Properties

Label 315.10.a.j.1.4
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-21.5262\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+21.5262 q^{2} -48.6242 q^{4} +625.000 q^{5} +2401.00 q^{7} -12068.1 q^{8} +13453.9 q^{10} -7264.45 q^{11} -104986. q^{13} +51684.3 q^{14} -234884. q^{16} -377735. q^{17} +699532. q^{19} -30390.1 q^{20} -156376. q^{22} +141129. q^{23} +390625. q^{25} -2.25995e6 q^{26} -116747. q^{28} -4.83936e6 q^{29} +9.21059e6 q^{31} +1.12271e6 q^{32} -8.13118e6 q^{34} +1.50062e6 q^{35} +1.62065e7 q^{37} +1.50582e7 q^{38} -7.54256e6 q^{40} +2.26946e6 q^{41} -5.43389e6 q^{43} +353228. q^{44} +3.03796e6 q^{46} -5.34021e7 q^{47} +5.76480e6 q^{49} +8.40866e6 q^{50} +5.10488e6 q^{52} +3.47332e7 q^{53} -4.54028e6 q^{55} -2.89755e7 q^{56} -1.04173e8 q^{58} +1.69116e8 q^{59} -4.86165e7 q^{61} +1.98269e8 q^{62} +1.44428e8 q^{64} -6.56165e7 q^{65} -3.24123e7 q^{67} +1.83671e7 q^{68} +3.23027e7 q^{70} +1.15162e8 q^{71} -2.66399e8 q^{73} +3.48865e8 q^{74} -3.40142e7 q^{76} -1.74419e7 q^{77} +2.75318e8 q^{79} -1.46803e8 q^{80} +4.88527e7 q^{82} -4.29752e8 q^{83} -2.36084e8 q^{85} -1.16971e8 q^{86} +8.76680e7 q^{88} +8.82031e8 q^{89} -2.52072e8 q^{91} -6.86227e6 q^{92} -1.14954e9 q^{94} +4.37207e8 q^{95} -3.64161e8 q^{97} +1.24094e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 832 q^{4} + 3125 q^{5} + 12005 q^{7} + 14136 q^{8} - 1250 q^{10} - 10312 q^{11} + 158638 q^{13} - 4802 q^{14} - 526696 q^{16} - 31614 q^{17} + 1655376 q^{19} + 520000 q^{20} + 3659464 q^{22}+ \cdots - 11529602 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 21.5262 0.951331 0.475666 0.879626i \(-0.342207\pi\)
0.475666 + 0.879626i \(0.342207\pi\)
\(3\) 0 0
\(4\) −48.6242 −0.0949692
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) −12068.1 −1.04168
\(9\) 0 0
\(10\) 13453.9 0.425448
\(11\) −7264.45 −0.149601 −0.0748007 0.997199i \(-0.523832\pi\)
−0.0748007 + 0.997199i \(0.523832\pi\)
\(12\) 0 0
\(13\) −104986. −1.01950 −0.509751 0.860322i \(-0.670262\pi\)
−0.509751 + 0.860322i \(0.670262\pi\)
\(14\) 51684.3 0.359569
\(15\) 0 0
\(16\) −234884. −0.896012
\(17\) −377735. −1.09690 −0.548450 0.836184i \(-0.684782\pi\)
−0.548450 + 0.836184i \(0.684782\pi\)
\(18\) 0 0
\(19\) 699532. 1.23145 0.615724 0.787962i \(-0.288864\pi\)
0.615724 + 0.787962i \(0.288864\pi\)
\(20\) −30390.1 −0.0424715
\(21\) 0 0
\(22\) −156376. −0.142320
\(23\) 141129. 0.105157 0.0525787 0.998617i \(-0.483256\pi\)
0.0525787 + 0.998617i \(0.483256\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −2.25995e6 −0.969883
\(27\) 0 0
\(28\) −116747. −0.0358950
\(29\) −4.83936e6 −1.27056 −0.635282 0.772280i \(-0.719116\pi\)
−0.635282 + 0.772280i \(0.719116\pi\)
\(30\) 0 0
\(31\) 9.21059e6 1.79126 0.895632 0.444795i \(-0.146723\pi\)
0.895632 + 0.444795i \(0.146723\pi\)
\(32\) 1.12271e6 0.189275
\(33\) 0 0
\(34\) −8.13118e6 −1.04351
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) 1.62065e7 1.42162 0.710809 0.703385i \(-0.248329\pi\)
0.710809 + 0.703385i \(0.248329\pi\)
\(38\) 1.50582e7 1.17151
\(39\) 0 0
\(40\) −7.54256e6 −0.465853
\(41\) 2.26946e6 0.125428 0.0627140 0.998032i \(-0.480024\pi\)
0.0627140 + 0.998032i \(0.480024\pi\)
\(42\) 0 0
\(43\) −5.43389e6 −0.242383 −0.121192 0.992629i \(-0.538672\pi\)
−0.121192 + 0.992629i \(0.538672\pi\)
\(44\) 353228. 0.0142075
\(45\) 0 0
\(46\) 3.03796e6 0.100040
\(47\) −5.34021e7 −1.59631 −0.798156 0.602450i \(-0.794191\pi\)
−0.798156 + 0.602450i \(0.794191\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 8.40866e6 0.190266
\(51\) 0 0
\(52\) 5.10488e6 0.0968212
\(53\) 3.47332e7 0.604649 0.302324 0.953205i \(-0.402237\pi\)
0.302324 + 0.953205i \(0.402237\pi\)
\(54\) 0 0
\(55\) −4.54028e6 −0.0669037
\(56\) −2.89755e7 −0.393717
\(57\) 0 0
\(58\) −1.04173e8 −1.20873
\(59\) 1.69116e8 1.81698 0.908489 0.417909i \(-0.137237\pi\)
0.908489 + 0.417909i \(0.137237\pi\)
\(60\) 0 0
\(61\) −4.86165e7 −0.449572 −0.224786 0.974408i \(-0.572168\pi\)
−0.224786 + 0.974408i \(0.572168\pi\)
\(62\) 1.98269e8 1.70409
\(63\) 0 0
\(64\) 1.44428e8 1.07607
\(65\) −6.56165e7 −0.455935
\(66\) 0 0
\(67\) −3.24123e7 −0.196505 −0.0982524 0.995162i \(-0.531325\pi\)
−0.0982524 + 0.995162i \(0.531325\pi\)
\(68\) 1.83671e7 0.104172
\(69\) 0 0
\(70\) 3.23027e7 0.160804
\(71\) 1.15162e8 0.537832 0.268916 0.963164i \(-0.413335\pi\)
0.268916 + 0.963164i \(0.413335\pi\)
