Properties

Label 315.10.a.l.1.1
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-39.7818\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-42.7818 q^{2} +1318.28 q^{4} -625.000 q^{5} -2401.00 q^{7} -34494.1 q^{8} +26738.6 q^{10} -41568.7 q^{11} +103859. q^{13} +102719. q^{14} +800760. q^{16} -355256. q^{17} -349126. q^{19} -823925. q^{20} +1.77838e6 q^{22} -228204. q^{23} +390625. q^{25} -4.44327e6 q^{26} -3.16519e6 q^{28} -4.02216e6 q^{29} -3.29476e6 q^{31} -1.65969e7 q^{32} +1.51985e7 q^{34} +1.50062e6 q^{35} -2.13083e7 q^{37} +1.49362e7 q^{38} +2.15588e7 q^{40} -1.05289e7 q^{41} +3.89712e6 q^{43} -5.47991e7 q^{44} +9.76296e6 q^{46} +3.31846e7 q^{47} +5.76480e6 q^{49} -1.67116e7 q^{50} +1.36915e8 q^{52} +6.31880e7 q^{53} +2.59804e7 q^{55} +8.28203e7 q^{56} +1.72075e8 q^{58} -5.86733e7 q^{59} +1.37845e8 q^{61} +1.40956e8 q^{62} +3.00057e8 q^{64} -6.49118e7 q^{65} +8.36796e7 q^{67} -4.68327e8 q^{68} -6.41994e7 q^{70} -1.50169e8 q^{71} -2.74817e8 q^{73} +9.11609e8 q^{74} -4.60246e8 q^{76} +9.98063e7 q^{77} -2.75964e8 q^{79} -5.00475e8 q^{80} +4.50444e8 q^{82} -2.32312e8 q^{83} +2.22035e8 q^{85} -1.66726e8 q^{86} +1.43387e9 q^{88} -2.71482e8 q^{89} -2.49365e8 q^{91} -3.00837e8 q^{92} -1.41969e9 q^{94} +2.18204e8 q^{95} -9.76607e8 q^{97} -2.46628e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 15 q^{2} + 3009 q^{4} - 3750 q^{5} - 14406 q^{7} - 22041 q^{8} + 9375 q^{10} + 47796 q^{11} + 102168 q^{13} + 36015 q^{14} + 2371065 q^{16} + 38472 q^{17} + 361056 q^{19} - 1880625 q^{20} + 2068680 q^{22}+ \cdots - 86472015 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −42.7818 −1.89071 −0.945353 0.326050i \(-0.894282\pi\)
−0.945353 + 0.326050i \(0.894282\pi\)
\(3\) 0 0
\(4\) 1318.28 2.57477
\(5\) −625.000 −0.447214
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) −34494.1 −2.97742
\(9\) 0 0
\(10\) 26738.6 0.845549
\(11\) −41568.7 −0.856050 −0.428025 0.903767i \(-0.640790\pi\)
−0.428025 + 0.903767i \(0.640790\pi\)
\(12\) 0 0
\(13\) 103859. 1.00855 0.504277 0.863542i \(-0.331759\pi\)
0.504277 + 0.863542i \(0.331759\pi\)
\(14\) 102719. 0.714619
\(15\) 0 0
\(16\) 800760. 3.05466
\(17\) −355256. −1.03162 −0.515812 0.856702i \(-0.672510\pi\)
−0.515812 + 0.856702i \(0.672510\pi\)
\(18\) 0 0
\(19\) −349126. −0.614597 −0.307299 0.951613i \(-0.599425\pi\)
−0.307299 + 0.951613i \(0.599425\pi\)
\(20\) −823925. −1.15147
\(21\) 0 0
\(22\) 1.77838e6 1.61854
\(23\) −228204. −0.170039 −0.0850193 0.996379i \(-0.527095\pi\)
−0.0850193 + 0.996379i \(0.527095\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −4.44327e6 −1.90688
\(27\) 0 0
\(28\) −3.16519e6 −0.973170
\(29\) −4.02216e6 −1.05601 −0.528005 0.849241i \(-0.677060\pi\)
−0.528005 + 0.849241i \(0.677060\pi\)
\(30\) 0 0
\(31\) −3.29476e6 −0.640761 −0.320381 0.947289i \(-0.603811\pi\)
−0.320381 + 0.947289i \(0.603811\pi\)
\(32\) −1.65969e7 −2.79803
\(33\) 0 0
\(34\) 1.51985e7 1.95050
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) −2.13083e7 −1.86914 −0.934570 0.355778i \(-0.884216\pi\)
−0.934570 + 0.355778i \(0.884216\pi\)
\(38\) 1.49362e7 1.16202
\(39\) 0 0
\(40\) 2.15588e7 1.33154
\(41\) −1.05289e7 −0.581909 −0.290954 0.956737i \(-0.593973\pi\)
−0.290954 + 0.956737i \(0.593973\pi\)
\(42\) 0 0
\(43\) 3.89712e6 0.173835 0.0869173 0.996216i \(-0.472298\pi\)
0.0869173 + 0.996216i \(0.472298\pi\)
\(44\) −5.47991e7 −2.20413
\(45\) 0 0
\(46\) 9.76296e6 0.321493
\(47\) 3.31846e7 0.991964 0.495982 0.868333i \(-0.334808\pi\)
0.495982 + 0.868333i \(0.334808\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −1.67116e7 −0.378141
\(51\) 0 0
\(52\) 1.36915e8 2.59679
\(53\) 6.31880e7 1.10000 0.550001 0.835164i \(-0.314627\pi\)
0.550001 + 0.835164i \(0.314627\pi\)
\(54\) 0 0
\(55\) 2.59804e7 0.382837
\(56\) 8.28203e7 1.12536
\(57\) 0 0
\(58\) 1.72075e8 1.99660
\(59\) −5.86733e7 −0.630386 −0.315193 0.949028i \(-0.602069\pi\)
−0.315193 + 0.949028i \(0.602069\pi\)
\(60\) 0 0
\(61\) 1.37845e8 1.27470 0.637348 0.770576i \(-0.280032\pi\)
0.637348 + 0.770576i \(0.280032\pi\)
\(62\) 1.40956e8 1.21149
\(63\) 0 0
\(64\) 3.00057e8 2.23560
\(65\) −6.49118e7 −0.451039
\(66\) 0 0
\(67\) 8.36796e7 0.507321 0.253660 0.967293i \(-0.418365\pi\)
0.253660 + 0.967293i \(0.418365\pi\)
\(68\) −4.68327e8 −2.65619
\(69\) 0 0
\(70\) −6.41994e7 −0.319588
\(71\) −1.50169e8 −0.701322 −0.350661 0.936503i \(-0.614043\pi\)
−0.350661 + 0.936503i \(0.614043\pi\)
\(72\) 0 0
\(73\) −2.74817e8 −1.13264 −0.566318 0.824187i \(-0.691633\pi\)
−0.566318 + 0.824187i \(0.691633\pi\)
\(74\) 9.11609e8 3.53399
\(75\) 0 0
\(76\) −4.60246e8 −1.58244
\(77\) 9.98063e7 0.323556
\(78\) 0 0
\(79\) −2.75964e8 −0.797133 −0.398566 0.917139i \(-0.630492\pi\)
