Properties

Label 315.10.a.j.1.5
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-36.4619\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+36.4619 q^{2} +817.473 q^{4} +625.000 q^{5} +2401.00 q^{7} +11138.1 q^{8} +22788.7 q^{10} +75602.9 q^{11} -49331.2 q^{13} +87545.1 q^{14} -12428.3 q^{16} +522841. q^{17} +442202. q^{19} +510921. q^{20} +2.75663e6 q^{22} -2.11792e6 q^{23} +390625. q^{25} -1.79871e6 q^{26} +1.96275e6 q^{28} +5.29101e6 q^{29} -5.41211e6 q^{31} -6.15588e6 q^{32} +1.90638e7 q^{34} +1.50062e6 q^{35} +1.68073e7 q^{37} +1.61236e7 q^{38} +6.96133e6 q^{40} -2.98305e6 q^{41} -1.11225e7 q^{43} +6.18033e7 q^{44} -7.72234e7 q^{46} -1.58154e7 q^{47} +5.76480e6 q^{49} +1.42429e7 q^{50} -4.03269e7 q^{52} +2.78375e7 q^{53} +4.72518e7 q^{55} +2.67427e7 q^{56} +1.92920e8 q^{58} -1.71244e7 q^{59} +1.93532e8 q^{61} -1.97336e8 q^{62} -2.18092e8 q^{64} -3.08320e7 q^{65} +1.93697e8 q^{67} +4.27409e8 q^{68} +5.47157e7 q^{70} -1.41665e8 q^{71} -2.36977e7 q^{73} +6.12828e8 q^{74} +3.61488e8 q^{76} +1.81522e8 q^{77} +2.51611e8 q^{79} -7.76766e6 q^{80} -1.08768e8 q^{82} -2.06819e8 q^{83} +3.26776e8 q^{85} -4.05548e8 q^{86} +8.42074e8 q^{88} +6.94584e8 q^{89} -1.18444e8 q^{91} -1.73134e9 q^{92} -5.76662e8 q^{94} +2.76376e8 q^{95} +1.39893e9 q^{97} +2.10196e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 832 q^{4} + 3125 q^{5} + 12005 q^{7} + 14136 q^{8} - 1250 q^{10} - 10312 q^{11} + 158638 q^{13} - 4802 q^{14} - 526696 q^{16} - 31614 q^{17} + 1655376 q^{19} + 520000 q^{20} + 3659464 q^{22}+ \cdots - 11529602 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 36.4619 1.61141 0.805703 0.592320i \(-0.201788\pi\)
0.805703 + 0.592320i \(0.201788\pi\)
\(3\) 0 0
\(4\) 817.473 1.59663
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 11138.1 0.961407
\(9\) 0 0
\(10\) 22788.7 0.720642
\(11\) 75602.9 1.55694 0.778469 0.627684i \(-0.215997\pi\)
0.778469 + 0.627684i \(0.215997\pi\)
\(12\) 0 0
\(13\) −49331.2 −0.479045 −0.239523 0.970891i \(-0.576991\pi\)
−0.239523 + 0.970891i \(0.576991\pi\)
\(14\) 87545.1 0.609054
\(15\) 0 0
\(16\) −12428.3 −0.0474100
\(17\) 522841. 1.51827 0.759137 0.650931i \(-0.225621\pi\)
0.759137 + 0.650931i \(0.225621\pi\)
\(18\) 0 0
\(19\) 442202. 0.778448 0.389224 0.921143i \(-0.372743\pi\)
0.389224 + 0.921143i \(0.372743\pi\)
\(20\) 510921. 0.714033
\(21\) 0 0
\(22\) 2.75663e6 2.50886
\(23\) −2.11792e6 −1.57810 −0.789049 0.614330i \(-0.789426\pi\)
−0.789049 + 0.614330i \(0.789426\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −1.79871e6 −0.771936
\(27\) 0 0
\(28\) 1.96275e6 0.603468
\(29\) 5.29101e6 1.38914 0.694572 0.719423i \(-0.255594\pi\)
0.694572 + 0.719423i \(0.255594\pi\)
\(30\) 0 0
\(31\) −5.41211e6 −1.05254 −0.526270 0.850317i \(-0.676410\pi\)
−0.526270 + 0.850317i \(0.676410\pi\)
\(32\) −6.15588e6 −1.03780
\(33\) 0 0
\(34\) 1.90638e7 2.44655
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) 1.68073e7 1.47432 0.737159 0.675719i \(-0.236167\pi\)
0.737159 + 0.675719i \(0.236167\pi\)
\(38\) 1.61236e7 1.25440
\(39\) 0 0
\(40\) 6.96133e6 0.429954
\(41\) −2.98305e6 −0.164867 −0.0824333 0.996597i \(-0.526269\pi\)
−0.0824333 + 0.996597i \(0.526269\pi\)
\(42\) 0 0
\(43\) −1.11225e7 −0.496129 −0.248065 0.968744i \(-0.579794\pi\)
−0.248065 + 0.968744i \(0.579794\pi\)
\(44\) 6.18033e7 2.48585
\(45\) 0 0
\(46\) −7.72234e7 −2.54296
\(47\) −1.58154e7 −0.472760 −0.236380 0.971661i \(-0.575961\pi\)
−0.236380 + 0.971661i \(0.575961\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 1.42429e7 0.322281
\(51\) 0 0
\(52\) −4.03269e7 −0.764856
\(53\) 2.78375e7 0.484605 0.242303 0.970201i \(-0.422097\pi\)
0.242303 + 0.970201i \(0.422097\pi\)
\(54\) 0 0
\(55\) 4.72518e7 0.696283
\(56\) 2.67427e7 0.363378
\(57\) 0 0
\(58\) 1.92920e8 2.23847
\(59\) −1.71244e7 −0.183985 −0.0919925 0.995760i \(-0.529324\pi\)
−0.0919925 + 0.995760i \(0.529324\pi\)
\(60\) 0 0
\(61\) 1.93532e8 1.78965 0.894826 0.446416i \(-0.147300\pi\)
0.894826 + 0.446416i \(0.147300\pi\)
\(62\) −1.97336e8 −1.69607
\(63\) 0 0
\(64\) −2.18092e8 −1.62491
\(65\) −3.08320e7 −0.214236
\(66\) 0 0
\(67\) 1.93697e8 1.17432 0.587160 0.809471i \(-0.300246\pi\)
0.587160 + 0.809471i \(0.300246\pi\)
\(68\) 4.27409e8 2.42412
\(69\) 0 0
\(70\) 5.47157e7 0.272377
\(71\) −1.41665e8 −0.661605 −0.330802 0.943700i \(-0.607319\pi\)
−0.330802 + 0.943700i \(0.607319\pi\)
\(72\) 0 0
\(73\) −2.36977e7 −0.0976683 −0.0488342 0.998807i \(-0.515551\pi\)
−0.0488342 + 0.998807i \(0.515551\pi\)
\(74\) 6.12828e8 2.37572
\(75\) 0 0
\(76\) 3.61488e8 1.24289
\(77\) 1.81522e8 0.588467
\(78\) 0 0
\(79\) 2.51611e8 0.726788 0.363394 0.931636i \(-0.381618\pi\)
0.363394 + 0.931636i \(0.381618\pi\)
