.797697i \(0.706051\pi\)
\(674\) −7.98667e11 −0.149072
\(675\) 0 0
\(676\) −1.13772e13 −2.09543
\(677\) 7.67465e12 1.40414 0.702068 0.712110i \(-0.252260\pi\)
0.702068 + 0.712110i \(0.252260\pi\)
\(678\) 0 0
\(679\) −3.56037e11 −0.0642808
\(680\) 8.25243e12 1.48010
\(681\) 0 0
\(682\) −6.80298e12 −1.20412
\(683\) −2.73396e12 −0.480727 −0.240363 0.970683i \(-0.577267\pi\)
−0.240363 + 0.970683i \(0.577267\pi\)
\(684\) 0 0
\(685\) −2.17301e11 −0.0377098
\(686\) 5.51297e11 0.0950445
\(687\) 0 0
\(688\) 4.95833e12 0.843698
\(689\) 3.00945e11 0.0508746
\(690\) 0 0
\(691\) −7.94059e12 −1.32496 −0.662478 0.749081i \(-0.730495\pi\)
−0.662478 + 0.749081i \(0.730495\pi\)
\(692\) 1.21126e13 2.00798
\(693\) 0 0
\(694\) −1.82350e13 −2.98393
\(695\) 1.26928e12 0.206361
\(696\) 0 0
\(697\) −1.52452e13 −2.44672
\(698\) −7.12977e12 −1.13691
\(699\) 0 0
\(700\) −1.00769e12 −0.158630
\(701\) 8.03968e11 0.125750 0.0628750 0.998021i \(-0.479973\pi\)
0.0628750 + 0.998021i \(0.479973\pi\)
\(702\) 0 0
\(703\) 1.35436e13 2.09139
\(704\) −4.50289e12 −0.690899
\(705\) 0 0
\(706\) −1.09045e13 −1.65190
\(707\) 2.77095e12 0.417102
\(708\) 0 0
\(709\) 6.49723e12 0.965652 0.482826 0.875716i \(-0.339610\pi\)
0.482826 + 0.875716i \(0.339610\pi\)
\(710\) 5.59116e11 0.0825733
\(711\) 0 0
\(712\) 4.35293e12 0.634778
\(713\) 1.47839e12 0.214233
\(714\) 0 0
\(715\) −1.23705e11 −0.0177014
\(716\) −9.83310e11 −0.139824
\(717\) 0 0
\(718\) 3.06932e11 0.0431005
\(719\) 6.26229e12 0.873882 0.436941 0.899490i \(-0.356062\pi\)
0.436941 + 0.899490i \(0.356062\pi\)
\(720\) 0 0
\(721\) 4.65714e12 0.641816
\(722\) −1.24134e13 −1.70010
\(723\) 0 0
\(724\) 1.37447e13 1.85914
\(725\) −4.72003e11 −0.0634488
\(726\) 0 0
\(727\) 4.99771e11 0.0663538 0.0331769 0.999449i \(-0.489438\pi\)
0.0331769 + 0.999449i \(0.489438\pi\)
\(728\) 2.10956e11 0.0278357
\(729\) 0 0
\(730\) −2.04567e11 −0.0266613
\(731\) 8.54228e12 1.10649
\(732\) 0 0
\(733\) −1.22506e13 −1.56744 −0.783719 0.621115i \(-0.786680\pi\)
−0.783719 + 0.621115i \(0.786680\pi\)
\(734\) 4.10674e12 0.522233
\(735\) 0 0
\(736\) −9.42460e11 −0.118389
\(737\) 1.37260e13 1.71372
\(738\) 0 0
\(739\) 1.11519e12 0.137546 0.0687732 0.997632i \(-0.478092\pi\)
0.0687732 + 0.997632i \(0.478092\pi\)
\(740\) −1.14189e13 −1.39985
\(741\) 0 0
\(742\) 7.33767e12 0.888670
\(743\) 1.40083e13 1.68630 0.843149 0.537679i \(-0.180699\pi\)
0.843149 + 0.537679i \(0.180699\pi\)
\(744\) 0 0
\(745\) 1.23167e12 0.146484
\(746\) 5.32853e12 0.629915
\(747\) 0 0
\(748\) 3.19581e13 3.73271
\(749\) 6.31768e12 0.733482
\(750\) 0 0
\(751\) 5.25286e12 0.602582 0.301291 0.953532i \(-0.402582\pi\)
0.301291 + 0.953532i \(0.402582\pi\)
\(752\) 1.90198e13 2.16883
\(753\) 0 0
\(754\) 1.88766e11 0.0212693
\(755\) −1.54993e12 −0.173601
\(756\) 0 0
\(757\) 1.56939e13 1.73700 0.868501 0.495688i \(-0.165084\pi\)
0.868501 + 0.495688i \(0.165084\pi\)