\(72\) 0 0
\(73\) −2.66399e8 −1.09794 −0.548971 0.835841i \(-0.684980\pi\)
−0.548971 + 0.835841i \(0.684980\pi\)
\(74\) 3.48865e8 1.35243
\(75\) 0 0
\(76\) −3.40142e7 −0.116950
\(77\) −1.74419e7 −0.0565440
\(78\) 0 0
\(79\) 2.75318e8 0.795267 0.397633 0.917544i \(-0.369832\pi\)
0.397633 + 0.917544i \(0.369832\pi\)
\(80\) −1.46803e8 −0.400709
\(81\) 0 0
\(82\) 4.88527e7 0.119324
\(83\) −4.29752e8 −0.993953 −0.496977 0.867764i \(-0.665557\pi\)
−0.496977 + 0.867764i \(0.665557\pi\)
\(84\) 0 0
\(85\) −2.36084e8 −0.490548
\(86\) −1.16971e8 −0.230587
\(87\) 0 0
\(88\) 8.76680e7 0.155836
\(89\) 8.82031e8 1.49015 0.745073 0.666983i \(-0.232415\pi\)
0.745073 + 0.666983i \(0.232415\pi\)
\(90\) 0 0
\(91\) −2.52072e8 −0.385335
\(92\) −6.86227e6 −0.00998672
\(93\) 0 0
\(94\) −1.14954e9 −1.51862
\(95\) 4.37207e8 0.550720
\(96\) 0 0
\(97\) −3.64161e8 −0.417658 −0.208829 0.977952i \(-0.566965\pi\)
−0.208829 + 0.977952i \(0.566965\pi\)
\(98\) 1.24094e8 0.135904
\(99\) 0 0
\(100\) −1.89938e7 −0.0189938
\(101\) 3.97117e8 0.379728 0.189864 0.981810i \(-0.439195\pi\)
0.189864 + 0.981810i \(0.439195\pi\)
\(102\) 0 0
\(103\) 1.05690e9 0.925269 0.462635 0.886549i \(-0.346904\pi\)
0.462635 + 0.886549i \(0.346904\pi\)
\(104\) 1.26698e9 1.06199
\(105\) 0 0
\(106\) 7.47672e8 0.575221
\(107\) −8.84940e8 −0.652660 −0.326330 0.945256i \(-0.605812\pi\)
−0.326330 + 0.945256i \(0.605812\pi\)
\(108\) 0 0
\(109\) 1.11883e9 0.759181 0.379591 0.925155i \(-0.376065\pi\)
0.379591 + 0.925155i \(0.376065\pi\)
\(110\) −9.77348e7 −0.0636476
\(111\) 0 0
\(112\) −5.63957e8 −0.338661
\(113\) 2.24657e9 1.29619 0.648093 0.761561i \(-0.275567\pi\)
0.648093 + 0.761561i \(0.275567\pi\)
\(114\) 0 0
\(115\) 8.82054e7 0.0470278
\(116\) 2.35310e8 0.120664
\(117\) 0 0
\(118\) 3.64041e9 1.72855
\(119\) −9.06941e8 −0.414589
\(120\) 0 0
\(121\) −2.30518e9 −0.977619
\(122\) −1.04653e9 −0.427692
\(123\) 0 0
\(124\) −4.47858e8 −0.170115
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 7.06347e7 0.0240936 0.0120468 0.999927i \(-0.496165\pi\)
0.0120468 + 0.999927i \(0.496165\pi\)
\(128\) 2.53416e9 0.834428
\(129\) 0 0
\(130\) −1.41247e9 −0.433745
\(131\) 6.11002e9 1.81268 0.906341 0.422547i \(-0.138864\pi\)
0.906341 + 0.422547i \(0.138864\pi\)
\(132\) 0 0
\(133\) 1.67958e9 0.465444
\(134\) −6.97712e8 −0.186941
\(135\) 0 0
\(136\) 4.55854e9 1.14262
\(137\) 2.08461e9 0.505572 0.252786 0.967522i \(-0.418653\pi\)
0.252786 + 0.967522i \(0.418653\pi\)
\(138\) 0 0
\(139\) 8.29470e9 1.88467 0.942333 0.334678i \(-0.108628\pi\)
0.942333 + 0.334678i \(0.108628\pi\)
\(140\) −7.29667e7 −0.0160527
\(141\) 0 0
\(142\) 2.47900e9 0.511656
\(143\) 7.62668e8 0.152519
\(144\) 0 0
\(145\) −3.02460e9 −0.568214
\(146\) −5.73454e9 −1.04451
\(147\) 0 0
\(148\) −7.88031e8 −0.135010
\(149\) 1.74044e9 0.289281 0.144640 0.989484i \(-0.453797\pi\)
0.144640 + 0.989484i \(0.453797\pi\)
\(150\) 0 0
\(151\) 1.10925e10 1.73634 0.868169 0.496269i \(-0.165297\pi\)
0.868169 + 0.496269i \(0.165297\pi\)
\(152\) −8.44201e9 −1.28277
\(153\) 0 0
\(154\) −3.75458e8 −0.0537920
\(155\) 5.75662e9 0.801078
\(156\) 0 0
\(157\) 2.35680e9 0.309581 0.154791 0.987947i \(-0.450530\pi\)
0.154791 + 0.987947i \(0.450530\pi\)
\(158\) 5.92654e9 0.756562
\(159\) 0 0
\(160\) 7.01693e8 0.0846461
\(161\) 3.38850e8 0.0397458
\(162\) 0 0
\(163\) 9.52524e9 1.05689 0.528447 0.848966i \(-0.322774\pi\)
0.528447 + 0.848966i \(0.322774\pi\)
\(164\) −1.10351e8 −0.0119118
\(165\) 0 0
\(166\) −9.25090e9 −0.945579
\(167\) 9.96994e9 0.991902 0.495951 0.868351i \(-0.334820\pi\)
0.495951 + 0.868351i \(0.334820\pi\)
\(168\) 0 0
\(169\) 4.17631e8 0.0393824
\(170\) −5.08199e9 −0.466674
\(171\) 0 0
\(172\) 2.64219e8 0.0230189
\(173\) −1.39303e10 −1.18237 −0.591183 0.806537i \(-0.701339\pi\)
−0.591183 + 0.806537i \(0.701339\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) 1.70630e9 0.134045
\(177\) 0 0
\(178\) 1.89867e10 1.41762
\(179\) 1.63551e10 1.19073 0.595365 0.803455i \(-0.297007\pi\)
0.595365 + 0.803455i \(0.297007\pi\)
\(180\) 0 0
\(181\) −2.74412e10 −1.90042 −0.950210 0.311610i \(-0.899132\pi\)
−0.950210 + 0.311610i \(0.899132\pi\)
\(182\) −5.42615e9 −0.366581
\(183\) 0 0
\(184\) −1.70315e9 −0.109540
\(185\) 1.01291e10 0.635767
\(186\) 0 0
\(187\) 2.74403e9 0.164098
\(188\) 2.59664e9 0.151601
\(189\) 0 0
\(190\) 9.41140e9 0.523917