\(80\) −7.76766e6 −0.0212024
\(81\) 0 0
\(82\) −1.08768e8 −0.265667
\(83\) −2.06819e8 −0.478343 −0.239171 0.970977i \(-0.576876\pi\)
−0.239171 + 0.970977i \(0.576876\pi\)
\(84\) 0 0
\(85\) 3.26776e8 0.678992
\(86\) −4.05548e8 −0.799465
\(87\) 0 0
\(88\) 8.42074e8 1.49685
\(89\) 6.94584e8 1.17346 0.586732 0.809781i \(-0.300414\pi\)
0.586732 + 0.809781i \(0.300414\pi\)
\(90\) 0 0
\(91\) −1.18444e8 −0.181062
\(92\) −1.73134e9 −2.51963
\(93\) 0 0
\(94\) −5.76662e8 −0.761808
\(95\) 2.76376e8 0.348133
\(96\) 0 0
\(97\) 1.39893e9 1.60443 0.802217 0.597033i \(-0.203654\pi\)
0.802217 + 0.597033i \(0.203654\pi\)
\(98\) 2.10196e8 0.230201
\(99\) 0 0
\(100\) 3.19325e8 0.319325
\(101\) 9.82882e8 0.939843 0.469922 0.882708i \(-0.344282\pi\)
0.469922 + 0.882708i \(0.344282\pi\)
\(102\) 0 0
\(103\) −1.53146e9 −1.34072 −0.670359 0.742037i \(-0.733860\pi\)
−0.670359 + 0.742037i \(0.733860\pi\)
\(104\) −5.49457e8 −0.460558
\(105\) 0 0
\(106\) 1.01501e9 0.780895
\(107\) 5.19394e8 0.383063 0.191531 0.981487i \(-0.438655\pi\)
0.191531 + 0.981487i \(0.438655\pi\)
\(108\) 0 0
\(109\) −1.24526e9 −0.844967 −0.422483 0.906371i \(-0.638842\pi\)
−0.422483 + 0.906371i \(0.638842\pi\)
\(110\) 1.72289e9 1.12199
\(111\) 0 0
\(112\) −2.98402e7 −0.0179193
\(113\) −1.12841e9 −0.651048 −0.325524 0.945534i \(-0.605541\pi\)
−0.325524 + 0.945534i \(0.605541\pi\)
\(114\) 0 0
\(115\) −1.32370e9 −0.705747
\(116\) 4.32526e9 2.21795
\(117\) 0 0
\(118\) −6.24391e8 −0.296474
\(119\) 1.25534e9 0.573853
\(120\) 0 0
\(121\) 3.35784e9 1.42405
\(122\) 7.05655e9 2.88385
\(123\) 0 0
\(124\) −4.42425e9 −1.68051
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −3.31282e9 −1.13001 −0.565004 0.825088i \(-0.691125\pi\)
−0.565004 + 0.825088i \(0.691125\pi\)
\(128\) −4.80025e9 −1.58059
\(129\) 0 0
\(130\) −1.12419e9 −0.345220
\(131\) −4.83380e9 −1.43406 −0.717031 0.697042i \(-0.754499\pi\)
−0.717031 + 0.697042i \(0.754499\pi\)
\(132\) 0 0
\(133\) 1.06173e9 0.294226
\(134\) 7.06257e9 1.89231
\(135\) 0 0
\(136\) 5.82348e9 1.45968
\(137\) 3.43281e9 0.832543 0.416272 0.909240i \(-0.363337\pi\)
0.416272 + 0.909240i \(0.363337\pi\)
\(138\) 0 0
\(139\) 3.96923e9 0.901860 0.450930 0.892559i \(-0.351092\pi\)
0.450930 + 0.892559i \(0.351092\pi\)
\(140\) 1.22672e9 0.269879
\(141\) 0 0
\(142\) −5.16537e9 −1.06611
\(143\) −3.72958e9 −0.745843
\(144\) 0 0
\(145\) 3.30688e9 0.621244
\(146\) −8.64065e8 −0.157383
\(147\) 0 0
\(148\) 1.37395e10 2.35394
\(149\) −2.72837e8 −0.0453487 −0.0226744 0.999743i \(-0.507218\pi\)
−0.0226744 + 0.999743i \(0.507218\pi\)
\(150\) 0 0
\(151\) 3.77089e9 0.590265 0.295133 0.955456i \(-0.404636\pi\)
0.295133 + 0.955456i \(0.404636\pi\)
\(152\) 4.92531e9 0.748406
\(153\) 0 0
\(154\) 6.61866e9 0.948259
\(155\) −3.38257e9 −0.470710
\(156\) 0 0
\(157\) 9.54797e9 1.25419 0.627094 0.778944i \(-0.284244\pi\)
0.627094 + 0.778944i \(0.284244\pi\)
\(158\) 9.17422e9 1.17115
\(159\) 0 0
\(160\) −3.84743e9 −0.464120
\(161\) −5.08512e9 −0.596465
\(162\) 0 0
\(163\) −6.35428e9 −0.705054 −0.352527 0.935802i \(-0.614678\pi\)
−0.352527 + 0.935802i \(0.614678\pi\)
\(164\) −2.43856e9 −0.263230
\(165\) 0 0
\(166\) −7.54102e9 −0.770804
\(167\) 2.04016e9 0.202974 0.101487 0.994837i \(-0.467640\pi\)
0.101487 + 0.994837i \(0.467640\pi\)
\(168\) 0 0
\(169\) −8.17093e9 −0.770516
\(170\) 1.19149e10 1.09413
\(171\) 0 0
\(172\) −9.09235e9 −0.792133
\(173\) 1.72853e10 1.46713 0.733564 0.679620i \(-0.237855\pi\)
0.733564 + 0.679620i \(0.237855\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) −9.39611e8 −0.0738144
\(177\) 0 0
\(178\) 2.53259e10 1.89092
\(179\) −6.95395e8 −0.0506282 −0.0253141 0.999680i \(-0.508059\pi\)
−0.0253141 + 0.999680i \(0.508059\pi\)
\(180\) 0 0
\(181\) 1.80182e10 1.24784 0.623919 0.781489i \(-0.285539\pi\)
0.623919 + 0.781489i \(0.285539\pi\)
\(182\) −4.31870e9 −0.291764
\(183\) 0 0
\(184\) −2.35897e10 −1.51720
\(185\) 1.05046e10 0.659335
\(186\) 0 0
\(187\) 3.95283e10 2.36386
\(188\) −1.29287e10 −0.754822
\(189\) 0 0
\(190\) 1.00772e10 0.560983
\(191\) 2.60774e10 1.41780 0.708899 0.705310i \(-0.249192\pi\)
0.708899 + 0.705310i \(0.249192\pi\)
\(192\) 0 0
\(193\) 9.94176e9 0.515769 0.257884 0.966176i \(-0.416975\pi\)
0.257884 + 0.966176i \(0.416975\pi\)
\(194\) 5.10075e10 2.58539
\(195\) 0 0
\(196\) 4.71257e9 0.228090
\(197\) −3.35442e10 −1.58679 −0.793395 0.608707i \(-0.791688\pi\)
−0.793395 + 0.608707i \(0.791688\pi\)
\(198\) 0 0
\(199\) 1.19117e10 0.538435 0.269218 0.963079i \(-0.413235\pi\)
0.269218 + 0.963079i \(0.413235\pi\)
\(200\) 4.35083e9 0.192281
\(201\) 0 0
\(202\) 3.58378e10 1.51447
\(203\) 1.27037e10 0.525047
\(204\) 0 0
\(205\) −1.86440e9 −0.0737306
\(206\) −5.58399e10 −2.16044
\(207\) 0 0