−0.398566 + 0.917139i \(0.630492\pi\)
\(80\) −5.00475e8 −1.36608
\(81\) 0 0
\(82\) 4.50444e8 1.10022
\(83\) −2.32312e8 −0.537304 −0.268652 0.963237i \(-0.586578\pi\)
−0.268652 + 0.963237i \(0.586578\pi\)
\(84\) 0 0
\(85\) 2.22035e8 0.461356
\(86\) −1.66726e8 −0.328670
\(87\) 0 0
\(88\) 1.43387e9 2.54882
\(89\) −2.71482e8 −0.458654 −0.229327 0.973349i \(-0.573653\pi\)
−0.229327 + 0.973349i \(0.573653\pi\)
\(90\) 0 0
\(91\) −2.49365e8 −0.381197
\(92\) −3.00837e8 −0.437810
\(93\) 0 0
\(94\) −1.41969e9 −1.87551
\(95\) 2.18204e8 0.274856
\(96\) 0 0
\(97\) −9.76607e8 −1.12007 −0.560037 0.828467i \(-0.689213\pi\)
−0.560037 + 0.828467i \(0.689213\pi\)
\(98\) −2.46628e8 −0.270101
\(99\) 0 0
\(100\) 5.14953e8 0.514953
\(101\) −1.11904e9 −1.07004 −0.535019 0.844840i \(-0.679696\pi\)
−0.535019 + 0.844840i \(0.679696\pi\)
\(102\) 0 0
\(103\) 1.01154e9 0.885559 0.442779 0.896631i \(-0.353993\pi\)
0.442779 + 0.896631i \(0.353993\pi\)
\(104\) −3.58252e9 −3.00289
\(105\) 0 0
\(106\) −2.70329e9 −2.07978
\(107\) 1.47411e9 1.08719 0.543593 0.839349i \(-0.317064\pi\)
0.543593 + 0.839349i \(0.317064\pi\)
\(108\) 0 0
\(109\) −1.79852e9 −1.22038 −0.610190 0.792255i \(-0.708907\pi\)
−0.610190 + 0.792255i \(0.708907\pi\)
\(110\) −1.11149e9 −0.723832
\(111\) 0 0
\(112\) −1.92262e9 −1.15455
\(113\) −1.09680e9 −0.632812 −0.316406 0.948624i \(-0.602476\pi\)
−0.316406 + 0.948624i \(0.602476\pi\)
\(114\) 0 0
\(115\) 1.42627e8 0.0760436
\(116\) −5.30233e9 −2.71898
\(117\) 0 0
\(118\) 2.51015e9 1.19187
\(119\) 8.52970e8 0.389917
\(120\) 0 0
\(121\) −6.29995e8 −0.267179
\(122\) −5.89725e9 −2.41007
\(123\) 0 0
\(124\) −4.34342e9 −1.64981
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) −3.23678e8 −0.110407 −0.0552035 0.998475i \(-0.517581\pi\)
−0.0552035 + 0.998475i \(0.517581\pi\)
\(128\) −4.33936e9 −1.42883
\(129\) 0 0
\(130\) 2.77704e9 0.852781
\(131\) 4.60246e9 1.36543 0.682714 0.730686i \(-0.260800\pi\)
0.682714 + 0.730686i \(0.260800\pi\)
\(132\) 0 0
\(133\) 8.38251e8 0.232296
\(134\) −3.57996e9 −0.959194
\(135\) 0 0
\(136\) 1.22542e10 3.07158
\(137\) 3.07931e9 0.746812 0.373406 0.927668i \(-0.378190\pi\)
0.373406 + 0.927668i \(0.378190\pi\)
\(138\) 0 0
\(139\) −6.80655e9 −1.54654 −0.773268 0.634079i \(-0.781379\pi\)
−0.773268 + 0.634079i \(0.781379\pi\)
\(140\) 1.97824e9 0.435215
\(141\) 0 0
\(142\) 6.42449e9 1.32599
\(143\) −4.31728e9 −0.863371
\(144\) 0 0
\(145\) 2.51385e9 0.472262
\(146\) 1.17572e10 2.14148
\(147\) 0 0
\(148\) −2.80904e10 −4.81260
\(149\) −1.11783e10 −1.85796 −0.928981 0.370127i \(-0.879314\pi\)
−0.928981 + 0.370127i \(0.879314\pi\)
\(150\) 0 0
\(151\) −4.87685e9 −0.763384 −0.381692 0.924290i \(-0.624658\pi\)
−0.381692 + 0.924290i \(0.624658\pi\)
\(152\) 1.20428e10 1.82991
\(153\) 0 0
\(154\) −4.26989e9 −0.611750
\(155\) 2.05923e9 0.286557
\(156\) 0 0
\(157\) −5.01169e9 −0.658318 −0.329159 0.944274i \(-0.606765\pi\)
−0.329159 + 0.944274i \(0.606765\pi\)
\(158\) 1.18062e10 1.50714
\(159\) 0 0
\(160\) 1.03731e10 1.25132
\(161\) 5.47917e8 0.0642686
\(162\) 0 0
\(163\) −1.45416e10 −1.61349 −0.806746 0.590899i \(-0.798773\pi\)
−0.806746 + 0.590899i \(0.798773\pi\)
\(164\) −1.38800e10 −1.49828
\(165\) 0 0
\(166\) 9.93872e9 1.01588
\(167\) 4.62247e8 0.0459886 0.0229943 0.999736i \(-0.492680\pi\)
0.0229943 + 0.999736i \(0.492680\pi\)
\(168\) 0 0
\(169\) 1.82180e8 0.0171795
\(170\) −9.49906e9 −0.872289
\(171\) 0 0
\(172\) 5.13750e9 0.447583
\(173\) −1.02318e9 −0.0868449 −0.0434224 0.999057i \(-0.513826\pi\)
−0.0434224 + 0.999057i \(0.513826\pi\)
\(174\) 0 0
\(175\) −9.37891e8 −0.0755929
\(176\) −3.32865e10 −2.61494
\(177\) 0 0
\(178\) 1.16145e10 0.867180
\(179\) −1.42460e10 −1.03718 −0.518590 0.855023i \(-0.673543\pi\)
−0.518590 + 0.855023i \(0.673543\pi\)
\(180\) 0 0
\(181\) 1.83877e10 1.27343 0.636714 0.771100i \(-0.280293\pi\)
0.636714 + 0.771100i \(0.280293\pi\)
\(182\) 1.06683e10 0.720732
\(183\) 0 0
\(184\) 7.87168e9 0.506276
\(185\) 1.33177e10 0.835905
\(186\) 0 0
\(187\) 1.47675e10 0.883121
\(188\) 4.37466e10 2.55408
\(189\) 0 0
\(190\) −9.33514e9 −0.519672
\(191\) 2.65507e10 1.44353 0.721766 0.692137i \(-0.243331\pi\)
0.721766 + 0.692137i \(0.243331\pi\)
\(192\) 0 0
\(193\) 5.84127e9 0.303040 0.151520 0.988454i \(-0.451583\pi\)
0.151520 + 0.988454i \(0.451583\pi\)
\(194\) 4.17810e10 2.11773
\(195\) 0 0
\(196\) 7.59962e9 0.367824
\(197\) 2.06491e10 0.976793 0.488397 0.872622i \(-0.337582\pi\)
0.488397 + 0.872622i \(0.337582\pi\)
\(198\) 0 0
\(199\) −2.66301e10 −1.20374 −0.601871 0.798593i \(-0.705578\pi\)
−0.601871 + 0.798593i \(0.705578\pi\)
\(200\) −1.34743e10 −0.595484
\(201\) 0 0
\(202\) 4.78745e10 2.02313
\(203\) 9.65720e9 0.399134