\(191\) −1.36618e9 −0.0742777 −0.0371389 0.999310i \(-0.511824\pi\)
−0.0371389 + 0.999310i \(0.511824\pi\)
\(192\) 0 0
\(193\) −1.59049e10 −0.825131 −0.412565 0.910928i \(-0.635367\pi\)
−0.412565 + 0.910928i \(0.635367\pi\)
\(194\) −7.83900e9 −0.397331
\(195\) 0 0
\(196\) −2.80309e8 −0.0135670
\(197\) −2.27159e10 −1.07457 −0.537283 0.843402i \(-0.680549\pi\)
−0.537283 + 0.843402i \(0.680549\pi\)
\(198\) 0 0
\(199\) 2.06061e10 0.931443 0.465721 0.884931i \(-0.345795\pi\)
0.465721 + 0.884931i \(0.345795\pi\)
\(200\) −4.71410e9 −0.208336
\(201\) 0 0
\(202\) 8.54842e9 0.361247
\(203\) −1.16193e10 −0.480228
\(204\) 0 0
\(205\) 1.41841e9 0.0560931
\(206\) 2.27511e10 0.880237
\(207\) 0 0
\(208\) 2.46596e10 0.913485
\(209\) −5.08171e9 −0.184226
\(210\) 0 0
\(211\) 4.28352e10 1.48775 0.743874 0.668320i \(-0.232986\pi\)
0.743874 + 0.668320i \(0.232986\pi\)
\(212\) −1.68887e9 −0.0574230
\(213\) 0 0
\(214\) −1.90494e10 −0.620896
\(215\) −3.39618e9 −0.108397
\(216\) 0 0
\(217\) 2.21146e10 0.677035
\(218\) 2.40842e10 0.722233
\(219\) 0 0
\(220\) 2.20768e8 0.00635380
\(221\) 3.96570e10 1.11829
\(222\) 0 0
\(223\) −8.41935e9 −0.227985 −0.113993 0.993482i \(-0.536364\pi\)
−0.113993 + 0.993482i \(0.536364\pi\)
\(224\) 2.69562e9 0.0715390
\(225\) 0 0
\(226\) 4.83601e10 1.23310
\(227\) 3.35674e10 0.839077 0.419538 0.907738i \(-0.362192\pi\)
0.419538 + 0.907738i \(0.362192\pi\)
\(228\) 0 0
\(229\) 8.22103e9 0.197545 0.0987726 0.995110i \(-0.468508\pi\)
0.0987726 + 0.995110i \(0.468508\pi\)
\(230\) 1.89872e9 0.0447390
\(231\) 0 0
\(232\) 5.84018e10 1.32352
\(233\) 3.09446e10 0.687832 0.343916 0.939000i \(-0.388246\pi\)
0.343916 + 0.939000i \(0.388246\pi\)
\(234\) 0 0
\(235\) −3.33763e10 −0.713893
\(236\) −8.22312e9 −0.172557
\(237\) 0 0
\(238\) −1.95230e10 −0.394411
\(239\) −2.32714e9 −0.0461351 −0.0230676 0.999734i \(-0.507343\pi\)
−0.0230676 + 0.999734i \(0.507343\pi\)
\(240\) 0 0
\(241\) −7.26614e10 −1.38748 −0.693740 0.720225i \(-0.744038\pi\)
−0.693740 + 0.720225i \(0.744038\pi\)
\(242\) −4.96216e10 −0.930040
\(243\) 0 0
\(244\) 2.36394e9 0.0426955
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −7.34413e10 −1.25546
\(248\) −1.11154e11 −1.86592
\(249\) 0 0
\(250\) 5.25541e9 0.0850896
\(251\) −6.59838e10 −1.04931 −0.524657 0.851314i \(-0.675806\pi\)
−0.524657 + 0.851314i \(0.675806\pi\)
\(252\) 0 0
\(253\) −1.02522e9 −0.0157317
\(254\) 1.52049e9 0.0229210
\(255\) 0 0
\(256\) −1.93965e10 −0.282257
\(257\) −1.16248e11 −1.66221 −0.831106 0.556114i \(-0.812292\pi\)
−0.831106 + 0.556114i \(0.812292\pi\)
\(258\) 0 0
\(259\) 3.89119e10 0.537321
\(260\) 3.19055e9 0.0432998
\(261\) 0 0
\(262\) 1.31525e11 1.72446
\(263\) 1.31792e11 1.69858 0.849292 0.527924i \(-0.177029\pi\)
0.849292 + 0.527924i \(0.177029\pi\)
\(264\) 0 0
\(265\) 2.17082e10 0.270407
\(266\) 3.61548e10 0.442791
\(267\) 0 0
\(268\) 1.57602e9 0.0186619
\(269\) −1.32552e10 −0.154348 −0.0771740 0.997018i \(-0.524590\pi\)
−0.0771740 + 0.997018i \(0.524590\pi\)
\(270\) 0 0
\(271\) −9.35557e10 −1.05368 −0.526840 0.849965i \(-0.676623\pi\)
−0.526840 + 0.849965i \(0.676623\pi\)
\(272\) 8.87238e10 0.982834
\(273\) 0 0
\(274\) 4.48737e10 0.480966
\(275\) −2.83767e9 −0.0299203
\(276\) 0 0
\(277\) 8.01061e10 0.817535 0.408768 0.912639i \(-0.365959\pi\)
0.408768 + 0.912639i \(0.365959\pi\)
\(278\) 1.78553e11 1.79294
\(279\) 0 0
\(280\) −1.81097e10 −0.176076
\(281\) 9.66301e10 0.924557 0.462279 0.886735i \(-0.347032\pi\)
0.462279 + 0.886735i \(0.347032\pi\)
\(282\) 0 0
\(283\) −8.32923e10 −0.771909 −0.385954 0.922518i \(-0.626128\pi\)
−0.385954 + 0.922518i \(0.626128\pi\)
\(284\) −5.59966e9 −0.0510775
\(285\) 0 0
\(286\) 1.64173e10 0.145096
\(287\) 5.44897e9 0.0474073
\(288\) 0 0
\(289\) 2.40956e10 0.203187
\(290\) −6.51080e10 −0.540559
\(291\) 0 0
\(292\) 1.29534e10 0.104271
\(293\) 1.06756e11 0.846226 0.423113 0.906077i \(-0.360937\pi\)
0.423113 + 0.906077i \(0.360937\pi\)
\(294\) 0 0
\(295\) 1.05697e11 0.812577
\(296\) −1.95582e11 −1.48087
\(297\) 0 0
\(298\) 3.74649e10 0.275202
\(299\) −1.48166e10 −0.107208
\(300\) 0 0
\(301\) −1.30468e10 −0.0916122
\(302\) 2.38780e11 1.65183
\(303\) 0 0
\(304\) −1.64309e11 −1.10339
\(305\) −3.03853e10 −0.201055
\(306\) 0 0
\(307\) −1.85260e10 −0.119031 −0.0595153 0.998227i \(-0.518956\pi\)
−0.0595153 + 0.998227i \(0.518956\pi\)
\(308\) 8.48101e8 0.00536994
\(309\) 0 0
\(310\) 1.23918e11 0.762090