\(208\) 6.13101e8 0.0227115
\(209\) 3.34318e10 1.21200
\(210\) 0 0
\(211\) −4.45526e10 −1.54740 −0.773699 0.633554i \(-0.781596\pi\)
−0.773699 + 0.633554i \(0.781596\pi\)
\(212\) 2.27564e10 0.773734
\(213\) 0 0
\(214\) 1.89381e10 0.617269
\(215\) −6.95157e9 −0.221876
\(216\) 0 0
\(217\) −1.29945e10 −0.397823
\(218\) −4.54045e10 −1.36158
\(219\) 0 0
\(220\) 3.86270e10 1.11170
\(221\) −2.57924e10 −0.727322
\(222\) 0 0
\(223\) −7.31712e10 −1.98138 −0.990691 0.136129i \(-0.956534\pi\)
−0.990691 + 0.136129i \(0.956534\pi\)
\(224\) −1.47803e10 −0.392253
\(225\) 0 0
\(226\) −4.11440e10 −1.04910
\(227\) −2.44357e10 −0.610813 −0.305406 0.952222i \(-0.598792\pi\)
−0.305406 + 0.952222i \(0.598792\pi\)
\(228\) 0 0
\(229\) −4.16163e10 −1.00001 −0.500004 0.866023i \(-0.666668\pi\)
−0.500004 + 0.866023i \(0.666668\pi\)
\(230\) −4.82646e10 −1.13724
\(231\) 0 0
\(232\) 5.89319e10 1.33553
\(233\) −3.77622e10 −0.839375 −0.419687 0.907669i \(-0.637860\pi\)
−0.419687 + 0.907669i \(0.637860\pi\)
\(234\) 0 0
\(235\) −9.88465e9 −0.211425
\(236\) −1.39988e10 −0.293755
\(237\) 0 0
\(238\) 4.57722e10 0.924710
\(239\) 3.14171e10 0.622839 0.311420 0.950273i \(-0.399196\pi\)
0.311420 + 0.950273i \(0.399196\pi\)
\(240\) 0 0
\(241\) 3.12996e10 0.597671 0.298835 0.954305i \(-0.403402\pi\)
0.298835 + 0.954305i \(0.403402\pi\)
\(242\) 1.22433e11 2.29473
\(243\) 0 0
\(244\) 1.58207e11 2.85740
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −2.18144e10 −0.372912
\(248\) −6.02808e10 −1.01192
\(249\) 0 0
\(250\) 8.90184e9 0.144128
\(251\) −7.69585e10 −1.22384 −0.611920 0.790919i \(-0.709603\pi\)
−0.611920 + 0.790919i \(0.709603\pi\)
\(252\) 0 0
\(253\) −1.60121e11 −2.45700
\(254\) −1.20792e11 −1.82090
\(255\) 0 0
\(256\) −6.33632e10 −0.922056
\(257\) −7.48449e10 −1.07020 −0.535098 0.844790i \(-0.679725\pi\)
−0.535098 + 0.844790i \(0.679725\pi\)
\(258\) 0 0
\(259\) 4.03544e10 0.557240
\(260\) −2.52043e10 −0.342054
\(261\) 0 0
\(262\) −1.76250e11 −2.31085
\(263\) 8.16203e9 0.105196 0.0525978 0.998616i \(-0.483250\pi\)
0.0525978 + 0.998616i \(0.483250\pi\)
\(264\) 0 0
\(265\) 1.73984e10 0.216722
\(266\) 3.87127e10 0.474117
\(267\) 0 0
\(268\) 1.58342e11 1.87495
\(269\) 6.23895e9 0.0726484 0.0363242 0.999340i \(-0.488435\pi\)
0.0363242 + 0.999340i \(0.488435\pi\)
\(270\) 0 0
\(271\) 8.25889e10 0.930165 0.465083 0.885267i \(-0.346025\pi\)
0.465083 + 0.885267i \(0.346025\pi\)
\(272\) −6.49801e9 −0.0719814
\(273\) 0 0
\(274\) 1.25167e11 1.34156
\(275\) 2.95324e10 0.311387
\(276\) 0 0
\(277\) −8.98709e10 −0.917192 −0.458596 0.888645i \(-0.651647\pi\)
−0.458596 + 0.888645i \(0.651647\pi\)
\(278\) 1.44726e11 1.45326
\(279\) 0 0
\(280\) 1.67142e10 0.162507
\(281\) 1.64133e10 0.157042 0.0785211 0.996912i \(-0.474980\pi\)
0.0785211 + 0.996912i \(0.474980\pi\)
\(282\) 0 0
\(283\) 2.99673e10 0.277721 0.138860 0.990312i \(-0.455656\pi\)
0.138860 + 0.990312i \(0.455656\pi\)
\(284\) −1.15807e11 −1.05634
\(285\) 0 0
\(286\) −1.35988e11 −1.20186
\(287\) −7.16230e9 −0.0623137
\(288\) 0 0
\(289\) 1.54775e11 1.30515
\(290\) 1.20575e11 1.00108
\(291\) 0 0
\(292\) −1.93722e10 −0.155940
\(293\) −1.61513e11 −1.28028 −0.640138 0.768260i \(-0.721123\pi\)
−0.640138 + 0.768260i \(0.721123\pi\)
\(294\) 0 0
\(295\) −1.07028e10 −0.0822806
\(296\) 1.87202e11 1.41742
\(297\) 0 0
\(298\) −9.94817e9 −0.0730752
\(299\) 1.04479e11 0.755980
\(300\) 0 0
\(301\) −2.67051e10 −0.187519
\(302\) 1.37494e11 0.951157
\(303\) 0 0
\(304\) −5.49580e9 −0.0369063
\(305\) 1.20957e11 0.800356
\(306\) 0 0
\(307\) −1.65779e10 −0.106514 −0.0532570 0.998581i \(-0.516960\pi\)
−0.0532570 + 0.998581i \(0.516960\pi\)
\(308\) 1.48390e11 0.939562
\(309\) 0 0
\(310\) −1.23335e11 −0.758505
\(311\) −3.53749e10 −0.214424 −0.107212 0.994236i \(-0.534192\pi\)
−0.107212 + 0.994236i \(0.534192\pi\)
\(312\) 0 0
\(313\) 8.44655e9 0.0497428 0.0248714 0.999691i \(-0.492082\pi\)
0.0248714 + 0.999691i \(0.492082\pi\)
\(314\) 3.48137e11 2.02100
\(315\) 0 0
\(316\) 2.05685e11 1.16041
\(317\) −2.19980e11 −1.22354 −0.611768 0.791037i \(-0.709541\pi\)
−0.611768 + 0.791037i \(0.709541\pi\)
\(318\) 0 0
\(319\) 4.00015e11 2.16281
\(320\) −1.36308e11 −0.726683
\(321\) 0 0
\(322\) −1.85413e11 −0.961147
\(323\) 2.31202e11 1.18190
\(324\) 0 0
\(325\) −1.92700e10 −0.0958091
\(326\) −2.31690e11 −1.13613
\(327\) 0 0
\(328\) −3.32256e10 −0.158504
\(329\) −3.79729e10 −0.178687
\(330\) 0 0
\(331\) 6.96186e10 0.318786 0.159393 0.987215i \(-0.449046\pi\)
0.159393 + 0.987215i \(0.449046\pi\)
\(332\) −1.69069e11 −0.763734
\(333\) 0 0
\(334\) 7.43882e10 0.327073
\(335\) 1.21061e11 0.525172
\(336\) 0 0
\(337\) 2.90202e11 1.22565 0.612825 0.790219i \(-0.290033\pi\)
0.612825 + 0.790219i \(0.290033\pi\)