\(204\) 0 0
\(205\) 6.58055e9 0.260238
\(206\) −4.32756e10 −1.67433
\(207\) 0 0
\(208\) 8.31660e10 3.08078
\(209\) 1.45127e10 0.526126
\(210\) 0 0
\(211\) 1.35165e10 0.469454 0.234727 0.972061i \(-0.424580\pi\)
0.234727 + 0.972061i \(0.424580\pi\)
\(212\) 8.32995e10 2.83225
\(213\) 0 0
\(214\) −6.30652e10 −2.05555
\(215\) −2.43570e9 −0.0777412
\(216\) 0 0
\(217\) 7.91072e9 0.242185
\(218\) 7.69437e10 2.30738
\(219\) 0 0
\(220\) 3.42495e10 0.985716
\(221\) −3.68965e10 −1.04045
\(222\) 0 0
\(223\) 4.47296e10 1.21122 0.605610 0.795762i \(-0.292929\pi\)
0.605610 + 0.795762i \(0.292929\pi\)
\(224\) 3.98492e10 1.05756
\(225\) 0 0
\(226\) 4.69231e10 1.19646
\(227\) −2.46775e10 −0.616858 −0.308429 0.951247i \(-0.599803\pi\)
−0.308429 + 0.951247i \(0.599803\pi\)
\(228\) 0 0
\(229\) −5.44437e10 −1.30824 −0.654121 0.756390i \(-0.726961\pi\)
−0.654121 + 0.756390i \(0.726961\pi\)
\(230\) −6.10185e9 −0.143776
\(231\) 0 0
\(232\) 1.38741e11 3.14418
\(233\) 5.82731e10 1.29529 0.647644 0.761943i \(-0.275754\pi\)
0.647644 + 0.761943i \(0.275754\pi\)
\(234\) 0 0
\(235\) −2.07404e10 −0.443620
\(236\) −7.73478e10 −1.62310
\(237\) 0 0
\(238\) −3.64916e10 −0.737219
\(239\) −5.53754e10 −1.09781 −0.548904 0.835885i \(-0.684955\pi\)
−0.548904 + 0.835885i \(0.684955\pi\)
\(240\) 0 0
\(241\) 6.01280e10 1.14815 0.574077 0.818802i \(-0.305361\pi\)
0.574077 + 0.818802i \(0.305361\pi\)
\(242\) 2.69523e10 0.505157
\(243\) 0 0
\(244\) 1.81718e11 3.28204
\(245\) −3.60300e9 −0.0638877
\(246\) 0 0
\(247\) −3.62598e10 −0.619854
\(248\) 1.13650e11 1.90781
\(249\) 0 0
\(250\) 1.04448e10 0.169110
\(251\) −1.01611e9 −0.0161588 −0.00807938 0.999967i \(-0.502572\pi\)
−0.00807938 + 0.999967i \(0.502572\pi\)
\(252\) 0 0
\(253\) 9.48612e9 0.145561
\(254\) 1.38475e10 0.208747
\(255\) 0 0
\(256\) 3.20161e10 0.465895
\(257\) 1.10965e11 1.58667 0.793334 0.608787i \(-0.208343\pi\)
0.793334 + 0.608787i \(0.208343\pi\)
\(258\) 0 0
\(259\) 5.11613e10 0.706469
\(260\) −8.55720e10 −1.16132
\(261\) 0 0
\(262\) −1.96901e11 −2.58162
\(263\) −1.21172e11 −1.56171 −0.780856 0.624711i \(-0.785217\pi\)
−0.780856 + 0.624711i \(0.785217\pi\)
\(264\) 0 0
\(265\) −3.94925e10 −0.491936
\(266\) −3.58619e10 −0.439203
\(267\) 0 0
\(268\) 1.10313e11 1.30623
\(269\) −5.16654e10 −0.601609 −0.300805 0.953686i \(-0.597255\pi\)
−0.300805 + 0.953686i \(0.597255\pi\)
\(270\) 0 0
\(271\) −2.49166e10 −0.280626 −0.140313 0.990107i \(-0.544811\pi\)
−0.140313 + 0.990107i \(0.544811\pi\)
\(272\) −2.84475e11 −3.15126
\(273\) 0 0
\(274\) −1.31738e11 −1.41200
\(275\) −1.62378e10 −0.171210
\(276\) 0 0
\(277\) −2.22882e10 −0.227466 −0.113733 0.993511i \(-0.536281\pi\)
−0.113733 + 0.993511i \(0.536281\pi\)
\(278\) 2.91196e11 2.92404
\(279\) 0 0
\(280\) −5.17627e10 −0.503276
\(281\) −9.03151e10 −0.864135 −0.432068 0.901841i \(-0.642216\pi\)
−0.432068 + 0.901841i \(0.642216\pi\)
\(282\) 0 0
\(283\) −9.63268e10 −0.892706 −0.446353 0.894857i \(-0.647277\pi\)
−0.446353 + 0.894857i \(0.647277\pi\)
\(284\) −1.97965e11 −1.80574
\(285\) 0 0
\(286\) 1.84701e11 1.63238
\(287\) 2.52798e10 0.219941
\(288\) 0 0
\(289\) 7.61912e9 0.0642487
\(290\) −1.07547e11 −0.892908
\(291\) 0 0
\(292\) −3.62286e11 −2.91627
\(293\) 4.21047e10 0.333754 0.166877 0.985978i \(-0.446632\pi\)
0.166877 + 0.985978i \(0.446632\pi\)
\(294\) 0 0
\(295\) 3.66708e10 0.281917
\(296\) 7.35012e11 5.56521
\(297\) 0 0
\(298\) 4.78227e11 3.51286
\(299\) −2.37010e10 −0.171493
\(300\) 0 0
\(301\) −9.35700e9 −0.0657033
\(302\) 2.08640e11 1.44333
\(303\) 0 0
\(304\) −2.79566e11 −1.87738
\(305\) −8.61531e10 −0.570061
\(306\) 0 0
\(307\) 9.28980e10 0.596875 0.298438 0.954429i \(-0.403534\pi\)
0.298438 + 0.954429i \(0.403534\pi\)
\(308\) 1.31573e11 0.833082
\(309\) 0 0
\(310\) −8.80973e10 −0.541795
\(311\) 1.56495e11 0.948588 0.474294 0.880366i \(-0.342703\pi\)
0.474294 + 0.880366i \(0.342703\pi\)
\(312\) 0 0
\(313\) 8.88488e10 0.523242 0.261621 0.965171i \(-0.415743\pi\)
0.261621 + 0.965171i \(0.415743\pi\)
\(314\) 2.14409e11 1.24469
\(315\) 0 0
\(316\) −3.63798e11 −2.05243
\(317\) −6.19880e10 −0.344779 −0.172389 0.985029i \(-0.555149\pi\)
−0.172389 + 0.985029i \(0.555149\pi\)
\(318\) 0 0
\(319\) 1.67196e11 0.903997
\(320\) −1.87536e11 −0.999791
\(321\) 0 0
\(322\) −2.34409e10 −0.121513
\(323\) 1.24029e11 0.634034
\(324\) 0 0
\(325\) 4.05699e10 0.201711
\(326\) 6.22114e11 3.05064
\(327\) 0 0
\(328\) 3.63184e11 1.73259
\(329\) −7.96762e10 −0.374927
\(330\) 0 0
\(331\) 3.65322e11 1.67282 0.836410 0.548104i \(-0.184650\pi\)
0.836410 + 0.548104i \(0.184650\pi\)
\(332\) −3.06252e11 −1.38343
\(333\) 0 0
\(334\) −1.97757e10 −0.0869508
\(335\) −5.22997e10 −0.226881
\(336\) 0 0