\(311\) 2.47643e11 1.50108 0.750541 0.660824i \(-0.229793\pi\)
0.750541 + 0.660824i \(0.229793\pi\)
\(312\) 0 0
\(313\) 2.50393e11 1.47459 0.737296 0.675569i \(-0.236102\pi\)
0.737296 + 0.675569i \(0.236102\pi\)
\(314\) 5.07329e10 0.294514
\(315\) 0 0
\(316\) −1.33871e10 −0.0755259
\(317\) −2.40990e11 −1.34040 −0.670198 0.742182i \(-0.733791\pi\)
−0.670198 + 0.742182i \(0.733791\pi\)
\(318\) 0 0
\(319\) 3.51552e10 0.190078
\(320\) 9.02677e10 0.481235
\(321\) 0 0
\(322\) 7.29414e9 0.0378114
\(323\) −2.64237e11 −1.35077
\(324\) 0 0
\(325\) −4.10103e10 −0.203900
\(326\) 2.05042e11 1.00546
\(327\) 0 0
\(328\) −2.73880e10 −0.130656
\(329\) −1.28218e11 −0.603350
\(330\) 0 0
\(331\) 3.58008e11 1.63933 0.819665 0.572844i \(-0.194160\pi\)
0.819665 + 0.572844i \(0.194160\pi\)
\(332\) 2.08963e10 0.0943950
\(333\) 0 0
\(334\) 2.14615e11 0.943627
\(335\) −2.02577e10 −0.0878796
\(336\) 0 0
\(337\) 6.23655e10 0.263397 0.131698 0.991290i \(-0.457957\pi\)
0.131698 + 0.991290i \(0.457957\pi\)
\(338\) 8.98999e9 0.0374657
\(339\) 0 0
\(340\) 1.14794e10 0.0465870
\(341\) −6.69098e10 −0.267976
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 6.55766e10 0.252485
\(345\) 0 0
\(346\) −2.99865e11 −1.12482
\(347\) −2.06428e11 −0.764341 −0.382170 0.924092i \(-0.624823\pi\)
−0.382170 + 0.924092i \(0.624823\pi\)
\(348\) 0 0
\(349\) −3.94645e11 −1.42394 −0.711971 0.702208i \(-0.752197\pi\)
−0.711971 + 0.702208i \(0.752197\pi\)
\(350\) 2.01892e10 0.0719139
\(351\) 0 0
\(352\) −8.15586e9 −0.0283157
\(353\) −1.04492e11 −0.358175 −0.179087 0.983833i \(-0.557314\pi\)
−0.179087 + 0.983833i \(0.557314\pi\)
\(354\) 0 0
\(355\) 7.19762e10 0.240526
\(356\) −4.28881e10 −0.141518
\(357\) 0 0
\(358\) 3.52062e11 1.13278
\(359\) 5.35779e11 1.70240 0.851198 0.524845i \(-0.175877\pi\)
0.851198 + 0.524845i \(0.175877\pi\)
\(360\) 0 0
\(361\) 1.66657e11 0.516465
\(362\) −5.90704e11 −1.80793
\(363\) 0 0
\(364\) 1.22568e10 0.0365950
\(365\) −1.66499e11 −0.491015
\(366\) 0 0
\(367\) 5.94309e11 1.71008 0.855038 0.518566i \(-0.173534\pi\)
0.855038 + 0.518566i \(0.173534\pi\)
\(368\) −3.31489e10 −0.0942223
\(369\) 0 0
\(370\) 2.18041e11 0.604825
\(371\) 8.33944e10 0.228536
\(372\) 0 0
\(373\) −1.14988e11 −0.307582 −0.153791 0.988103i \(-0.549148\pi\)
−0.153791 + 0.988103i \(0.549148\pi\)
\(374\) 5.90685e10 0.156111
\(375\) 0 0
\(376\) 6.44461e11 1.66284
\(377\) 5.08066e11 1.29534
\(378\) 0 0
\(379\) −2.64315e11 −0.658030 −0.329015 0.944325i \(-0.606717\pi\)
−0.329015 + 0.944325i \(0.606717\pi\)
\(380\) −2.12589e10 −0.0523015
\(381\) 0 0
\(382\) −2.94087e10 −0.0706627
\(383\) −3.02019e10 −0.0717199 −0.0358599 0.999357i \(-0.511417\pi\)
−0.0358599 + 0.999357i \(0.511417\pi\)
\(384\) 0 0
\(385\) −1.09012e10 −0.0252872
\(386\) −3.42371e11 −0.784972
\(387\) 0 0
\(388\) 1.77071e10 0.0396647
\(389\) 1.40060e11 0.310129 0.155064 0.987904i \(-0.450442\pi\)
0.155064 + 0.987904i \(0.450442\pi\)
\(390\) 0 0
\(391\) −5.33092e10 −0.115347
\(392\) −6.95701e10 −0.148811
\(393\) 0 0
\(394\) −4.88987e11 −1.02227
\(395\) 1.72074e11 0.355654
\(396\) 0 0
\(397\) 1.00518e11 0.203090 0.101545 0.994831i \(-0.467621\pi\)
0.101545 + 0.994831i \(0.467621\pi\)
\(398\) 4.43570e11 0.886111
\(399\) 0 0
\(400\) −9.17516e10 −0.179202
\(401\) −6.92168e11 −1.33679 −0.668393 0.743808i \(-0.733018\pi\)
−0.668393 + 0.743808i \(0.733018\pi\)
\(402\) 0 0
\(403\) −9.66986e11 −1.82620
\(404\) −1.93095e10 −0.0360625
\(405\) 0 0
\(406\) −2.50119e11 −0.456856
\(407\) −1.17732e11 −0.212676
\(408\) 0 0
\(409\) −4.19973e11 −0.742108 −0.371054 0.928611i \(-0.621003\pi\)
−0.371054 + 0.928611i \(0.621003\pi\)
\(410\) 3.05329e10 0.0533631
\(411\) 0 0
\(412\) −5.13912e10 −0.0878721
\(413\) 4.06047e11 0.686753
\(414\) 0 0
\(415\) −2.68595e11 −0.444509
\(416\) −1.17869e11 −0.192966
\(417\) 0 0
\(418\) −1.09390e11 −0.175260
\(419\) 3.54108e11 0.561271 0.280636 0.959814i \(-0.409455\pi\)
0.280636 + 0.959814i \(0.409455\pi\)
\(420\) 0 0
\(421\) −9.73431e11 −1.51020 −0.755102 0.655607i \(-0.772413\pi\)
−0.755102 + 0.655607i \(0.772413\pi\)
\(422\) 9.22077e11 1.41534
\(423\) 0 0
\(424\) −4.19163e11 −0.629850
\(425\) −1.47553e11 −0.219380
\(426\) 0 0
\(427\) −1.16728e11 −0.169922
\(428\) 4.30295e10 0.0619826
\(429\) 0 0
\(430\) −7.31067e10 −0.103122
\(431\) −1.86273e11 −0.260017 −0.130008 0.991513i \(-0.541500\pi\)
−0.130008 + 0.991513i \(0.541500\pi\)