\(338\) −2.97928e11 −1.24161
\(339\) 0 0
\(340\) 2.67130e11 1.08410
\(341\) −4.09171e11 −1.63874
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) −1.23884e11 −0.476982
\(345\) 0 0
\(346\) 6.30254e11 2.36414
\(347\) −1.42619e11 −0.528075 −0.264038 0.964512i \(-0.585054\pi\)
−0.264038 + 0.964512i \(0.585054\pi\)
\(348\) 0 0
\(349\) 4.06617e11 1.46714 0.733569 0.679615i \(-0.237853\pi\)
0.733569 + 0.679615i \(0.237853\pi\)
\(350\) 3.41973e10 0.121811
\(351\) 0 0
\(352\) −4.65402e11 −1.61580
\(353\) −1.80418e11 −0.618435 −0.309217 0.950991i \(-0.600067\pi\)
−0.309217 + 0.950991i \(0.600067\pi\)
\(354\) 0 0
\(355\) −8.85404e10 −0.295879
\(356\) 5.67803e11 1.87358
\(357\) 0 0
\(358\) −2.53554e10 −0.0815826
\(359\) 5.04299e11 1.60237 0.801186 0.598416i \(-0.204203\pi\)
0.801186 + 0.598416i \(0.204203\pi\)
\(360\) 0 0
\(361\) −1.27145e11 −0.394018
\(362\) 6.56979e11 2.01077
\(363\) 0 0
\(364\) −9.68249e10 −0.289089
\(365\) −1.48111e10 −0.0436786
\(366\) 0 0
\(367\) −1.80774e11 −0.520162 −0.260081 0.965587i \(-0.583749\pi\)
−0.260081 + 0.965587i \(0.583749\pi\)
\(368\) 2.63220e10 0.0748177
\(369\) 0 0
\(370\) 3.83018e11 1.06246
\(371\) 6.68377e10 0.183164
\(372\) 0 0
\(373\) −3.96719e11 −1.06119 −0.530596 0.847625i \(-0.678032\pi\)
−0.530596 + 0.847625i \(0.678032\pi\)
\(374\) 1.44128e12 3.80913
\(375\) 0 0
\(376\) −1.76154e11 −0.454515
\(377\) −2.61012e11 −0.665463
\(378\) 0 0
\(379\) −7.29691e11 −1.81661 −0.908306 0.418306i \(-0.862624\pi\)
−0.908306 + 0.418306i \(0.862624\pi\)
\(380\) 2.25930e11 0.555838
\(381\) 0 0
\(382\) 9.50833e11 2.28465
\(383\) −6.45922e11 −1.53386 −0.766930 0.641731i \(-0.778217\pi\)
−0.766930 + 0.641731i \(0.778217\pi\)
\(384\) 0 0
\(385\) 1.13452e11 0.263170
\(386\) 3.62496e11 0.831113
\(387\) 0 0
\(388\) 1.14358e12 2.56168
\(389\) −4.16712e11 −0.922706 −0.461353 0.887217i \(-0.652636\pi\)
−0.461353 + 0.887217i \(0.652636\pi\)
\(390\) 0 0
\(391\) −1.10734e12 −2.39598
\(392\) 6.42091e10 0.137344
\(393\) 0 0
\(394\) −1.22309e12 −2.55696
\(395\) 1.57257e11 0.325029
\(396\) 0 0
\(397\) 9.61738e11 1.94312 0.971560 0.236793i \(-0.0760963\pi\)
0.971560 + 0.236793i \(0.0760963\pi\)
\(398\) 4.34322e11 0.867637
\(399\) 0 0
\(400\) −4.85479e9 −0.00948200
\(401\) −2.17932e10 −0.0420892 −0.0210446 0.999779i \(-0.506699\pi\)
−0.0210446 + 0.999779i \(0.506699\pi\)
\(402\) 0 0
\(403\) 2.66986e11 0.504215
\(404\) 8.03480e11 1.50058
\(405\) 0 0
\(406\) 4.63202e11 0.846064
\(407\) 1.27068e12 2.29542
\(408\) 0 0
\(409\) −8.91299e11 −1.57496 −0.787478 0.616342i \(-0.788614\pi\)
−0.787478 + 0.616342i \(0.788614\pi\)
\(410\) −6.79798e10 −0.118810
\(411\) 0 0
\(412\) −1.25192e12 −2.14063
\(413\) −4.11158e10 −0.0695398
\(414\) 0 0
\(415\) −1.29262e11 −0.213921
\(416\) 3.03677e11 0.497155
\(417\) 0 0
\(418\) 1.21899e12 1.95302
\(419\) −1.00476e12 −1.59258 −0.796290 0.604915i \(-0.793207\pi\)
−0.796290 + 0.604915i \(0.793207\pi\)
\(420\) 0 0
\(421\) −9.93627e11 −1.54154 −0.770768 0.637115i \(-0.780127\pi\)
−0.770768 + 0.637115i \(0.780127\pi\)
\(422\) −1.62447e12 −2.49348
\(423\) 0 0
\(424\) 3.10057e11 0.465903
\(425\) 2.04235e11 0.303655
\(426\) 0 0
\(427\) 4.64670e11 0.676425
\(428\) 4.24590e11 0.611608
\(429\) 0 0
\(430\) −2.53468e11 −0.357532
\(431\) 5.70989e11 0.797040 0.398520 0.917160i \(-0.369524\pi\)
0.398520 + 0.917160i \(0.369524\pi\)
\(432\) 0 0
\(433\) 1.38637e11 0.189532 0.0947659 0.995500i \(-0.469790\pi\)
0.0947659 + 0.995500i \(0.469790\pi\)
\(434\) −4.73804e11 −0.641054
\(435\) 0 0
\(436\) −1.01796e12 −1.34910
\(437\) −9.36549e11 −1.22847
\(438\) 0 0
\(439\) 1.11468e12 1.43238 0.716189 0.697906i \(-0.245885\pi\)
0.716189 + 0.697906i \(0.245885\pi\)
\(440\) 5.26297e11 0.669412
\(441\) 0 0
\(442\) −9.40441e11 −1.17201
\(443\) −8.81863e11 −1.08789 −0.543944 0.839121i \(-0.683070\pi\)
−0.543944 + 0.839121i \(0.683070\pi\)
\(444\) 0 0
\(445\) 4.34115e11 0.524789
\(446\) −2.66796e12 −3.19281
\(447\) 0 0
\(448\) −5.23639e11 −0.614159
\(449\) −9.45977e11 −1.09843 −0.549214 0.835681i \(-0.685073\pi\)
−0.549214 + 0.835681i \(0.685073\pi\)
\(450\) 0 0
\(451\) −2.25527e11 −0.256687
\(452\) −9.22443e11 −1.03948
\(453\) 0 0
\(454\) −8.90972e11 −0.984266
\(455\) −7.40276e10 −0.0809734
\(456\) 0 0
\(457\) −2.09756e11 −0.224953 −0.112476 0.993654i \(-0.535878\pi\)
−0.112476 + 0.993654i \(0.535878\pi\)
\(458\) −1.51741e12 −1.61142
\(459\) 0 0
\(460\) −1.08209e12 −1.12681
\(461\) −1.13248e12 −1.16782 −0.583912 0.811817i \(-0.698479\pi\)
−0.583912 + 0.811817i \(0.698479\pi\)
\(462\) 0 0
\(463\) −6.47872e11 −0.655202 −0.327601 0.944816i \(-0.606240\pi\)
−0.327601 + 0.944816i \(0.606240\pi\)
\(464\) −6.57580e10 −0.0658594
\(465\) 0 0