\(758\) 1.31490e13 1.44670
\(759\) 0 0
\(760\) 1.11510e13 1.21242
\(761\) −5.73267e12 −0.619621 −0.309811 0.950798i \(-0.600266\pi\)
−0.309811 + 0.950798i \(0.600266\pi\)
\(762\) 0 0
\(763\) −1.32697e12 −0.141743
\(764\) −2.32804e13 −2.47212
\(765\) 0 0
\(766\) 1.38808e13 1.45675
\(767\) 4.51328e11 0.0470883
\(768\) 0 0
\(769\) 2.10268e12 0.216823 0.108412 0.994106i \(-0.465424\pi\)
0.108412 + 0.994106i \(0.465424\pi\)
\(770\) −3.01618e12 −0.309206
\(771\) 0 0
\(772\) −2.67927e13 −2.71480
\(773\) 6.49634e12 0.654427 0.327213 0.944950i \(-0.393890\pi\)
0.327213 + 0.944950i \(0.393890\pi\)
\(774\) 0 0
\(775\) 1.32213e12 0.131649
\(776\) −3.32180e12 −0.328848
\(777\) 0 0
\(778\) 6.85670e12 0.670976
\(779\) −2.05999e13 −2.00422
\(780\) 0 0
\(781\) 1.13341e12 0.109008
\(782\) −1.02545e13 −0.980586
\(783\) 0 0
\(784\) 1.97232e12 0.186447
\(785\) 9.63622e10 0.00905719
\(786\) 0 0
\(787\) 1.81068e12 0.168250 0.0841252 0.996455i \(-0.473190\pi\)
0.0841252 + 0.996455i \(0.473190\pi\)
\(788\) −1.72111e13 −1.59016
\(789\) 0 0
\(790\) 1.29540e13 1.18327
\(791\) 4.24515e12 0.385566
\(792\) 0 0
\(793\) −6.05990e11 −0.0544172
\(794\) 2.74697e13 2.45280
\(795\) 0 0
\(796\) −6.23255e12 −0.550246
\(797\) 1.69941e12 0.149189 0.0745945 0.997214i \(-0.476234\pi\)
0.0745945 + 0.997214i \(0.476234\pi\)
\(798\) 0 0
\(799\) 3.27677e13 2.84436
\(800\) −8.42845e11 −0.0727516
\(801\) 0 0
\(802\) 1.55252e13 1.32511
\(803\) −4.14688e11 −0.0351966
\(804\) 0 0
\(805\) 6.55462e11 0.0550131
\(806\) −5.28755e11 −0.0441313
\(807\) 0 0
\(808\) 2.58528e13 2.13381
\(809\) −1.90929e13 −1.56713 −0.783564 0.621311i \(-0.786600\pi\)
−0.783564 + 0.621311i \(0.786600\pi\)
\(810\) 0 0
\(811\) −2.15585e13 −1.74995 −0.874974 0.484169i \(-0.839122\pi\)
−0.874974 + 0.484169i \(0.839122\pi\)
\(812\) 3.11710e12 0.251622
\(813\) 0 0
\(814\) −3.41786e13 −2.72863
\(815\) −3.13081e12 −0.248569
\(816\) 0 0
\(817\) 1.15427e13 0.906373
\(818\) 2.27246e13 1.77463
\(819\) 0 0
\(820\) 1.73682e13 1.34151
\(821\) −1.81138e13 −1.39144 −0.695720 0.718313i \(-0.744915\pi\)
−0.695720 + 0.718313i \(0.744915\pi\)
\(822\) 0 0
\(823\) 2.19003e13 1.66399 0.831994 0.554785i \(-0.187200\pi\)
0.831994 + 0.554785i \(0.187200\pi\)
\(824\) 4.34507e13 3.28341
\(825\) 0 0
\(826\) 1.10043e13 0.822532
\(827\) 5.56249e12 0.413518 0.206759 0.978392i \(-0.433708\pi\)
0.206759 + 0.978392i \(0.433708\pi\)
\(828\) 0 0
\(829\) −3.07036e12 −0.225785 −0.112892 0.993607i \(-0.536011\pi\)
−0.112892 + 0.993607i \(0.536011\pi\)
\(830\) −2.33097e12 −0.170485
\(831\) 0 0
\(832\) −3.49983e11 −0.0253216
\(833\) 3.39794e12 0.244520
\(834\) 0 0
\(835\) −2.84044e12 −0.202207
\(836\) 4.31831e13 3.05763
\(837\) 0 0
\(838\) −1.51560e13 −1.06166
\(839\) −1.76918e13 −1.23266 −0.616331 0.787487i \(-0.711382\pi\)
−0.616331 + 0.787487i \(0.711382\pi\)
\(840\) 0 0
\(841\) −1.30471e13 −0.899356
\(842\) −1.45320e13 −0.996373