\(432\) 0 0
\(433\) 1.32179e12 1.80703 0.903517 0.428552i \(-0.140976\pi\)
0.903517 + 0.428552i \(0.140976\pi\)
\(434\) 4.76043e11 0.644084
\(435\) 0 0
\(436\) −5.44023e10 −0.0720988
\(437\) 9.87240e10 0.129496
\(438\) 0 0
\(439\) −2.89150e11 −0.371563 −0.185782 0.982591i \(-0.559482\pi\)
−0.185782 + 0.982591i \(0.559482\pi\)
\(440\) 5.47925e10 0.0696922
\(441\) 0 0
\(442\) 8.53663e11 1.06386
\(443\) 3.94183e11 0.486275 0.243137 0.969992i \(-0.421823\pi\)
0.243137 + 0.969992i \(0.421823\pi\)
\(444\) 0 0
\(445\) 5.51269e11 0.666414
\(446\) −1.81236e11 −0.216890
\(447\) 0 0
\(448\) 3.46772e11 0.406718
\(449\) −1.11883e11 −0.129914 −0.0649571 0.997888i \(-0.520691\pi\)
−0.0649571 + 0.997888i \(0.520691\pi\)
\(450\) 0 0
\(451\) −1.64863e10 −0.0187642
\(452\) −1.09238e11 −0.123098
\(453\) 0 0
\(454\) 7.22578e11 0.798240
\(455\) −1.57545e11 −0.172327
\(456\) 0 0
\(457\) −1.20520e12 −1.29251 −0.646256 0.763120i \(-0.723666\pi\)
−0.646256 + 0.763120i \(0.723666\pi\)
\(458\) 1.76967e11 0.187931
\(459\) 0 0
\(460\) −4.28892e9 −0.00446620
\(461\) 7.10906e11 0.733091 0.366545 0.930400i \(-0.380540\pi\)
0.366545 + 0.930400i \(0.380540\pi\)
\(462\) 0 0
\(463\) −1.42691e12 −1.44305 −0.721527 0.692387i \(-0.756559\pi\)
−0.721527 + 0.692387i \(0.756559\pi\)
\(464\) 1.13669e12 1.13844
\(465\) 0 0
\(466\) 6.66118e11 0.654356
\(467\) −1.17577e12 −1.14392 −0.571961 0.820281i \(-0.693817\pi\)
−0.571961 + 0.820281i \(0.693817\pi\)
\(468\) 0 0
\(469\) −7.78219e10 −0.0742718
\(470\) −7.18464e11 −0.679148
\(471\) 0 0
\(472\) −2.04090e12 −1.89271
\(473\) 3.94742e10 0.0362609
\(474\) 0 0
\(475\) 2.73255e11 0.246290
\(476\) 4.40993e10 0.0393732
\(477\) 0 0
\(478\) −5.00944e10 −0.0438898
\(479\) −2.60353e11 −0.225971 −0.112985 0.993597i \(-0.536041\pi\)
−0.112985 + 0.993597i \(0.536041\pi\)
\(480\) 0 0
\(481\) −1.70147e12 −1.44934
\(482\) −1.56412e12 −1.31995
\(483\) 0 0
\(484\) 1.12087e11 0.0928437
\(485\) −2.27601e11 −0.186782
\(486\) 0 0
\(487\) −1.30615e12 −1.05223 −0.526117 0.850412i \(-0.676352\pi\)
−0.526117 + 0.850412i \(0.676352\pi\)
\(488\) 5.86708e11 0.468309
\(489\) 0 0
\(490\) 7.75588e10 0.0607783
\(491\) 7.95997e11 0.618080 0.309040 0.951049i \(-0.399992\pi\)
0.309040 + 0.951049i \(0.399992\pi\)
\(492\) 0 0
\(493\) 1.82799e12 1.39368
\(494\) −1.58091e12 −1.19436
\(495\) 0 0
\(496\) −2.16342e12 −1.60499
\(497\) 2.76504e11 0.203281
\(498\) 0 0
\(499\) −1.93563e11 −0.139756 −0.0698779 0.997556i \(-0.522261\pi\)
−0.0698779 + 0.997556i \(0.522261\pi\)
\(500\) −1.18712e10 −0.00849430
\(501\) 0 0
\(502\) −1.42038e12 −0.998245
\(503\) −1.96053e12 −1.36558 −0.682789 0.730616i \(-0.739233\pi\)
−0.682789 + 0.730616i \(0.739233\pi\)
\(504\) 0 0
\(505\) 2.48198e11 0.169820
\(506\) −2.20691e10 −0.0149660
\(507\) 0 0
\(508\) −3.43456e9 −0.00228815
\(509\) −1.24135e12 −0.819720 −0.409860 0.912149i \(-0.634422\pi\)
−0.409860 + 0.912149i \(0.634422\pi\)
\(510\) 0 0
\(511\) −6.39624e11 −0.414983
\(512\) −1.71502e12 −1.10295
\(513\) 0 0
\(514\) −2.50237e12 −1.58131
\(515\) 6.60565e11 0.413793
\(516\) 0 0
\(517\) 3.87937e11 0.238811
\(518\) 8.37625e11 0.511170
\(519\) 0 0
\(520\) 7.91865e11 0.474937
\(521\) −1.79601e12 −1.06792 −0.533961 0.845509i \(-0.679297\pi\)
−0.533961 + 0.845509i \(0.679297\pi\)
\(522\) 0 0
\(523\) 1.13682e12 0.664407 0.332203 0.943208i \(-0.392208\pi\)
0.332203 + 0.943208i \(0.392208\pi\)
\(524\) −2.97095e11 −0.172149
\(525\) 0 0
\(526\) 2.83697e12 1.61592
\(527\) −3.47916e12 −1.96484
\(528\) 0 0
\(529\) −1.78124e12 −0.988942
\(530\) 4.67295e11 0.257247
\(531\) 0 0
\(532\) −8.16681e10 −0.0442028
\(533\) −2.38262e11 −0.127874
\(534\) 0 0
\(535\) −5.53088e11 −0.291878
\(536\) 3.91154e11 0.204695
\(537\) 0 0
\(538\) −2.85334e11 −0.146836
\(539\) −4.18781e10 −0.0213716
\(540\) 0 0
\(541\) −2.94272e12 −1.47693 −0.738467 0.674290i \(-0.764450\pi\)
−0.738467 + 0.674290i \(0.764450\pi\)
\(542\) −2.01390e12 −1.00240
\(543\) 0 0
\(544\) −4.24086e11 −0.207615
\(545\) 6.99270e11 0.339516
\(546\) 0 0
\(547\) −2.05780e12 −0.982788 −0.491394 0.870937i \(-0.663512\pi\)
−0.491394 + 0.870937i \(0.663512\pi\)
\(548\) −1.01363e11 −0.0480138
\(549\) 0 0
\(550\) −6.10842e10 −0.0284641
\(551\) −3.38528e12 −1.56463
\(552\) 0 0
\(553\) 6.61039e11 0.300583
\(554\) 1.72438e12 0.777747
\(555\) 0 0
\(556\) −4.03324e11 −0.178985
\(557\) −2.98049e11 −0.131202 −0.0656008 0.997846i \(-0.520896\pi\)