\(466\) −1.37688e12 −1.35257
\(467\) 1.63471e12 1.59043 0.795216 0.606327i \(-0.207358\pi\)
0.795216 + 0.606327i \(0.207358\pi\)
\(468\) 0 0
\(469\) 4.65067e11 0.443851
\(470\) −3.60413e11 −0.340691
\(471\) 0 0
\(472\) −1.90734e11 −0.176885
\(473\) −8.40893e11 −0.772442
\(474\) 0 0
\(475\) 1.72735e11 0.155690
\(476\) 1.02621e12 0.916229
\(477\) 0 0
\(478\) 1.14553e12 1.00365
\(479\) 1.44714e12 1.25603 0.628016 0.778200i \(-0.283867\pi\)
0.628016 + 0.778200i \(0.283867\pi\)
\(480\) 0 0
\(481\) −8.29126e11 −0.706265
\(482\) 1.14124e12 0.963089
\(483\) 0 0
\(484\) 2.74495e12 2.27368
\(485\) 8.74329e11 0.717525
\(486\) 0 0
\(487\) −7.93797e11 −0.639483 −0.319742 0.947505i \(-0.603596\pi\)
−0.319742 + 0.947505i \(0.603596\pi\)
\(488\) 2.15558e12 1.72058
\(489\) 0 0
\(490\) 1.31372e11 0.102949
\(491\) −8.93419e11 −0.693726 −0.346863 0.937916i \(-0.612753\pi\)
−0.346863 + 0.937916i \(0.612753\pi\)
\(492\) 0 0
\(493\) 2.76636e12 2.10910
\(494\) −7.95394e11 −0.600912
\(495\) 0 0
\(496\) 6.72630e10 0.0499010
\(497\) −3.40137e11 −0.250063
\(498\) 0 0
\(499\) −2.29839e12 −1.65948 −0.829740 0.558150i \(-0.811511\pi\)
−0.829740 + 0.558150i \(0.811511\pi\)
\(500\) 1.99578e11 0.142807
\(501\) 0 0
\(502\) −2.80606e12 −1.97210
\(503\) 1.28863e12 0.897580 0.448790 0.893637i \(-0.351855\pi\)
0.448790 + 0.893637i \(0.351855\pi\)
\(504\) 0 0
\(505\) 6.14301e11 0.420311
\(506\) −5.83831e12 −3.95922
\(507\) 0 0
\(508\) −2.70814e12 −1.80420
\(509\) −2.18603e12 −1.44353 −0.721765 0.692139i \(-0.756669\pi\)
−0.721765 + 0.692139i \(0.756669\pi\)
\(510\) 0 0
\(511\) −5.68982e10 −0.0369151
\(512\) 1.47382e11 0.0947826
\(513\) 0 0
\(514\) −2.72899e12 −1.72452
\(515\) −9.57161e11 −0.599587
\(516\) 0 0
\(517\) −1.19569e12 −0.736058
\(518\) 1.47140e12 0.897939
\(519\) 0 0
\(520\) −3.43411e11 −0.205968
\(521\) 1.84809e12 1.09889 0.549443 0.835531i \(-0.314840\pi\)
0.549443 + 0.835531i \(0.314840\pi\)
\(522\) 0 0
\(523\) 9.46663e11 0.553271 0.276635 0.960975i \(-0.410781\pi\)
0.276635 + 0.960975i \(0.410781\pi\)
\(524\) −3.95150e12 −2.28966
\(525\) 0 0
\(526\) 2.97603e11 0.169513
\(527\) −2.82967e12 −1.59804
\(528\) 0 0
\(529\) 2.68443e12 1.49039
\(530\) 6.34380e11 0.349227
\(531\) 0 0
\(532\) 8.67934e11 0.469769
\(533\) 1.47157e11 0.0789786
\(534\) 0 0
\(535\) 3.24621e11 0.171311
\(536\) 2.15742e12 1.12900
\(537\) 0 0
\(538\) 2.27484e11 0.117066
\(539\) 4.35835e11 0.222420
\(540\) 0 0
\(541\) −3.43412e12 −1.72357 −0.861783 0.507277i \(-0.830652\pi\)
−0.861783 + 0.507277i \(0.830652\pi\)
\(542\) 3.01135e12 1.49887
\(543\) 0 0
\(544\) −3.21855e12 −1.57567
\(545\) −7.78286e11 −0.377881
\(546\) 0 0
\(547\) −1.17006e12 −0.558809 −0.279405 0.960173i \(-0.590137\pi\)
−0.279405 + 0.960173i \(0.590137\pi\)
\(548\) 2.80623e12 1.32926
\(549\) 0 0
\(550\) 1.07681e12 0.501771
\(551\) 2.33970e12 1.08138
\(552\) 0 0
\(553\) 6.04118e11 0.274700
\(554\) −3.27687e12 −1.47797
\(555\) 0 0
\(556\) 3.24473e12 1.43993
\(557\) −1.14677e12 −0.504812 −0.252406 0.967621i \(-0.581222\pi\)
−0.252406 + 0.967621i \(0.581222\pi\)
\(558\) 0 0
\(559\) 5.48687e11 0.237668
\(560\) −1.86501e10 −0.00801376
\(561\) 0 0
\(562\) 5.98459e11 0.253059
\(563\) −1.28982e12 −0.541056 −0.270528 0.962712i \(-0.587198\pi\)
−0.270528 + 0.962712i \(0.587198\pi\)
\(564\) 0 0
\(565\) −7.05255e11 −0.291158
\(566\) 1.09266e12 0.447520
\(567\) 0 0
\(568\) −1.57788e12 −0.636072
\(569\) −2.06212e12 −0.824724 −0.412362 0.911020i \(-0.635296\pi\)
−0.412362 + 0.911020i \(0.635296\pi\)
\(570\) 0 0
\(571\) −4.00715e12 −1.57751 −0.788756 0.614706i \(-0.789275\pi\)
−0.788756 + 0.614706i \(0.789275\pi\)
\(572\) −3.04883e12 −1.19083
\(573\) 0 0
\(574\) −2.61151e11 −0.100413
\(575\) −8.27312e11 −0.315620
\(576\) 0 0
\(577\) 1.71845e12 0.645424 0.322712 0.946497i \(-0.395405\pi\)
0.322712 + 0.946497i \(0.395405\pi\)
\(578\) 5.64341e12 2.10313
\(579\) 0 0
\(580\) 2.70328e12 0.991895
\(581\) −4.96572e11 −0.180796
\(582\) 0 0
\(583\) 2.10459e12 0.754500
\(584\) −2.63948e11 −0.0938990
\(585\) 0 0
\(586\) −5.88908e12 −2.06304
\(587\) −2.80000e12 −0.973389 −0.486695 0.873572i \(-0.661798\pi\)
−0.486695 + 0.873572i \(0.661798\pi\)
\(588\) 0 0
\(589\) −2.39325e12 −0.819348
\(590\) −3.90244e11 −0.132587
\(591\) 0 0
\(592\) −2.08886e11 −0.0698975
\(593\) −1.10112e12 −0.365669 −0.182834 0.983144i \(-0.558527\pi\)
−0.182834 + 0.983144i \(0.558527\pi\)
\(594\) 0 0
\(595\) 7.84589e11 0.256635
\(596\) −2.23037e11 −0.0724050
\(597\) 0 0
\(598\) 3.80952e12 1.21819
\(599\) −2.24275e12 −0.711805 −0.355902 0.934523i \(-0.615826\pi\)
−0.355902 + 0.934523i \(0.615826\pi\)
\(600\) 0 0
\(601\) −9.54770e11 −0.298513 −0.149257 0.988798i \(-0.547688\pi\)
−0.149257 + 0.988798i \(0.547688\pi\)