\(843\) 0 0
\(844\) −5.63746e13 −3.82421
\(845\) 6.61820e12 0.446565
\(846\) 0 0
\(847\) −4.52815e11 −0.0302305
\(848\) 2.62513e13 1.74329
\(849\) 0 0
\(850\) −9.17067e12 −0.602582
\(851\) 7.42754e12 0.485470
\(852\) 0 0
\(853\) −2.59374e13 −1.67748 −0.838738 0.544535i \(-0.816706\pi\)
−0.838738 + 0.544535i \(0.816706\pi\)
\(854\) −1.47753e13 −0.950552
\(855\) 0 0
\(856\) 5.89435e13 3.75235
\(857\) −1.15558e13 −0.731791 −0.365896 0.930656i \(-0.619237\pi\)
−0.365896 + 0.930656i \(0.619237\pi\)
\(858\) 0 0
\(859\) −9.77860e12 −0.612784 −0.306392 0.951905i \(-0.599122\pi\)
−0.306392 + 0.951905i \(0.599122\pi\)
\(860\) −9.73187e12 −0.606671
\(861\) 0 0
\(862\) 2.86027e13 1.76451
\(863\) −4.93535e12 −0.302879 −0.151439 0.988467i \(-0.548391\pi\)
−0.151439 + 0.988467i \(0.548391\pi\)
\(864\) 0 0
\(865\) −7.04601e12 −0.427928
\(866\) −3.30130e13 −1.99459
\(867\) 0 0
\(868\) −8.73134e12 −0.522086
\(869\) 2.62598e13 1.56208
\(870\) 0 0
\(871\) 1.06684e12 0.0628084
\(872\) −1.23805e13 −0.725128
\(873\) 0 0
\(874\) −1.38563e13 −0.803243
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) 1.33258e12 0.0760665 0.0380333 0.999276i \(-0.487891\pi\)
0.0380333 + 0.999276i \(0.487891\pi\)
\(878\) −9.09737e11 −0.0516643
\(879\) 0 0
\(880\) −1.07907e13 −0.606564
\(881\) −7.09860e12 −0.396991 −0.198496 0.980102i \(-0.563606\pi\)
−0.198496 + 0.980102i \(0.563606\pi\)
\(882\) 0 0
\(883\) −3.77620e12 −0.209041 −0.104521 0.994523i \(-0.533331\pi\)
−0.104521 + 0.994523i \(0.533331\pi\)
\(884\) 2.48391e12 0.136805
\(885\) 0 0
\(886\) −2.43247e13 −1.32616
\(887\) 2.40016e12 0.130192 0.0650960 0.997879i \(-0.479265\pi\)
0.0650960 + 0.997879i \(0.479265\pi\)
\(888\) 0 0
\(889\) −6.75267e12 −0.362592
\(890\) −4.83728e12 −0.258432
\(891\) 0 0
\(892\) 6.40411e13 3.38701
\(893\) 4.42769e13 2.32995
\(894\) 0 0
\(895\) 5.72000e11 0.0297984
\(896\) −1.11858e13 −0.579802
\(897\) 0 0
\(898\) −2.84323e13 −1.45904
\(899\) −4.08978e12 −0.208824
\(900\) 0 0
\(901\) 4.52261e13 2.28627
\(902\) 5.19859e13 2.61490
\(903\) 0 0
\(904\) 3.96069e13 1.97248
\(905\) −7.99542e12 −0.396208
\(906\) 0 0
\(907\) −1.05763e13 −0.518920 −0.259460 0.965754i \(-0.583545\pi\)
−0.259460 + 0.965754i \(0.583545\pi\)
\(908\) −2.22111e12 −0.108439
\(909\) 0 0
\(910\) −2.34429e11 −0.0113325
\(911\) −9.67151e12 −0.465223 −0.232612 0.972570i \(-0.574727\pi\)
−0.232612 + 0.972570i \(0.574727\pi\)
\(912\) 0 0
\(913\) −4.72524e12 −0.225064
\(914\) −3.25295e13 −1.54177
\(915\) 0 0
\(916\) −9.12555e12 −0.428282
\(917\) −2.78879e12 −0.130243
\(918\) 0 0
\(919\) −2.02154e13 −0.934896 −0.467448 0.884020i \(-0.654827\pi\)
−0.467448 + 0.884020i \(0.654827\pi\)
\(920\) 6.11541e12 0.281436
\(921\) 0 0
\(922\) −4.59709e12 −0.209505
\(923\) 8.80934e10 0.00399518
\(924\) 0 0
\(925\) 6.64248e12 0.298327
\(926\) −7.53171e13 −3.36623
\(927\) 0 0
\(928\) 2.60719e12 0.115400