\(337\) 1.45738e11 0.615514 0.307757 0.951465i \(-0.400422\pi\)
0.307757 + 0.951465i \(0.400422\pi\)
\(338\) −7.79400e9 −0.0324815
\(339\) 0 0
\(340\) 2.92705e11 1.18788
\(341\) 1.36959e11 0.548523
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) −1.34428e11 −0.517578
\(345\) 0 0
\(346\) 4.37734e10 0.164198
\(347\) −2.96112e11 −1.09641 −0.548206 0.836343i \(-0.684689\pi\)
−0.548206 + 0.836343i \(0.684689\pi\)
\(348\) 0 0
\(349\) 3.01854e11 1.08914 0.544569 0.838716i \(-0.316693\pi\)
0.544569 + 0.838716i \(0.316693\pi\)
\(350\) 4.01246e10 0.142924
\(351\) 0 0
\(352\) 6.89912e11 2.39526
\(353\) 1.99229e11 0.682916 0.341458 0.939897i \(-0.389079\pi\)
0.341458 + 0.939897i \(0.389079\pi\)
\(354\) 0 0
\(355\) 9.38555e10 0.313641
\(356\) −3.57889e11 −1.18093
\(357\) 0 0
\(358\) 6.09469e11 1.96100
\(359\) 6.48945e10 0.206197 0.103099 0.994671i \(-0.467124\pi\)
0.103099 + 0.994671i \(0.467124\pi\)
\(360\) 0 0
\(361\) −2.00799e11 −0.622270
\(362\) −7.86660e11 −2.40768
\(363\) 0 0
\(364\) −3.28733e11 −0.981494
\(365\) 1.71761e11 0.506530
\(366\) 0 0
\(367\) −4.27450e10 −0.122995 −0.0614976 0.998107i \(-0.519588\pi\)
−0.0614976 + 0.998107i \(0.519588\pi\)
\(368\) −1.82736e11 −0.519409
\(369\) 0 0
\(370\) −5.69756e11 −1.58045
\(371\) −1.51714e11 −0.415761
\(372\) 0 0
\(373\) 5.72742e11 1.53204 0.766018 0.642819i \(-0.222235\pi\)
0.766018 + 0.642819i \(0.222235\pi\)
\(374\) −6.31781e11 −1.66972
\(375\) 0 0
\(376\) −1.14467e12 −2.95349
\(377\) −4.17737e11 −1.06504
\(378\) 0 0
\(379\) −2.28088e11 −0.567840 −0.283920 0.958848i \(-0.591635\pi\)
−0.283920 + 0.958848i \(0.591635\pi\)
\(380\) 2.87654e11 0.707691
\(381\) 0 0
\(382\) −1.13589e12 −2.72929
\(383\) −8.33542e11 −1.97940 −0.989699 0.143162i \(-0.954273\pi\)
−0.989699 + 0.143162i \(0.954273\pi\)
\(384\) 0 0
\(385\) −6.23790e10 −0.144699
\(386\) −2.49900e11 −0.572959
\(387\) 0 0
\(388\) −1.28744e12 −2.88393
\(389\) 3.47070e11 0.768501 0.384251 0.923229i \(-0.374460\pi\)
0.384251 + 0.923229i \(0.374460\pi\)
\(390\) 0 0
\(391\) 8.10708e10 0.175416
\(392\) −1.98852e11 −0.425346
\(393\) 0 0
\(394\) −8.83404e11 −1.84683
\(395\) 1.72478e11 0.356489
\(396\) 0 0
\(397\) 5.31999e11 1.07486 0.537432 0.843307i \(-0.319394\pi\)
0.537432 + 0.843307i \(0.319394\pi\)
\(398\) 1.13928e12 2.27592
\(399\) 0 0
\(400\) 3.12797e11 0.610931
\(401\) 1.10007e11 0.212456 0.106228 0.994342i \(-0.466123\pi\)
0.106228 + 0.994342i \(0.466123\pi\)
\(402\) 0 0
\(403\) −3.42190e11 −0.646242
\(404\) −1.47521e12 −2.75510
\(405\) 0 0
\(406\) −4.13152e11 −0.754645
\(407\) 8.85759e11 1.60008
\(408\) 0 0
\(409\) 5.36319e11 0.947694 0.473847 0.880607i \(-0.342865\pi\)
0.473847 + 0.880607i \(0.342865\pi\)
\(410\) −2.81528e11 −0.492032
\(411\) 0 0
\(412\) 1.33350e12 2.28011
\(413\) 1.40875e11 0.238263
\(414\) 0 0
\(415\) 1.45195e11 0.240290
\(416\) −1.72374e12 −2.82197
\(417\) 0 0
\(418\) −6.20879e11 −0.994749
\(419\) −2.77847e11 −0.440395 −0.220198 0.975455i \(-0.570670\pi\)
−0.220198 + 0.975455i \(0.570670\pi\)
\(420\) 0 0
\(421\) 5.42301e11 0.841339 0.420670 0.907214i \(-0.361795\pi\)
0.420670 + 0.907214i \(0.361795\pi\)
\(422\) −5.78260e11 −0.887599
\(423\) 0 0
\(424\) −2.17961e12 −3.27516
\(425\) −1.38772e11 −0.206325
\(426\) 0 0
\(427\) −3.30966e11 −0.481790
\(428\) 1.94329e12 2.79925
\(429\) 0 0
\(430\) 1.04204e11 0.146986
\(431\) 5.57666e11 0.778442 0.389221 0.921144i \(-0.372744\pi\)
0.389221 + 0.921144i \(0.372744\pi\)
\(432\) 0 0
\(433\) 2.13337e11 0.291656 0.145828 0.989310i \(-0.453415\pi\)
0.145828 + 0.989310i \(0.453415\pi\)
\(434\) −3.38435e11 −0.457900
\(435\) 0 0
\(436\) −2.37095e12 −3.14219
\(437\) 7.96718e10 0.104505
\(438\) 0 0
\(439\) −1.05316e12 −1.35334 −0.676668 0.736289i \(-0.736577\pi\)
−0.676668 + 0.736289i \(0.736577\pi\)
\(440\) −8.96171e11 −1.13987
\(441\) 0 0
\(442\) 1.57850e12 1.96718
\(443\) 7.98551e11 0.985113 0.492556 0.870281i \(-0.336063\pi\)
0.492556 + 0.870281i \(0.336063\pi\)
\(444\) 0 0
\(445\) 1.69676e11 0.205117
\(446\) −1.91361e12 −2.29006
\(447\) 0 0
\(448\) −7.20438e11 −0.844978
\(449\) 9.80369e11 1.13836 0.569182 0.822211i \(-0.307260\pi\)
0.569182 + 0.822211i \(0.307260\pi\)
\(450\) 0 0
\(451\) 4.37671e11 0.498143
\(452\) −1.44589e12 −1.62934
\(453\) 0 0
\(454\) 1.05575e12 1.16630
\(455\) 1.55853e11 0.170477
\(456\) 0 0
\(457\) 7.38737e11 0.792259 0.396130 0.918195i \(-0.370353\pi\)
0.396130 + 0.918195i \(0.370353\pi\)
\(458\) 2.32920e12 2.47350
\(459\) 0 0
\(460\) 1.88023e11 0.195794
\(461\) 8.57026e11 0.883771 0.441885 0.897072i \(-0.354310\pi\)
0.441885 + 0.897072i \(0.354310\pi\)
\(462\) 0 0
\(463\) −8.66003e11 −0.875800 −0.437900 0.899024i \(-0.644278\pi\)
−0.437900 + 0.899024i \(0.644278\pi\)
\(464\) −3.22078e12 −3.22575