−0.0656008 + 0.997846i \(0.520896\pi\)
\(558\) 0 0
\(559\) 5.70484e11 0.247110
\(560\) −3.52473e11 −0.151454
\(561\) 0 0
\(562\) 2.08007e12 0.879560
\(563\) 2.06345e12 0.865577 0.432788 0.901495i \(-0.357530\pi\)
0.432788 + 0.901495i \(0.357530\pi\)
\(564\) 0 0
\(565\) 1.40411e12 0.579672
\(566\) −1.79296e12 −0.734341
\(567\) 0 0
\(568\) −1.38979e12 −0.560248
\(569\) 8.41905e11 0.336711 0.168356 0.985726i \(-0.446154\pi\)
0.168356 + 0.985726i \(0.446154\pi\)
\(570\) 0 0
\(571\) −3.64457e12 −1.43478 −0.717388 0.696674i \(-0.754663\pi\)
−0.717388 + 0.696674i \(0.754663\pi\)
\(572\) −3.70841e10 −0.0144846
\(573\) 0 0
\(574\) 1.17295e11 0.0451001
\(575\) 5.51284e10 0.0210315
\(576\) 0 0
\(577\) 2.62373e12 0.985434 0.492717 0.870190i \(-0.336004\pi\)
0.492717 + 0.870190i \(0.336004\pi\)
\(578\) 5.18685e11 0.193299
\(579\) 0 0
\(580\) 1.47069e11 0.0539628
\(581\) −1.03183e12 −0.375679
\(582\) 0 0
\(583\) −2.52317e11 −0.0904563
\(584\) 3.21492e12 1.14370
\(585\) 0 0
\(586\) 2.29804e12 0.805041
\(587\) 7.13908e11 0.248182 0.124091 0.992271i \(-0.460399\pi\)
0.124091 + 0.992271i \(0.460399\pi\)
\(588\) 0 0
\(589\) 6.44310e12 2.20585
\(590\) 2.27526e12 0.773030
\(591\) 0 0
\(592\) −3.80666e12 −1.27379
\(593\) 5.80259e11 0.192697 0.0963487 0.995348i \(-0.469284\pi\)
0.0963487 + 0.995348i \(0.469284\pi\)
\(594\) 0 0
\(595\) −5.66838e11 −0.185410
\(596\) −8.46273e10 −0.0274728
\(597\) 0 0
\(598\) −3.18944e11 −0.101990
\(599\) −5.55108e12 −1.76180 −0.880901 0.473300i \(-0.843063\pi\)
−0.880901 + 0.473300i \(0.843063\pi\)
\(600\) 0 0
\(601\) −8.68746e11 −0.271618 −0.135809 0.990735i \(-0.543363\pi\)
−0.135809 + 0.990735i \(0.543363\pi\)
\(602\) −2.80847e11 −0.0871536
\(603\) 0 0
\(604\) −5.39366e11 −0.164899
\(605\) −1.44073e12 −0.437205
\(606\) 0 0
\(607\) 5.48983e12 1.64138 0.820691 0.571372i \(-0.193589\pi\)
0.820691 + 0.571372i \(0.193589\pi\)
\(608\) 7.85370e11 0.233082
\(609\) 0 0
\(610\) −6.54079e11 −0.191270
\(611\) 5.60649e12 1.62744
\(612\) 0 0
\(613\) 2.53621e12 0.725460 0.362730 0.931894i \(-0.381845\pi\)
0.362730 + 0.931894i \(0.381845\pi\)
\(614\) −3.98794e11 −0.113238
\(615\) 0 0
\(616\) 2.10491e11 0.0589006
\(617\) −3.02344e12 −0.839881 −0.419941 0.907552i \(-0.637949\pi\)
−0.419941 + 0.907552i \(0.637949\pi\)
\(618\) 0 0
\(619\) 1.35752e12 0.371653 0.185826 0.982583i \(-0.440504\pi\)
0.185826 + 0.982583i \(0.440504\pi\)
\(620\) −2.79911e11 −0.0760777
\(621\) 0 0
\(622\) 5.33080e12 1.42803
\(623\) 2.11776e12 0.563222
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 5.38999e12 1.40283
\(627\) 0 0
\(628\) −1.14598e11 −0.0294007
\(629\) −6.12177e12 −1.55937
\(630\) 0 0
\(631\) −4.10270e12 −1.03024 −0.515120 0.857118i \(-0.672253\pi\)
−0.515120 + 0.857118i \(0.672253\pi\)
\(632\) −3.32256e12 −0.828412
\(633\) 0 0
\(634\) −5.18760e12 −1.27516
\(635\) 4.41467e10 0.0107750
\(636\) 0 0
\(637\) −6.05225e11 −0.145643
\(638\) 7.56758e11 0.180827
\(639\) 0 0
\(640\) 1.58385e12 0.373168
\(641\) 1.81016e12 0.423503 0.211751 0.977324i \(-0.432083\pi\)
0.211751 + 0.977324i \(0.432083\pi\)
\(642\) 0 0
\(643\) 1.56540e12 0.361141 0.180570 0.983562i \(-0.442206\pi\)
0.180570 + 0.983562i \(0.442206\pi\)
\(644\) −1.64763e10 −0.00377463
\(645\) 0 0
\(646\) −5.68802e12 −1.28503
\(647\) 7.12668e12 1.59889 0.799444 0.600740i \(-0.205127\pi\)
0.799444 + 0.600740i \(0.205127\pi\)
\(648\) 0 0
\(649\) −1.22853e12 −0.271822
\(650\) −8.82794e11 −0.193977
\(651\) 0 0
\(652\) −4.63158e11 −0.100372
\(653\) 2.05343e12 0.441948 0.220974 0.975280i \(-0.429076\pi\)
0.220974 + 0.975280i \(0.429076\pi\)
\(654\) 0 0
\(655\) 3.81876e12 0.810656
\(656\) −5.33059e11 −0.112385
\(657\) 0 0
\(658\) −2.76005e12 −0.573985
\(659\) 1.63048e12 0.336768 0.168384 0.985721i \(-0.446145\pi\)
0.168384 + 0.985721i \(0.446145\pi\)
\(660\) 0 0
\(661\) 1.17276e12 0.238948 0.119474 0.992837i \(-0.461879\pi\)
0.119474 + 0.992837i \(0.461879\pi\)
\(662\) 7.70653e12 1.55954
\(663\) 0 0
\(664\) 5.18628e12 1.03538
\(665\) 1.04973e12 0.208153
\(666\) 0 0
\(667\) −6.82972e11 −0.133609
\(668\) −4.84781e11 −0.0942001
\(669\) 0 0
\(670\) −4.36070e11 −0.0836026
\(671\) 3.53172e11 0.0672566
\(672\) 0 0
\(673\) 5.67765e12 1.06684 0.533422 0.845849i \(-0.320906\pi\)
0.533422 + 0.845849i \(0.320906\pi\)
\(674\) 1.34249e12 0.250577
\(675\) 0 0
\(676\) −2.03070e10 −0.00374012
