Properties

Label 315.10.a.k
Level $315$
Weight $10$
Character orbit 315.a
Self dual yes
Analytic conductor $162.236$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,10,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 2759x^{4} + 14856x^{3} + 1722956x^{2} - 8110848x - 126461952 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 4) q^{2} + (\beta_{2} + 3 \beta_1 + 426) q^{4} - 625 q^{5} + 2401 q^{7} + ( - \beta_{3} - 456 \beta_1 - 1867) q^{8} + (625 \beta_1 + 2500) q^{10} + (\beta_{4} - \beta_{3} - 9 \beta_{2} + \cdots - 15746) q^{11}+ \cdots + ( - 5764801 \beta_1 - 23059204) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 26 q^{2} + 2562 q^{4} - 3750 q^{5} + 14406 q^{7} - 12114 q^{8} + 16250 q^{10} - 95180 q^{11} - 6968 q^{13} - 62426 q^{14} + 1260754 q^{16} - 798164 q^{17} - 100916 q^{19} - 1601250 q^{20} + 2335000 q^{22}+ \cdots - 149884826 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 2759x^{4} + 14856x^{3} + 1722956x^{2} - 8110848x - 126461952 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 5\nu - 922 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 12\nu^{2} - 1432\nu - 5899 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{5} - 50\nu^{4} + 6725\nu^{3} + 61632\nu^{2} - 2957236\nu - 8372464 ) / 464 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 22\nu^{4} + 2783\nu^{3} - 50796\nu^{2} - 1422524\nu + 12322200 ) / 232 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 5\beta _1 + 922 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 12\beta_{2} + 1492\beta _1 - 5165 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{5} - 4\beta_{4} - 14\beta_{3} + 2013\beta_{2} - 18817\beta _1 + 1382546 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -100\beta_{5} - 88\beta_{4} + 2475\beta_{3} - 39906\beta_{2} + 2569718\beta _1 - 18469895 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
38.7325
31.1091
12.2163
−6.87951
−27.1049
−46.0736
−42.7325 0 1314.07 −625.000 0 2401.00 −34274.4 0 26707.8
1.2 −35.1091 0 720.650 −625.000 0 2401.00 −7325.52 0 21943.2
1.3 −16.2163 0 −249.031 −625.000 0 2401.00 12341.1 0 10135.2
1.4 2.87951 0 −503.708 −625.000 0 2401.00 −2924.74 0 −1799.69
1.5 23.1049 0 21.8344 −625.000 0 2401.00 −11325.2 0 −14440.5
1.6 42.0736 0 1258.19 −625.000 0 2401.00 31394.8 0 −26296.0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.10.a.k 6
3.b odd 2 1 105.10.a.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.h 6 3.b odd 2 1
315.10.a.k 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 26T_{2}^{5} - 2479T_{2}^{4} - 57400T_{2}^{3} + 1284940T_{2}^{2} + 20483808T_{2} - 68102208 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 26 T^{5} + \cdots - 68102208 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T + 625)^{6} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 24\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 55\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 90\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 60\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 16\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 21\!\cdots\!88 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 67\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 82\!\cdots\!40 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 10\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 21\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 65\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 42\!\cdots\!48 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 86\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 55\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 11\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 28\!\cdots\!44 \) Copy content Toggle raw display
show more
show less