\(929\) −3.64006e13 −1.60338 −0.801692 0.597737i \(-0.796067\pi\)
−0.801692 + 0.597737i \(0.796067\pi\)
\(930\) 0 0
\(931\) 4.59144e12 0.200297
\(932\) 8.96884e13 3.89372
\(933\) 0 0
\(934\) −5.64742e13 −2.42822
\(935\) −1.85903e13 −0.795491
\(936\) 0 0
\(937\) 1.31569e13 0.557605 0.278803 0.960348i \(-0.410063\pi\)
0.278803 + 0.960348i \(0.410063\pi\)
\(938\) 2.60118e13 1.09713
\(939\) 0 0
\(940\) −3.73308e13 −1.55952
\(941\) −5.82267e12 −0.242086 −0.121043 0.992647i \(-0.538624\pi\)
−0.121043 + 0.992647i \(0.538624\pi\)
\(942\) 0 0
\(943\) −1.12973e13 −0.465236
\(944\) 3.93691e13 1.61354
\(945\) 0 0
\(946\) −2.91291e13 −1.18254
\(947\) −1.97020e13 −0.796041 −0.398020 0.917377i \(-0.630303\pi\)
−0.398020 + 0.917377i \(0.630303\pi\)
\(948\) 0 0
\(949\) −3.22312e10 −0.00128997
\(950\) −1.23918e13 −0.493602
\(951\) 0 0
\(952\) 3.17025e13 1.25091
\(953\) 8.60597e12 0.337973 0.168986 0.985618i \(-0.445951\pi\)
0.168986 + 0.985618i \(0.445951\pi\)
\(954\) 0 0
\(955\) 1.35424e13 0.526843
\(956\) −5.48779e12 −0.212489
\(957\) 0 0
\(958\) −2.27334e13 −0.872007
\(959\) −8.34784e11 −0.0318706
\(960\) 0 0
\(961\) −1.49837e13 −0.566714
\(962\) −2.65650e12 −0.100005
\(963\) 0 0
\(964\) 4.53011e13 1.68951
\(965\) 1.55855e13 0.578561
\(966\) 0 0
\(967\) −3.11450e13 −1.14543 −0.572716 0.819754i \(-0.694110\pi\)
−0.572716 + 0.819754i \(0.694110\pi\)
\(968\) −4.22473e12 −0.154653
\(969\) 0 0
\(970\) 3.69141e12 0.133881
\(971\) 2.54818e12 0.0919906 0.0459953 0.998942i \(-0.485354\pi\)
0.0459953 + 0.998942i \(0.485354\pi\)
\(972\) 0 0
\(973\) 4.87608e12 0.174406
\(974\) 1.98441e13 0.706507
\(975\) 0 0
\(976\) −5.28601e13 −1.86468
\(977\) −2.02788e12 −0.0712061 −0.0356030 0.999366i \(-0.511335\pi\)
−0.0356030 + 0.999366i \(0.511335\pi\)
\(978\) 0 0
\(979\) −9.80590e12 −0.341166
\(980\) −3.87114e12 −0.134067
\(981\) 0 0
\(982\) −8.95226e13 −3.07207
\(983\) 2.37073e13 0.809825 0.404912 0.914355i \(-0.367302\pi\)
0.404912 + 0.914355i \(0.367302\pi\)
\(984\) 0 0
\(985\) 1.00118e13 0.338884
\(986\) 2.83678e13 0.955828
\(987\) 0 0
\(988\) 3.35636e12 0.112063
\(989\) 6.33020e12 0.210394
\(990\) 0 0
\(991\) 4.70050e13 1.54815 0.774074 0.633095i \(-0.218216\pi\)
0.774074 + 0.633095i \(0.218216\pi\)
\(992\) −7.30302e12 −0.239442
\(993\) 0 0
\(994\) 2.14790e12 0.0697872
\(995\) 3.62553e12 0.117265
\(996\) 0 0
\(997\) 3.19557e12 0.102428 0.0512141 0.998688i \(-0.483691\pi\)
0.0512141 + 0.998688i \(0.483691\pi\)
\(998\) −5.87799e12 −0.187560
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.l.1.2 6
3.2 odd 2 35.10.a.e.1.5 6
15.2 even 4 175.10.b.g.99.10 12
15.8 even 4 175.10.b.g.99.3 12
15.14 odd 2 175.10.a.g.1.2 6
21.20 even 2 245.10.a.g.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.5 6 3.2 odd 2
175.10.a.g.1.2 6 15.14 odd 2
175.10.b.g.99.3 12 15.8 even 4
175.10.b.g.99.10 12 15.2 even 4
245.10.a.g.1.5 6 21.20 even 2
315.10.a.l.1.2 6 1.1 even 1 trivial