\(465\) 0 0
\(466\) −2.49303e12 −2.44901
\(467\) 1.74446e12 1.69721 0.848606 0.529025i \(-0.177442\pi\)
0.848606 + 0.529025i \(0.177442\pi\)
\(468\) 0 0
\(469\) −2.00915e11 −0.191749
\(470\) 8.87309e11 0.838754
\(471\) 0 0
\(472\) 2.02388e12 1.87692
\(473\) −1.61998e11 −0.148811
\(474\) 0 0
\(475\) −1.36377e11 −0.122919
\(476\) 1.12445e12 1.00395
\(477\) 0 0
\(478\) 2.36906e12 2.07563
\(479\) 6.51076e11 0.565096 0.282548 0.959253i \(-0.408820\pi\)
0.282548 + 0.959253i \(0.408820\pi\)
\(480\) 0 0
\(481\) −2.21306e12 −1.88513
\(482\) −2.57238e12 −2.17082
\(483\) 0 0
\(484\) −8.30510e11 −0.687924
\(485\) 6.10379e11 0.500913
\(486\) 0 0
\(487\) 9.91101e8 0.000798432 0 0.000399216 1.00000i \(-0.499873\pi\)
0.000399216 1.00000i \(0.499873\pi\)
\(488\) −4.75484e12 −3.79530
\(489\) 0 0
\(490\) 1.54143e11 0.120793
\(491\) −8.38408e11 −0.651012 −0.325506 0.945540i \(-0.605535\pi\)
−0.325506 + 0.945540i \(0.605535\pi\)
\(492\) 0 0
\(493\) 1.42890e12 1.08941
\(494\) 1.55126e12 1.17196
\(495\) 0 0
\(496\) −2.63831e12 −1.95730
\(497\) 3.60555e11 0.265075
\(498\) 0 0
\(499\) 2.48735e12 1.79591 0.897955 0.440088i \(-0.145053\pi\)
0.897955 + 0.440088i \(0.145053\pi\)
\(500\) −3.21846e11 −0.230294
\(501\) 0 0
\(502\) 4.34709e10 0.0305515
\(503\) 1.40863e12 0.981163 0.490582 0.871395i \(-0.336784\pi\)
0.490582 + 0.871395i \(0.336784\pi\)
\(504\) 0 0
\(505\) 6.99400e11 0.478536
\(506\) −4.05833e11 −0.275214
\(507\) 0 0
\(508\) −4.26699e11 −0.284272
\(509\) 8.28720e11 0.547240 0.273620 0.961838i \(-0.411779\pi\)
0.273620 + 0.961838i \(0.411779\pi\)
\(510\) 0 0
\(511\) 6.59835e11 0.428096
\(512\) 8.52047e11 0.547960
\(513\) 0 0
\(514\) −4.74727e12 −2.99992
\(515\) −6.32215e11 −0.396034
\(516\) 0 0
\(517\) −1.37944e12 −0.849170
\(518\) −2.18877e12 −1.33572
\(519\) 0 0
\(520\) 2.23908e12 1.34293
\(521\) 8.58369e11 0.510393 0.255196 0.966889i \(-0.417860\pi\)
0.255196 + 0.966889i \(0.417860\pi\)
\(522\) 0 0
\(523\) 1.43567e12 0.839069 0.419534 0.907739i \(-0.362193\pi\)
0.419534 + 0.907739i \(0.362193\pi\)
\(524\) 6.06733e12 3.51566
\(525\) 0 0
\(526\) 5.18395e12 2.95274
\(527\) 1.17048e12 0.661025
\(528\) 0 0
\(529\) −1.74908e12 −0.971087
\(530\) 1.68956e12 0.930105
\(531\) 0 0
\(532\) 1.10505e12 0.598108
\(533\) −1.09352e12 −0.586886
\(534\) 0 0
\(535\) −9.21320e11 −0.486204
\(536\) −2.88645e12 −1.51051
\(537\) 0 0
\(538\) 2.21034e12 1.13747
\(539\) −2.39635e11 −0.122293
\(540\) 0 0
\(541\) 3.25599e12 1.63416 0.817081 0.576523i \(-0.195591\pi\)
0.817081 + 0.576523i \(0.195591\pi\)
\(542\) 1.06598e12 0.530581
\(543\) 0 0
\(544\) 5.89616e12 2.88652
\(545\) 1.12407e12 0.545770
\(546\) 0 0
\(547\) −1.31051e12 −0.625887 −0.312944 0.949772i \(-0.601315\pi\)
−0.312944 + 0.949772i \(0.601315\pi\)
\(548\) 4.05940e12 1.92287
\(549\) 0 0
\(550\) 6.94680e11 0.323707
\(551\) 1.40424e12 0.649021
\(552\) 0 0
\(553\) 6.62590e11 0.301288
\(554\) 9.53528e11 0.430070
\(555\) 0 0
\(556\) −8.97294e12 −3.98197
\(557\) −6.12448e11 −0.269600 −0.134800 0.990873i \(-0.543039\pi\)
−0.134800 + 0.990873i \(0.543039\pi\)
\(558\) 0 0
\(559\) 4.04751e11 0.175321
\(560\) 1.20164e12 0.516331
\(561\) 0 0
\(562\) 3.86384e12 1.63383
\(563\) −2.74733e12 −1.15245 −0.576227 0.817290i \(-0.695476\pi\)
−0.576227 + 0.817290i \(0.695476\pi\)
\(564\) 0 0
\(565\) 6.85500e11 0.283002
\(566\) 4.12103e12 1.68784
\(567\) 0 0
\(568\) 5.17994e12 2.08813
\(569\) 7.10003e11 0.283958 0.141979 0.989870i \(-0.454653\pi\)
0.141979 + 0.989870i \(0.454653\pi\)
\(570\) 0 0
\(571\) 2.87190e12 1.13060 0.565298 0.824887i \(-0.308761\pi\)
0.565298 + 0.824887i \(0.308761\pi\)
\(572\) −5.69138e12 −2.22298
\(573\) 0 0
\(574\) −1.08152e12 −0.415843
\(575\) −8.91421e10 −0.0340077
\(576\) 0 0
\(577\) −5.13479e12 −1.92855 −0.964277 0.264897i \(-0.914662\pi\)
−0.964277 + 0.264897i \(0.914662\pi\)
\(578\) −3.25959e11 −0.121475
\(579\) 0 0
\(580\) 3.31396e12 1.21596
\(581\) 5.57781e11 0.203082
\(582\) 0 0
\(583\) −2.62664e12 −0.941656
\(584\) 9.47956e12 3.37233
\(585\) 0 0
\(586\) −1.80131e12 −0.631030
\(587\) −2.46529e12 −0.857031 −0.428515 0.903535i \(-0.640963\pi\)
−0.428515 + 0.903535i \(0.640963\pi\)
\(588\) 0 0
\(589\) 1.15029e12 0.393810
\(590\) −1.56884e12 −0.533022
\(591\) 0 0
\(592\) −1.70629e13 −5.70958
\(593\) 1.51279e12 0.502379 0.251189 0.967938i \(-0.419178\pi\)
0.251189 + 0.967938i \(0.419178\pi\)
\(594\) 0 0
\(595\) −5.33106e11 −0.174376
\(596\) −1.47361e13 −4.78382
\(597\) 0 0
\(598\) 1.01397e12 0.324243
\(599\) 5.89069e12 1.86959 0.934794 0.355191i \(-0.115584\pi\)
0.934794 + 0.355191i \(0.115584\pi\)
\(600\) 0 0
\(601\) −3.78551e12 −1.18356 −0.591779 0.806101i \(-0.701574\pi\)
−0.591779 + 0.806101i \(0.701574\pi\)