\(677\) −1.03850e12 −0.190002 −0.0950012 0.995477i \(-0.530285\pi\)
−0.0950012 + 0.995477i \(0.530285\pi\)
\(678\) 0 0
\(679\) −8.74351e11 −0.157860
\(680\) 2.84908e12 0.510993
\(681\) 0 0
\(682\) −1.44031e12 −0.254934
\(683\) −2.03661e12 −0.358108 −0.179054 0.983839i \(-0.557304\pi\)
−0.179054 + 0.983839i \(0.557304\pi\)
\(684\) 0 0
\(685\) 1.30288e12 0.226099
\(686\) 2.97950e11 0.0513670
\(687\) 0 0
\(688\) 1.27633e12 0.217178
\(689\) −3.64651e12 −0.616440
\(690\) 0 0
\(691\) 8.06979e12 1.34652 0.673258 0.739408i \(-0.264895\pi\)
0.673258 + 0.739408i \(0.264895\pi\)
\(692\) 6.77349e11 0.112288
\(693\) 0 0
\(694\) −4.44361e12 −0.727141
\(695\) 5.18419e12 0.842848
\(696\) 0 0
\(697\) −8.57253e11 −0.137582
\(698\) −8.49520e12 −1.35464
\(699\) 0 0
\(700\) −4.56042e10 −0.00717900
\(701\) 6.63031e12 1.03706 0.518528 0.855060i \(-0.326480\pi\)
0.518528 + 0.855060i \(0.326480\pi\)
\(702\) 0 0
\(703\) 1.13370e13 1.75065
\(704\) −1.04919e12 −0.160982
\(705\) 0 0
\(706\) −2.24930e12 −0.340743
\(707\) 9.53479e11 0.143524
\(708\) 0 0
\(709\) −1.05445e12 −0.156718 −0.0783591 0.996925i \(-0.524968\pi\)
−0.0783591 + 0.996925i \(0.524968\pi\)
\(710\) 1.54937e12 0.228820
\(711\) 0 0
\(712\) −1.06444e13 −1.55225
\(713\) 1.29988e12 0.188365
\(714\) 0 0
\(715\) 4.76667e11 0.0682084
\(716\) −7.95252e11 −0.113083
\(717\) 0 0
\(718\) 1.15333e13 1.61954
\(719\) −6.47058e12 −0.902949 −0.451474 0.892284i \(-0.649102\pi\)
−0.451474 + 0.892284i \(0.649102\pi\)
\(720\) 0 0
\(721\) 2.53763e12 0.349719
\(722\) 3.58748e12 0.491329
\(723\) 0 0
\(724\) 1.33431e12 0.180481
\(725\) −1.89037e12 −0.254113
\(726\) 0 0
\(727\) 6.57148e12 0.872485 0.436243 0.899829i \(-0.356309\pi\)
0.436243 + 0.899829i \(0.356309\pi\)
\(728\) 3.04203e12 0.401395
\(729\) 0 0
\(730\) −3.58409e12 −0.467117
\(731\) 2.05257e12 0.265870
\(732\) 0 0
\(733\) −1.49411e12 −0.191168 −0.0955839 0.995421i \(-0.530472\pi\)
−0.0955839 + 0.995421i \(0.530472\pi\)
\(734\) 1.27932e13 1.62685
\(735\) 0 0
\(736\) 1.58446e11 0.0199036
\(737\) 2.35457e11 0.0293974
\(738\) 0 0
\(739\) −5.22401e12 −0.644324 −0.322162 0.946685i \(-0.604410\pi\)
−0.322162 + 0.946685i \(0.604410\pi\)
\(740\) −4.92519e11 −0.0603783
\(741\) 0 0
\(742\) 1.79516e12 0.217413
\(743\) 6.71821e12 0.808731 0.404365 0.914597i \(-0.367492\pi\)
0.404365 + 0.914597i \(0.367492\pi\)
\(744\) 0 0
\(745\) 1.08777e12 0.129370
\(746\) −2.47524e12 −0.292613
\(747\) 0 0
\(748\) −1.33426e11 −0.0155842
\(749\) −2.12474e12 −0.246682
\(750\) 0 0
\(751\) 4.56125e12 0.523244 0.261622 0.965170i \(-0.415743\pi\)
0.261622 + 0.965170i \(0.415743\pi\)
\(752\) 1.25433e13 1.43031
\(753\) 0 0
\(754\) 1.09367e13 1.23230
\(755\) 6.93283e12 0.776514
\(756\) 0 0
\(757\) 8.41083e11 0.0930910 0.0465455 0.998916i \(-0.485179\pi\)
0.0465455 + 0.998916i \(0.485179\pi\)
\(758\) −5.68969e12 −0.626004
\(759\) 0 0
\(760\) −5.27626e12 −0.573673
\(761\) −4.81444e11 −0.0520373 −0.0260186 0.999661i \(-0.508283\pi\)
−0.0260186 + 0.999661i \(0.508283\pi\)
\(762\) 0 0
\(763\) 2.68631e12 0.286944
\(764\) 6.64296e10 0.00705410
\(765\) 0 0
\(766\) −6.50130e11 −0.0682293
\(767\) −1.77548e13 −1.85241
\(768\) 0 0
\(769\) −1.26367e12 −0.130306 −0.0651531 0.997875i \(-0.520754\pi\)
−0.0651531 + 0.997875i \(0.520754\pi\)
\(770\) −2.34661e11 −0.0240565
\(771\) 0 0
\(772\) 7.73363e11 0.0783620
\(773\) 1.45857e13 1.46933 0.734667 0.678428i \(-0.237338\pi\)
0.734667 + 0.678428i \(0.237338\pi\)
\(774\) 0 0
\(775\) 3.59789e12 0.358253
\(776\) 4.39473e12 0.435065
\(777\) 0 0
\(778\) 3.01496e12 0.295035
\(779\) 1.58756e12 0.154458
\(780\) 0 0
\(781\) −8.36588e11 −0.0804604
\(782\) −1.14754e12 −0.109733
\(783\) 0 0
\(784\) −1.35406e12 −0.128002
\(785\) 1.47300e12 0.138449
\(786\) 0 0
\(787\) −1.20629e13 −1.12089 −0.560446 0.828191i \(-0.689370\pi\)
−0.560446 + 0.828191i \(0.689370\pi\)
\(788\) 1.10455e12 0.102051
\(789\) 0 0
\(790\) 3.70409e12 0.338345
\(791\) 5.39402e12 0.489912
\(792\) 0 0
\(793\) 5.10407e12 0.458339
\(794\) 2.16377e12 0.193205
\(795\) 0 0
\(796\) −1.00195e12 −0.0884584
\(797\) 1.28438e13 1.12754 0.563769 0.825933i \(-0.309351\pi\)
0.563769 + 0.825933i \(0.309351\pi\)
\(798\) 0 0
\(799\) 2.01718e13 1.75099
\(800\) 4.38558e11 0.0378549
\(801\) 0 0
\(802\) −1.48997e13 −1.27173
\(803\) 1.93524e12 0.164254
\(804\) 0 0
\(805\) 2.11781e11 0.0177749
\(806\) −2.08155e13 −1.73732
\(807\) 0 0