\(602\) −9.73721e11 −0.302169
\(603\) 0 0
\(604\) 3.08260e12 0.942434
\(605\) 2.09865e12 0.636856
\(606\) 0 0
\(607\) 5.12222e11 0.153147 0.0765736 0.997064i \(-0.475602\pi\)
0.0765736 + 0.997064i \(0.475602\pi\)
\(608\) −2.72215e12 −0.807877
\(609\) 0 0
\(610\) 4.41034e12 1.28970
\(611\) 7.80195e11 0.226474
\(612\) 0 0
\(613\) −1.54411e12 −0.441680 −0.220840 0.975310i \(-0.570880\pi\)
−0.220840 + 0.975310i \(0.570880\pi\)
\(614\) −6.04463e11 −0.171637
\(615\) 0 0
\(616\) 2.02182e12 0.565756
\(617\) −2.69330e12 −0.748171 −0.374085 0.927394i \(-0.622043\pi\)
−0.374085 + 0.927394i \(0.622043\pi\)
\(618\) 0 0
\(619\) 2.16325e12 0.592242 0.296121 0.955150i \(-0.404307\pi\)
0.296121 + 0.955150i \(0.404307\pi\)
\(620\) −2.76516e12 −0.751549
\(621\) 0 0
\(622\) −1.28984e12 −0.345524
\(623\) 1.66770e12 0.443527
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 3.07978e11 0.0801557
\(627\) 0 0
\(628\) 7.80520e12 2.00247
\(629\) 8.78758e12 2.23842
\(630\) 0 0
\(631\) −6.47015e11 −0.162473 −0.0812367 0.996695i \(-0.525887\pi\)
−0.0812367 + 0.996695i \(0.525887\pi\)
\(632\) 2.80248e12 0.698739
\(633\) 0 0
\(634\) −8.02090e12 −1.97161
\(635\) −2.07051e12 −0.505355
\(636\) 0 0
\(637\) −2.84385e11 −0.0684350
\(638\) 1.45853e13 3.48516
\(639\) 0 0
\(640\) −3.00016e12 −0.706861
\(641\) −4.33378e12 −1.01392 −0.506962 0.861968i \(-0.669232\pi\)
−0.506962 + 0.861968i \(0.669232\pi\)
\(642\) 0 0
\(643\) 3.66638e12 0.845840 0.422920 0.906167i \(-0.361005\pi\)
0.422920 + 0.906167i \(0.361005\pi\)
\(644\) −4.15695e12 −0.952332
\(645\) 0 0
\(646\) 8.43006e12 1.90452
\(647\) −5.62143e12 −1.26118 −0.630591 0.776116i \(-0.717187\pi\)
−0.630591 + 0.776116i \(0.717187\pi\)
\(648\) 0 0
\(649\) −1.29466e12 −0.286453
\(650\) −7.02621e11 −0.154387
\(651\) 0 0
\(652\) −5.19446e12 −1.12571
\(653\) 7.11463e12 1.53124 0.765620 0.643294i \(-0.222433\pi\)
0.765620 + 0.643294i \(0.222433\pi\)
\(654\) 0 0
\(655\) −3.02112e12 −0.641332
\(656\) 3.70741e10 0.00781633
\(657\) 0 0
\(658\) −1.38456e12 −0.287936
\(659\) −7.21268e12 −1.48975 −0.744873 0.667206i \(-0.767490\pi\)
−0.744873 + 0.667206i \(0.767490\pi\)
\(660\) 0 0
\(661\) 6.13573e12 1.25014 0.625072 0.780567i \(-0.285070\pi\)
0.625072 + 0.780567i \(0.285070\pi\)
\(662\) 2.53843e12 0.513693
\(663\) 0 0
\(664\) −2.30358e12 −0.459882
\(665\) 6.63580e11 0.131582
\(666\) 0 0
\(667\) −1.12059e13 −2.19221
\(668\) 1.66778e12 0.324074
\(669\) 0 0
\(670\) 4.41411e12 0.846265
\(671\) 1.46316e13 2.78637
\(672\) 0 0
\(673\) 5.72507e12 1.07575 0.537877 0.843023i \(-0.319226\pi\)
0.537877 + 0.843023i \(0.319226\pi\)
\(674\) 1.05813e13 1.97502
\(675\) 0 0
\(676\) −6.67952e12 −1.23023
\(677\) −5.22145e12 −0.955306 −0.477653 0.878549i \(-0.658512\pi\)
−0.477653 + 0.878549i \(0.658512\pi\)
\(678\) 0 0
\(679\) 3.35882e12 0.606419
\(680\) 3.63967e12 0.652788
\(681\) 0 0
\(682\) −1.49192e13 −2.64067
\(683\) −8.77130e12 −1.54231 −0.771154 0.636649i \(-0.780320\pi\)
−0.771154 + 0.636649i \(0.780320\pi\)
\(684\) 0 0
\(685\) 2.14550e12 0.372325
\(686\) 5.04680e11 0.0870077
\(687\) 0 0
\(688\) 1.38233e11 0.0235215
\(689\) −1.37326e12 −0.232148
\(690\) 0 0
\(691\) 3.10716e12 0.518457 0.259229 0.965816i \(-0.416532\pi\)
0.259229 + 0.965816i \(0.416532\pi\)
\(692\) 1.41302e13 2.34246
\(693\) 0 0
\(694\) −5.20018e12 −0.850943
\(695\) 2.48077e12 0.403324
\(696\) 0 0
\(697\) −1.55966e12 −0.250313
\(698\) 1.48260e13 2.36415
\(699\) 0 0
\(700\) 7.66700e11 0.120694
\(701\) −2.85667e12 −0.446816 −0.223408 0.974725i \(-0.571718\pi\)
−0.223408 + 0.974725i \(0.571718\pi\)
\(702\) 0 0
\(703\) 7.43225e12 1.14768
\(704\) −1.64884e13 −2.52989
\(705\) 0 0
\(706\) −6.57839e12 −0.996549
\(707\) 2.35990e12 0.355227
\(708\) 0 0
\(709\) 3.61602e12 0.537431 0.268716 0.963220i \(-0.413401\pi\)
0.268716 + 0.963220i \(0.413401\pi\)
\(710\) −3.22835e12 −0.476780
\(711\) 0 0
\(712\) 7.73636e12 1.12818
\(713\) 1.14624e13 1.66101
\(714\) 0 0
\(715\) −2.33099e12 −0.333551
\(716\) −5.68466e11 −0.0808344
\(717\) 0 0
\(718\) 1.83877e13 2.58207
\(719\) 1.61890e12 0.225913 0.112956 0.993600i \(-0.463968\pi\)
0.112956 + 0.993600i \(0.463968\pi\)
\(720\) 0 0
\(721\) −3.67703e12 −0.506744
\(722\) −4.63595e12 −0.634923
\(723\) 0 0
\(724\) 1.47294e13 1.99233
\(725\) 2.06680e12 0.277829
\(726\) 0 0
\(727\) 9.74494e12 1.29382 0.646911 0.762566i \(-0.276061\pi\)
0.646911 + 0.762566i \(0.276061\pi\)
\(728\) −1.31925e12 −0.174074
\(729\) 0 0
\(730\) −5.40040e11 −0.0703839
\(731\) −5.81531e12 −0.753259
\(732\) 0 0
\(733\) 1.72463e12 0.220662 0.110331 0.993895i \(-0.464809\pi\)
0.110331 + 0.993895i \(0.464809\pi\)
\(734\) −6.59137e12 −0.838191
\(735\) 0 0
\(736\) 1.30377e13 1.63776
\(737\) 1.46441e13 1.82834