\(602\) 4.00309e11 0.124226
\(603\) 0 0
\(604\) −6.42905e12 −1.96553
\(605\) 3.93747e11 0.119486
\(606\) 0 0
\(607\) 4.65336e12 1.39129 0.695645 0.718386i \(-0.255119\pi\)
0.695645 + 0.718386i \(0.255119\pi\)
\(608\) 5.79442e12 1.71966
\(609\) 0 0
\(610\) 3.68578e12 1.07782
\(611\) 3.44651e12 1.00045
\(612\) 0 0
\(613\) 5.65330e12 1.61707 0.808537 0.588445i \(-0.200260\pi\)
0.808537 + 0.588445i \(0.200260\pi\)
\(614\) −3.97434e12 −1.12852
\(615\) 0 0
\(616\) −3.44273e12 −0.963363
\(617\) 4.91335e12 1.36488 0.682441 0.730941i \(-0.260919\pi\)
0.682441 + 0.730941i \(0.260919\pi\)
\(618\) 0 0
\(619\) 1.31898e12 0.361101 0.180551 0.983566i \(-0.442212\pi\)
0.180551 + 0.983566i \(0.442212\pi\)
\(620\) 2.71464e12 0.737818
\(621\) 0 0
\(622\) −6.69512e12 −1.79350
\(623\) 6.51828e11 0.173355
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −3.80111e12 −0.989296
\(627\) 0 0
\(628\) −6.60681e12 −1.69502
\(629\) 7.56992e12 1.92825
\(630\) 0 0
\(631\) −1.26560e12 −0.317808 −0.158904 0.987294i \(-0.550796\pi\)
−0.158904 + 0.987294i \(0.550796\pi\)
\(632\) 9.51913e12 2.37340
\(633\) 0 0
\(634\) 2.65196e12 0.651875
\(635\) 2.02299e11 0.0493755
\(636\) 0 0
\(637\) 5.98726e11 0.144079
\(638\) −7.15293e12 −1.70919
\(639\) 0 0
\(640\) 2.71210e12 0.638992
\(641\) −7.10592e12 −1.66249 −0.831246 0.555905i \(-0.812372\pi\)
−0.831246 + 0.555905i \(0.812372\pi\)
\(642\) 0 0
\(643\) 4.17010e12 0.962049 0.481024 0.876707i \(-0.340265\pi\)
0.481024 + 0.876707i \(0.340265\pi\)
\(644\) 7.22309e11 0.165477
\(645\) 0 0
\(646\) −5.30619e12 −1.19877
\(647\) 5.36916e12 1.20458 0.602292 0.798276i \(-0.294254\pi\)
0.602292 + 0.798276i \(0.294254\pi\)
\(648\) 0 0
\(649\) 2.43897e12 0.539641
\(650\) −1.73565e12 −0.381375
\(651\) 0 0
\(652\) −1.91699e13 −4.15436
\(653\) −2.71691e12 −0.584744 −0.292372 0.956305i \(-0.594445\pi\)
−0.292372 + 0.956305i \(0.594445\pi\)
\(654\) 0 0
\(655\) −2.87653e12 −0.610638
\(656\) −8.43110e12 −1.77753
\(657\) 0 0
\(658\) 3.40869e12 0.708877
\(659\) −6.36955e12 −1.31560 −0.657801 0.753192i \(-0.728513\pi\)
−0.657801 + 0.753192i \(0.728513\pi\)
\(660\) 0 0
\(661\) −5.58167e12 −1.13725 −0.568627 0.822596i \(-0.692525\pi\)
−0.568627 + 0.822596i \(0.692525\pi\)
\(662\) −1.56291e13 −3.16281
\(663\) 0 0
\(664\) 8.01340e12 1.59978
\(665\) −5.23907e11 −0.103886
\(666\) 0 0
\(667\) 9.17871e11 0.179562
\(668\) 6.09371e11 0.118410
\(669\) 0 0
\(670\) 2.23748e12 0.428965
\(671\) −5.73003e12 −1.09120
\(672\) 0 0
\(673\) 4.49826e12 0.845234 0.422617 0.906308i \(-0.361112\pi\)
0.422617 + 0.906308i \(0.361112\pi\)
\(674\) −6.23492e12 −1.16376
\(675\) 0 0
\(676\) 2.40165e11 0.0442333
\(677\) −5.35625e12 −0.979969 −0.489984 0.871731i \(-0.662998\pi\)
−0.489984 + 0.871731i \(0.662998\pi\)
\(678\) 0 0
\(679\) 2.34483e12 0.423349
\(680\) −7.65890e12 −1.37365
\(681\) 0 0
\(682\) −5.85934e12 −1.03710
\(683\) 2.20240e12 0.387261 0.193630 0.981075i \(-0.437974\pi\)
0.193630 + 0.981075i \(0.437974\pi\)
\(684\) 0 0
\(685\) −1.92457e12 −0.333984
\(686\) 5.92155e11 0.102088
\(687\) 0 0
\(688\) 3.12066e12 0.531005
\(689\) 6.56264e12 1.10941
\(690\) 0 0
\(691\) 4.30201e12 0.717827 0.358913 0.933371i \(-0.383147\pi\)
0.358913 + 0.933371i \(0.383147\pi\)
\(692\) −1.34884e12 −0.223605
\(693\) 0 0
\(694\) 1.26682e13 2.07299
\(695\) 4.25409e12 0.691632
\(696\) 0 0
\(697\) 3.74045e12 0.600311
\(698\) −1.29139e13 −2.05924
\(699\) 0 0
\(700\) −1.23640e12 −0.194634
\(701\) −9.24701e12 −1.44634 −0.723170 0.690670i \(-0.757316\pi\)
−0.723170 + 0.690670i \(0.757316\pi\)
\(702\) 0 0
\(703\) 7.43929e12 1.14877
\(704\) −1.24730e13 −1.91379
\(705\) 0 0
\(706\) −8.52339e12 −1.29119
\(707\) 2.68681e12 0.404436
\(708\) 0 0
\(709\) −1.08956e13 −1.61936 −0.809680 0.586872i \(-0.800359\pi\)
−0.809680 + 0.586872i \(0.800359\pi\)
\(710\) −4.01531e12 −0.593002
\(711\) 0 0
\(712\) 9.36452e12 1.36561
\(713\) 7.51877e11 0.108954
\(714\) 0 0
\(715\) 2.69830e12 0.386111
\(716\) −1.87802e13 −2.67050
\(717\) 0 0
\(718\) −2.77630e12 −0.389858
\(719\) 6.34998e12 0.886120 0.443060 0.896492i \(-0.353893\pi\)
0.443060 + 0.896492i \(0.353893\pi\)
\(720\) 0 0
\(721\) −2.42872e12 −0.334710
\(722\) 8.59053e12 1.17653
\(723\) 0 0
\(724\) 2.42402e13 3.27878
\(725\) −1.57115e12 −0.211202
\(726\) 0 0
\(727\) 4.81017e12 0.638639 0.319319 0.947647i \(-0.396546\pi\)
0.319319 + 0.947647i \(0.396546\pi\)
\(728\) 8.60163e12 1.13498
\(729\) 0 0
\(730\) −7.34822e12 −0.957700
\(731\) −1.38448e12 −0.179332
\(732\) 0 0
\(733\) −1.10839e13 −1.41816 −0.709082 0.705126i \(-0.750890\pi\)
−0.709082 + 0.705126i \(0.750890\pi\)
\(734\) 1.82871e12 0.232548
\(735\) 0 0
\(736\) 3.78748e12 0.475774
\(737\) −3.47845e12 −0.434292
\(738\) 0 0
\(739\) −1.33603e13 −1.64784 −0.823922 0.566704i \(-0.808218\pi\)
−0.823922 + 0.566704i \(0.808218\pi\)
\(740\) 1.75565e13 2.15226
\(741\) 0 0
\(742\) 6.49061e12 0.786082
\(743\) −2.12151e12 −0.255384 −0.127692 0.991814i \(-0.540757\pi\)
−0.127692 + 0.991814i \(0.540757\pi\)
\(744\) 0 0
\(745\) 6.98643e12 0.830906
\(746\) −2.45029e13 −2.89663
\(747\) 0 0
\(748\) 1.94677e13 2.27383
\(749\) −3.53934e12 −0.410918
\(750\) 0 0
\(751\) 2.36099e12 0.270841 0.135420 0.990788i \(-0.456762\pi\)
0.135420 + 0.990788i \(0.456762\pi\)
\(752\) 2.65729e13 3.03011
\(753\) 0 0
\(754\) 1.78715e13 2.01368
\(755\) 3.04803e12 0.341396
\(756\) 0 0
\(757\) 6.53431e12 0.723217 0.361608 0.932330i \(-0.382228\pi\)
0.361608 + 0.932330i \(0.382228\pi\)
\(758\) 9.75801e12 1.07362
\(759\) 0 0
\(760\) −7.52674e12 −0.818363
\(761\) 7.47260e12 0.807682 0.403841 0.914829i \(-0.367675\pi\)
0.403841 + 0.914829i \(0.367675\pi\)
\(762\) 0 0
\(763\) 4.31824e12 0.461260
\(764\) 3.50013e13 3.71676
\(765\) 0 0
\(766\) 3.56604e13 3.74246
\(767\) −6.09374e12 −0.635777
\(768\) 0 0
\(769\) 3.53111e12 0.364119 0.182059 0.983288i \(-0.441724\pi\)
0.182059 + 0.983288i \(0.441724\pi\)
\(770\) 2.66868e12 0.273583
\(771\) 0 0
\(772\) 7.70043e12 0.780256
\(773\) −4.38854e12 −0.442092 −0.221046 0.975263i \(-0.570947\pi\)
−0.221046 + 0.975263i \(0.570947\pi\)
\(774\) 0 0
\(775\) −1.28702e12 −0.128152
\(776\) 3.36872e13 3.33493
\(777\) 0 0
\(778\) −1.48483e13 −1.45301
\(779\) 3.67591e12 0.357640
\(780\) 0 0
\(781\) 6.24232e12 0.600366
\(782\) −3.46835e12 −0.331660
\(783\) 0 0
\(784\) 4.61622e12 0.436379
\(785\) 3.13231e12 0.294409
\(786\) 0 0
\(787\) −8.78357e12 −0.816178 −0.408089 0.912942i \(-0.633805\pi\)
−0.408089 + 0.912942i \(0.633805\pi\)
\(788\) 2.72213e13 2.51501
\(789\) 0 0
\(790\) −7.37890e12 −0.674015
\(791\) 2.63342e12 0.239180
\(792\) 0 0
\(793\) 1.43164e13 1.28560
\(794\) −2.27599e13 −2.03225
\(795\) 0 0
\(796\) −3.51059e13 −3.09935
\(797\) 3.11376e12 0.273352 0.136676 0.990616i \(-0.456358\pi\)
0.136676 + 0.990616i \(0.456358\pi\)
\(798\) 0 0
\(799\) −1.17890e13 −1.02333
\(800\) −6.48318e12 −0.559607
\(801\) 0 0
\(802\) −4.70628e12 −0.401692
\(803\) 1.14238e13 0.969593
\(804\) 0 0
\(805\) −3.42448e11 −0.0287418
\(806\) 1.46395e13 1.22185
\(807\) 0 0
\(808\) 3.86003e13 3.18595
\(809\) −2.27913e13 −1.87068 −0.935341 0.353747i \(-0.884907\pi\)
−0.935341 + 0.353747i \(0.884907\pi\)
\(810\) 0 0
\(811\) 6.23133e12 0.505810 0.252905 0.967491i \(-0.418614\pi\)
0.252905 + 0.967491i \(0.418614\pi\)
\(812\) 1.27309e13 1.02768
\(813\) 0 0
\(814\) −3.78944e13 −3.02527
\(815\) 9.08847e12 0.721575
\(816\) 0 0
\(817\) −1.36059e12 −0.106838
\(818\) −2.29447e13 −1.79181
\(819\) 0 0
\(820\) 8.67501e12 0.670051
\(821\) 6.34294e12 0.487244 0.243622 0.969870i \(-0.421664\pi\)
0.243622 + 0.969870i \(0.421664\pi\)
\(822\) 0 0
\(823\) −1.01100e13 −0.768158 −0.384079 0.923300i \(-0.625481\pi\)
−0.384079 + 0.923300i \(0.625481\pi\)
\(824\) −3.48923e13 −2.63668
\(825\) 0 0
\(826\) −6.02686e12 −0.450486
\(827\) 2.09841e11 0.0155997 0.00779984 0.999970i \(-0.497517\pi\)
0.00779984 + 0.999970i \(0.497517\pi\)
\(828\) 0 0
\(829\) −1.42099e13 −1.04495 −0.522474 0.852655i \(-0.674991\pi\)
−0.522474 + 0.852655i \(0.674991\pi\)
\(830\) −6.21170e12 −0.454317
\(831\) 0 0
\(832\) 3.11636e13 2.25472
\(833\) −2.04798e12 −0.147375
\(834\) 0 0
\(835\) −2.88904e11 −0.0205667
\(836\) 1.91318e13 1.35465
\(837\) 0 0
\(838\) 1.18868e13 0.832658
\(839\) −6.20295e12 −0.432185 −0.216092 0.976373i \(-0.569331\pi\)
−0.216092 + 0.976373i \(0.569331\pi\)
\(840\) 0 0
\(841\) 1.67059e12 0.115157
\(842\) −2.32006e13 −1.59072
\(843\) 0 0
\(844\) 1.78185e13 1.20873
\(845\) −1.13863e11 −0.00768292
\(846\) 0 0
\(847\) 1.51262e12 0.100984
\(848\) 5.05984e13 3.36012
\(849\) 0 0
\(850\) 5.93691e12 0.390099
\(851\) 4.86265e12 0.317826
\(852\) 0 0
\(853\) −3.60370e12 −0.233066 −0.116533 0.993187i \(-0.537178\pi\)
−0.116533 + 0.993187i \(0.537178\pi\)
\(854\) 1.41593e13 0.910922
\(855\) 0 0
\(856\) −5.08482e13 −3.23701
\(857\) 4.01270e12 0.254110 0.127055 0.991896i \(-0.459447\pi\)
0.127055 + 0.991896i \(0.459447\pi\)
\(858\) 0 0
\(859\) 2.02534e13 1.26919 0.634597 0.772843i \(-0.281166\pi\)
0.634597 + 0.772843i \(0.281166\pi\)
\(860\) −3.21094e12 −0.200165
\(861\) 0 0
\(862\) −2.38579e13 −1.47180
\(863\) −1.57831e13 −0.968598 −0.484299 0.874903i \(-0.660925\pi\)
−0.484299 + 0.874903i \(0.660925\pi\)
\(864\) 0 0
\(865\) 6.39487e11 0.0388382
\(866\) −9.12694e12 −0.551435
\(867\) 0 0
\(868\) 1.04285e13 0.623570
\(869\) 1.14715e13 0.682385
\(870\) 0 0
\(871\) 8.69087e12 0.511660
\(872\) 6.20382e13 3.63358
\(873\) 0 0
\(874\) −3.40850e12 −0.197589