\(738\) 0 0
\(739\) 3.28397e12 0.405041 0.202520 0.979278i \(-0.435087\pi\)
0.202520 + 0.979278i \(0.435087\pi\)
\(740\) 8.58722e12 1.05271
\(741\) 0 0
\(742\) 2.43703e12 0.295151
\(743\) −4.22418e12 −0.508502 −0.254251 0.967138i \(-0.581829\pi\)
−0.254251 + 0.967138i \(0.581829\pi\)
\(744\) 0 0
\(745\) −1.70523e11 −0.0202806
\(746\) −1.44652e13 −1.71001
\(747\) 0 0
\(748\) 3.23133e13 3.77420
\(749\) 1.24706e12 0.144784
\(750\) 0 0
\(751\) 4.20239e12 0.482077 0.241038 0.970516i \(-0.422512\pi\)
0.241038 + 0.970516i \(0.422512\pi\)
\(752\) 1.96558e11 0.0224136
\(753\) 0 0
\(754\) −9.51699e12 −1.07233
\(755\) 2.35680e12 0.263975
\(756\) 0 0
\(757\) 1.42679e13 1.57917 0.789587 0.613639i \(-0.210295\pi\)
0.789587 + 0.613639i \(0.210295\pi\)
\(758\) −2.66059e13 −2.92730
\(759\) 0 0
\(760\) 3.07832e12 0.334697
\(761\) 1.04976e13 1.13464 0.567321 0.823497i \(-0.307980\pi\)
0.567321 + 0.823497i \(0.307980\pi\)
\(762\) 0 0
\(763\) −2.98986e12 −0.319367
\(764\) 2.13176e13 2.26369
\(765\) 0 0
\(766\) −2.35516e13 −2.47167
\(767\) 8.44770e11 0.0881372
\(768\) 0 0
\(769\) −4.68130e12 −0.482723 −0.241361 0.970435i \(-0.577594\pi\)
−0.241361 + 0.970435i \(0.577594\pi\)
\(770\) 4.13666e12 0.424074
\(771\) 0 0
\(772\) 8.12712e12 0.823490
\(773\) 1.76519e13 1.77821 0.889106 0.457701i \(-0.151327\pi\)
0.889106 + 0.457701i \(0.151327\pi\)
\(774\) 0 0
\(775\) −2.11410e12 −0.210508
\(776\) 1.55814e13 1.54251
\(777\) 0 0
\(778\) −1.51941e13 −1.48685
\(779\) −1.31911e12 −0.128340
\(780\) 0 0
\(781\) −1.07102e13 −1.03008
\(782\) −4.03756e13 −3.86090
\(783\) 0 0
\(784\) −7.16464e10 −0.00677286
\(785\) 5.96748e12 0.560890
\(786\) 0 0
\(787\) −1.53402e12 −0.142542 −0.0712712 0.997457i \(-0.522706\pi\)
−0.0712712 + 0.997457i \(0.522706\pi\)
\(788\) −2.74215e13 −2.53351
\(789\) 0 0
\(790\) 5.73389e12 0.523754
\(791\) −2.70931e12 −0.246073
\(792\) 0 0
\(793\) −9.54716e12 −0.857324
\(794\) 3.50668e13 3.13115
\(795\) 0 0
\(796\) 9.73746e12 0.859680
\(797\) 6.94555e12 0.609740 0.304870 0.952394i \(-0.401387\pi\)
0.304870 + 0.952394i \(0.401387\pi\)
\(798\) 0 0
\(799\) −8.26897e12 −0.717779
\(800\) −2.40464e12 −0.207561
\(801\) 0 0
\(802\) −7.94621e11 −0.0678228
\(803\) −1.79162e12 −0.152063
\(804\) 0 0
\(805\) −3.17820e12 −0.266747
\(806\) 9.73482e12 0.812494
\(807\) 0 0
\(808\) 1.09475e13 0.903572
\(809\) −2.20581e12 −0.181050 −0.0905251 0.995894i \(-0.528855\pi\)
−0.0905251 + 0.995894i \(0.528855\pi\)
\(810\) 0 0
\(811\) 9.32362e12 0.756816 0.378408 0.925639i \(-0.376472\pi\)
0.378408 + 0.925639i \(0.376472\pi\)
\(812\) 1.03849e13 0.838304
\(813\) 0 0
\(814\) 4.63316e13 3.69885
\(815\) −3.97143e12 −0.315310
\(816\) 0 0
\(817\) −4.91840e12 −0.386211
\(818\) −3.24985e13 −2.53789
\(819\) 0 0
\(820\) −1.52410e12 −0.117720
\(821\) 2.27617e12 0.174848 0.0874238 0.996171i \(-0.472137\pi\)
0.0874238 + 0.996171i \(0.472137\pi\)
\(822\) 0 0
\(823\) 1.21606e13 0.923969 0.461984 0.886888i \(-0.347138\pi\)
0.461984 + 0.886888i \(0.347138\pi\)
\(824\) −1.70576e13 −1.28898
\(825\) 0 0
\(826\) −1.49916e12 −0.112057
\(827\) 1.00142e13 0.744458 0.372229 0.928141i \(-0.378594\pi\)
0.372229 + 0.928141i \(0.378594\pi\)
\(828\) 0 0
\(829\) −5.39146e12 −0.396470 −0.198235 0.980154i \(-0.563521\pi\)
−0.198235 + 0.980154i \(0.563521\pi\)
\(830\) −4.71314e12 −0.344714
\(831\) 0 0
\(832\) 1.07587e13 0.778407
\(833\) 3.01408e12 0.216896
\(834\) 0 0
\(835\) 1.27510e12 0.0907727
\(836\) 2.73296e13 1.93510
\(837\) 0 0
\(838\) −3.66357e13 −2.56629
\(839\) 1.69446e13 1.18060 0.590300 0.807184i \(-0.299010\pi\)
0.590300 + 0.807184i \(0.299010\pi\)
\(840\) 0 0
\(841\) 1.34876e13 0.929722
\(842\) −3.62296e13 −2.48404
\(843\) 0 0
\(844\) −3.64205e13 −2.47062
\(845\) −5.10683e12 −0.344585
\(846\) 0 0
\(847\) 8.06218e12 0.538242
\(848\) −3.45971e11 −0.0229751
\(849\) 0 0
\(850\) 7.44680e12 0.489311
\(851\) −3.55966e13 −2.32662
\(852\) 0 0
\(853\) 1.32813e13 0.858956 0.429478 0.903077i \(-0.358698\pi\)
0.429478 + 0.903077i \(0.358698\pi\)
\(854\) 1.69428e13 1.08999
\(855\) 0 0
\(856\) 5.78508e12 0.368279
\(857\) 8.21516e10 0.00520238 0.00260119 0.999997i \(-0.499172\pi\)
0.00260119 + 0.999997i \(0.499172\pi\)
\(858\) 0 0
\(859\) −1.80741e13 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(860\) −5.68272e12 −0.354253
\(861\) 0 0
\(862\) 2.08194e13 1.28436
\(863\) 1.87322e13 1.14958 0.574791 0.818300i \(-0.305083\pi\)
0.574791 + 0.818300i \(0.305083\pi\)
\(864\) 0 0
\(865\) 1.08033e13 0.656120
\(866\) 5.05496e12 0.305413
\(867\) 0 0
\(868\) −1.06226e13 −0.635175
\(869\) 1.90225e13 1.13156
\(870\) 0 0
\(871\) −9.55531e12 −0.562553
\(872\) −1.38698e13 −0.812357
\(873\) 0 0
\(874\) −3.41484e13 −1.97956