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −8.86665e12 −0.506129 −0.253065 0.967449i \(-0.581439\pi\)
−0.253065 + 0.967449i \(0.581439\pi\)
\(878\) 4.50562e13 2.55876
\(879\) 0 0
\(880\) 2.08041e13 1.16943
\(881\) 1.22614e13 0.685720 0.342860 0.939387i \(-0.388604\pi\)
0.342860 + 0.939387i \(0.388604\pi\)
\(882\) 0 0
\(883\) 1.90484e13 1.05447 0.527236 0.849719i \(-0.323228\pi\)
0.527236 + 0.849719i \(0.323228\pi\)
\(884\) −4.86400e13 −2.67891
\(885\) 0 0
\(886\) −3.41634e13 −1.86256
\(887\) −2.67439e13 −1.45067 −0.725335 0.688396i \(-0.758315\pi\)
−0.725335 + 0.688396i \(0.758315\pi\)
\(888\) 0 0
\(889\) 7.77152e11 0.0417300
\(890\) −7.25904e12 −0.387815
\(891\) 0 0
\(892\) 5.89661e13 3.11861
\(893\) −1.15856e13 −0.609659
\(894\) 0 0
\(895\) 8.90375e12 0.463841
\(896\) 1.04188e13 0.540047
\(897\) 0 0
\(898\) −4.19419e13 −2.15231
\(899\) 1.32520e13 0.676650
\(900\) 0 0
\(901\) −2.24479e13 −1.13479
\(902\) −1.87244e13 −0.941841
\(903\) 0 0
\(904\) 3.78332e13 1.88415
\(905\) −1.14923e13 −0.569495
\(906\) 0 0
\(907\) 3.03949e13 1.49131 0.745655 0.666332i \(-0.232137\pi\)
0.745655 + 0.666332i \(0.232137\pi\)
\(908\) −3.25319e13 −1.58827
\(909\) 0 0
\(910\) −6.66768e12 −0.322321
\(911\) −1.77272e13 −0.852721 −0.426361 0.904553i \(-0.640205\pi\)
−0.426361 + 0.904553i \(0.640205\pi\)
\(912\) 0 0
\(913\) 9.65690e12 0.459959
\(914\) −3.16045e13 −1.49793
\(915\) 0 0
\(916\) −7.17721e13 −3.36842
\(917\) −1.10505e13 −0.516083
\(918\) 0 0
\(919\) −3.30500e13 −1.52845 −0.764226 0.644948i \(-0.776879\pi\)
−0.764226 + 0.644948i \(0.776879\pi\)
\(920\) −4.91980e12 −0.226414
\(921\) 0 0
\(922\) −3.66651e13 −1.67095
\(923\) −1.55964e13 −0.707320
\(924\) 0 0
\(925\) −8.32357e12 −0.373828
\(926\) 3.70491e13 1.65588
\(927\) 0 0
\(928\) 6.67555e13 2.95475
\(929\) 3.62767e13 1.59793 0.798963 0.601380i \(-0.205382\pi\)
0.798963 + 0.601380i \(0.205382\pi\)
\(930\) 0 0
\(931\) −2.01264e12 −0.0877996
\(932\) 7.68203e13 3.33506
\(933\) 0 0
\(934\) −7.46313e13 −3.20893
\(935\) −9.22970e12 −0.394944
\(936\) 0 0
\(937\) 8.07643e11 0.0342288 0.0171144 0.999854i \(-0.494552\pi\)
0.0171144 + 0.999854i \(0.494552\pi\)
\(938\) 8.59548e12 0.362541
\(939\) 0 0
\(940\) −2.73416e13 −1.14222
\(941\) 2.62828e13 1.09274 0.546371 0.837543i \(-0.316009\pi\)
0.546371 + 0.837543i \(0.316009\pi\)
\(942\) 0 0
\(943\) 2.40273e12 0.0989470
\(944\) −4.69832e13 −1.92561
\(945\) 0 0
\(946\) 6.93057e12 0.281358
\(947\) −1.64435e13 −0.664384 −0.332192 0.943212i \(-0.607788\pi\)
−0.332192 + 0.943212i \(0.607788\pi\)
\(948\) 0 0
\(949\) −2.85422e13 −1.14232
\(950\) 5.83446e12 0.232405
\(951\) 0 0
\(952\) −2.94224e13 −1.16095
\(953\) 1.18588e13 0.465717 0.232859 0.972511i \(-0.425192\pi\)
0.232859 + 0.972511i \(0.425192\pi\)
\(954\) 0 0
\(955\) −1.65942e13 −0.645567
\(956\) −7.30003e13 −2.82660
\(957\) 0 0
\(958\) −2.78542e13 −1.06843
\(959\) −7.39343e12 −0.282268
\(960\) 0 0
\(961\) −1.55842e13 −0.589425
\(962\) 9.46787e13 3.56422
\(963\) 0 0
\(964\) 7.92655e13 2.95623
\(965\) −3.65079e12 −0.135523
\(966\) 0 0
\(967\) 1.14207e13 0.420023 0.210011 0.977699i \(-0.432650\pi\)
0.210011 + 0.977699i \(0.432650\pi\)
\(968\) 2.17311e13 0.795505
\(969\) 0 0
\(970\) −2.61131e13 −0.947078
\(971\) −8.26707e12 −0.298446 −0.149223 0.988804i \(-0.547677\pi\)
−0.149223 + 0.988804i \(0.547677\pi\)
\(972\) 0 0
\(973\) 1.63425e13 0.584536
\(974\) −4.24011e10 −0.00150960
\(975\) 0 0
\(976\) 1.10381e14 3.89375
\(977\) 5.06889e13 1.77987 0.889934 0.456090i \(-0.150750\pi\)
0.889934 + 0.456090i \(0.150750\pi\)
\(978\) 0 0
\(979\) 1.12851e13 0.392631
\(980\) −4.74976e12 −0.164496
\(981\) 0 0
\(982\) 3.58686e13 1.23087
\(983\) −1.12786e13 −0.385268 −0.192634 0.981271i \(-0.561703\pi\)
−0.192634 + 0.981271i \(0.561703\pi\)
\(984\) 0 0
\(985\) −1.29057e13 −0.436835
\(986\) −6.11307e13 −2.05974
\(987\) 0 0
\(988\) −4.78006e13 −1.59598
\(989\) −8.89338e11 −0.0295586
\(990\) 0 0
\(991\) 5.17189e13 1.70340 0.851702 0.524027i \(-0.175571\pi\)
0.851702 + 0.524027i \(0.175571\pi\)
\(992\) 5.46829e13 1.79287
\(993\) 0 0
\(994\) −1.54252e13 −0.501178
\(995\) 1.66438e13 0.538330
\(996\) 0 0
\(997\) 1.92951e13 0.618471 0.309235 0.950986i \(-0.399927\pi\)
0.309235 + 0.950986i \(0.399927\pi\)
\(998\) −1.06413e14 −3.39554
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.l.1.1 6
3.2 odd 2 35.10.a.e.1.6 6
15.2 even 4 175.10.b.g.99.11 12
15.8 even 4 175.10.b.g.99.2 12
15.14 odd 2 175.10.a.g.1.1 6
21.20 even 2 245.10.a.g.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.6 6 3.2 odd 2
175.10.a.g.1.1 6 15.14 odd 2
175.10.b.g.99.2 12 15.8 even 4
175.10.b.g.99.11 12 15.2 even 4
245.10.a.g.1.6 6 21.20 even 2
315.10.a.l.1.1 6 1.1 even 1 trivial