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) 1.95650e13 1.11682 0.558409 0.829566i \(-0.311412\pi\)
0.558409 + 0.829566i \(0.311412\pi\)
\(878\) 4.06432e13 2.30814
\(879\) 0 0
\(880\) −5.87257e11 −0.0330108
\(881\) −2.30530e12 −0.128925 −0.0644623 0.997920i \(-0.520533\pi\)
−0.0644623 + 0.997920i \(0.520533\pi\)
\(882\) 0 0
\(883\) 6.82366e12 0.377741 0.188871 0.982002i \(-0.439517\pi\)
0.188871 + 0.982002i \(0.439517\pi\)
\(884\) −2.10846e13 −1.16126
\(885\) 0 0
\(886\) −3.21544e13 −1.75303
\(887\) −6.96936e12 −0.378039 −0.189020 0.981973i \(-0.560531\pi\)
−0.189020 + 0.981973i \(0.560531\pi\)
\(888\) 0 0
\(889\) −7.95409e12 −0.427103
\(890\) 1.58287e13 0.845647
\(891\) 0 0
\(892\) −5.98155e13 −3.16353
\(893\) −6.99362e12 −0.368019
\(894\) 0 0
\(895\) −4.34622e11 −0.0226416
\(896\) −1.15254e13 −0.597406
\(897\) 0 0
\(898\) −3.44921e13 −1.77001
\(899\) −2.86355e13 −1.46213
\(900\) 0 0
\(901\) 1.45546e13 0.735763
\(902\) −8.22315e12 −0.413627
\(903\) 0 0
\(904\) −1.25684e13 −0.625923
\(905\) 1.12614e13 0.558050
\(906\) 0 0
\(907\) 2.37471e13 1.16514 0.582571 0.812780i \(-0.302047\pi\)
0.582571 + 0.812780i \(0.302047\pi\)
\(908\) −1.99755e13 −0.975240
\(909\) 0 0
\(910\) −2.69919e12 −0.130481
\(911\) −1.81347e13 −0.872326 −0.436163 0.899868i \(-0.643663\pi\)
−0.436163 + 0.899868i \(0.643663\pi\)
\(912\) 0 0
\(913\) −1.56361e13 −0.744749
\(914\) −7.64811e12 −0.362490
\(915\) 0 0
\(916\) −3.40202e13 −1.59664
\(917\) −1.16060e13 −0.542024
\(918\) 0 0
\(919\) 6.30502e12 0.291586 0.145793 0.989315i \(-0.453427\pi\)
0.145793 + 0.989315i \(0.453427\pi\)
\(920\) −1.47435e13 −0.678510
\(921\) 0 0
\(922\) −4.12925e13 −1.88184
\(923\) 6.98848e12 0.316939
\(924\) 0 0
\(925\) 6.56537e12 0.294864
\(926\) −2.36227e13 −1.05580
\(927\) 0 0
\(928\) −3.25708e13 −1.44166
\(929\) −4.17837e13 −1.84050 −0.920252 0.391327i \(-0.872016\pi\)
−0.920252 + 0.391327i \(0.872016\pi\)
\(930\) 0 0
\(931\) 2.54921e12 0.111207
\(932\) −3.08696e13 −1.34017
\(933\) 0 0
\(934\) 5.96047e13 2.56283
\(935\) 2.47052e13 1.05715
\(936\) 0 0
\(937\) −2.80323e13 −1.18804 −0.594019 0.804451i \(-0.702460\pi\)
−0.594019 + 0.804451i \(0.702460\pi\)
\(938\) 1.69572e13 0.715225
\(939\) 0 0
\(940\) −8.08043e12 −0.337566
\(941\) 1.31067e13 0.544931 0.272465 0.962166i \(-0.412161\pi\)
0.272465 + 0.962166i \(0.412161\pi\)
\(942\) 0 0
\(943\) 6.31785e12 0.260176
\(944\) 2.12827e11 0.00872274
\(945\) 0 0
\(946\) −3.06606e13 −1.24472
\(947\) −2.61465e13 −1.05643 −0.528213 0.849112i \(-0.677138\pi\)
−0.528213 + 0.849112i \(0.677138\pi\)
\(948\) 0 0
\(949\) 1.16904e12 0.0467875
\(950\) 6.29826e12 0.250879
\(951\) 0 0
\(952\) 1.39822e13 0.551707
\(953\) −1.54925e13 −0.608420 −0.304210 0.952605i \(-0.598392\pi\)
−0.304210 + 0.952605i \(0.598392\pi\)
\(954\) 0 0
\(955\) 1.62984e13 0.634059
\(956\) 2.56826e13 0.994442
\(957\) 0 0
\(958\) 5.27655e13 2.02398
\(959\) 8.24217e12 0.314672
\(960\) 0 0
\(961\) 2.85129e12 0.107842
\(962\) −3.02316e13 −1.13808
\(963\) 0 0
\(964\) 2.55866e13 0.954257
\(965\) 6.21360e12 0.230659
\(966\) 0 0
\(967\) −9.68529e12 −0.356200 −0.178100 0.984012i \(-0.556995\pi\)
−0.178100 + 0.984012i \(0.556995\pi\)
\(968\) 3.74001e13 1.36910
\(969\) 0 0
\(970\) 3.18797e13 1.15622
\(971\) −2.06318e12 −0.0744820 −0.0372410 0.999306i \(-0.511857\pi\)
−0.0372410 + 0.999306i \(0.511857\pi\)
\(972\) 0 0
\(973\) 9.53011e12 0.340871
\(974\) −2.89434e13 −1.03047
\(975\) 0 0
\(976\) −2.40526e12 −0.0848474
\(977\) −3.09066e13 −1.08524 −0.542619 0.839979i \(-0.682567\pi\)
−0.542619 + 0.839979i \(0.682567\pi\)
\(978\) 0 0
\(979\) 5.25125e13 1.82701
\(980\) 2.94536e12 0.102005
\(981\) 0 0
\(982\) −3.25758e13 −1.11787
\(983\) −3.07721e13 −1.05115 −0.525577 0.850746i \(-0.676151\pi\)
−0.525577 + 0.850746i \(0.676151\pi\)
\(984\) 0 0
\(985\) −2.09651e13 −0.709634
\(986\) 1.00867e14 3.39862
\(987\) 0 0
\(988\) −1.78327e13 −0.595401
\(989\) 2.35566e13 0.782940
\(990\) 0 0
\(991\) 3.91433e13 1.28922 0.644608 0.764513i \(-0.277021\pi\)
0.644608 + 0.764513i \(0.277021\pi\)
\(992\) 3.33163e13 1.09233
\(993\) 0 0
\(994\) −1.24020e13 −0.402953
\(995\) 7.44479e12 0.240796
\(996\) 0 0
\(997\) 3.07488e13 0.985599 0.492800 0.870143i \(-0.335974\pi\)
0.492800 + 0.870143i \(0.335974\pi\)
\(998\) −8.38039e13 −2.67409
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.j.1.5 5
3.2 odd 2 35.10.a.d.1.1 5
15.2 even 4 175.10.b.f.99.1 10
15.8 even 4 175.10.b.f.99.10 10
15.14 odd 2 175.10.a.f.1.5 5
21.20 even 2 245.10.a.f.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.1 5 3.2 odd 2
175.10.a.f.1.5 5 15.14 odd 2
175.10.b.f.99.1 10 15.2 even 4
175.10.b.f.99.10 10 15.8 even 4
245.10.a.f.1.1 5 21.20 even 2
315.10.a.j.1.5 5 1.1 even 1 trivial