\(808\) −4.79245e12 −0.395555
\(809\) 2.39566e12 0.196633 0.0983166 0.995155i \(-0.468654\pi\)
0.0983166 + 0.995155i \(0.468654\pi\)
\(810\) 0 0
\(811\) −4.17696e11 −0.0339052 −0.0169526 0.999856i \(-0.505396\pi\)
−0.0169526 + 0.999856i \(0.505396\pi\)
\(812\) 5.64979e11 0.0456069
\(813\) 0 0
\(814\) −2.53431e12 −0.202325
\(815\) 5.95328e12 0.472658
\(816\) 0 0
\(817\) −3.80118e12 −0.298482
\(818\) −9.04042e12 −0.705990
\(819\) 0 0
\(820\) −6.89691e10 −0.00532712
\(821\) −4.80827e12 −0.369355 −0.184678 0.982799i \(-0.559124\pi\)
−0.184678 + 0.982799i \(0.559124\pi\)
\(822\) 0 0
\(823\) −8.70346e11 −0.0661291 −0.0330645 0.999453i \(-0.510527\pi\)
−0.0330645 + 0.999453i \(0.510527\pi\)
\(824\) −1.27548e13 −0.963833
\(825\) 0 0
\(826\) 8.74063e12 0.653330
\(827\) −1.29605e13 −0.963492 −0.481746 0.876311i \(-0.659997\pi\)
−0.481746 + 0.876311i \(0.659997\pi\)
\(828\) 0 0
\(829\) 2.82712e12 0.207897 0.103949 0.994583i \(-0.466852\pi\)
0.103949 + 0.994583i \(0.466852\pi\)
\(830\) −5.78181e12 −0.422876
\(831\) 0 0
\(832\) −1.51630e13 −1.09706
\(833\) −2.17756e12 −0.156700
\(834\) 0 0
\(835\) 6.23121e12 0.443592
\(836\) 2.47094e11 0.0174958
\(837\) 0 0
\(838\) 7.62259e12 0.533955
\(839\) 2.42321e13 1.68835 0.844175 0.536068i \(-0.180091\pi\)
0.844175 + 0.536068i \(0.180091\pi\)
\(840\) 0 0
\(841\) 8.91222e12 0.614333
\(842\) −2.09542e13 −1.43670
\(843\) 0 0
\(844\) −2.08283e12 −0.141290
\(845\) 2.61019e11 0.0176124
\(846\) 0 0
\(847\) −5.53473e12 −0.369505
\(848\) −8.15827e12 −0.541772
\(849\) 0 0
\(850\) −3.17624e12 −0.208703
\(851\) 2.28721e12 0.149494
\(852\) 0 0
\(853\) 2.32764e13 1.50538 0.752689 0.658376i \(-0.228756\pi\)
0.752689 + 0.658376i \(0.228756\pi\)
\(854\) −2.51271e12 −0.161652
\(855\) 0 0
\(856\) 1.06795e13 0.679862
\(857\) −5.15214e11 −0.0326268 −0.0163134 0.999867i \(-0.505193\pi\)
−0.0163134 + 0.999867i \(0.505193\pi\)
\(858\) 0 0
\(859\) 2.02157e13 1.26683 0.633415 0.773812i \(-0.281653\pi\)
0.633415 + 0.773812i \(0.281653\pi\)
\(860\) 1.65137e11 0.0102944
\(861\) 0 0
\(862\) −4.00974e12 −0.247362
\(863\) 5.68124e12 0.348654 0.174327 0.984688i \(-0.444225\pi\)
0.174327 + 0.984688i \(0.444225\pi\)
\(864\) 0 0
\(865\) −8.70642e12 −0.528770
\(866\) 2.84530e13 1.71909
\(867\) 0 0
\(868\) −1.07531e12 −0.0642974
\(869\) −2.00003e12 −0.118973
\(870\) 0 0
\(871\) 3.40285e12 0.200337
\(872\) −1.35022e13 −0.790823
\(873\) 0 0
\(874\) 2.12515e12 0.123194
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −1.01078e13 −0.576977 −0.288488 0.957483i \(-0.593153\pi\)
−0.288488 + 0.957483i \(0.593153\pi\)
\(878\) −6.22429e12 −0.353480
\(879\) 0 0
\(880\) 1.06644e12 0.0599465
\(881\) 2.95519e13 1.65270 0.826349 0.563159i \(-0.190414\pi\)
0.826349 + 0.563159i \(0.190414\pi\)
\(882\) 0 0
\(883\) −2.03644e13 −1.12733 −0.563663 0.826005i \(-0.690608\pi\)
−0.563663 + 0.826005i \(0.690608\pi\)
\(884\) −1.92829e12 −0.106203
\(885\) 0 0
\(886\) 8.48526e12 0.462608
\(887\) −1.62796e13 −0.883054 −0.441527 0.897248i \(-0.645563\pi\)
−0.441527 + 0.897248i \(0.645563\pi\)
\(888\) 0 0
\(889\) 1.69594e11 0.00910651
\(890\) 1.18667e13 0.633980
\(891\) 0 0
\(892\) 4.09385e11 0.0216516
\(893\) −3.73565e13 −1.96578
\(894\) 0 0
\(895\) 1.02219e13 0.532511
\(896\) 6.08452e12 0.315384
\(897\) 0 0
\(898\) −2.40842e12 −0.123591
\(899\) −4.45733e13 −2.27592
\(900\) 0 0
\(901\) −1.31199e13 −0.663239
\(902\) −3.54888e11 −0.0178510
\(903\) 0 0
\(904\) −2.71118e13 −1.35021
\(905\) −1.71508e13 −0.849894
\(906\) 0 0
\(907\) −9.56727e12 −0.469413 −0.234706 0.972066i \(-0.575413\pi\)
−0.234706 + 0.972066i \(0.575413\pi\)
\(908\) −1.63219e12 −0.0796864
\(909\) 0 0
\(910\) −3.39134e12 −0.163940
\(911\) −2.09743e13 −1.00892 −0.504458 0.863437i \(-0.668307\pi\)
−0.504458 + 0.863437i \(0.668307\pi\)
\(912\) 0 0
\(913\) 3.12191e12 0.148697
\(914\) −2.59432e13 −1.22961
\(915\) 0 0
\(916\) −3.99741e11 −0.0187607
\(917\) 1.46702e13 0.685129
\(918\) 0 0
\(919\) 4.57719e12 0.211680 0.105840 0.994383i \(-0.466247\pi\)
0.105840 + 0.994383i \(0.466247\pi\)
\(920\) −1.06447e12 −0.0489879
\(921\) 0 0
\(922\) 1.53031e13 0.697412
\(923\) −1.20904e13 −0.548320
\(924\) 0 0
\(925\) 6.33068e12 0.284324
\(926\) −3.07159e13 −1.37282
\(927\) 0 0
\(928\) −5.43319e12 −0.240485
\(929\) 1.61221e13 0.710151 0.355075 0.934838i \(-0.384455\pi\)
0.355075 + 0.934838i \(0.384455\pi\)
\(930\) 0 0
\(931\) 4.03266e12 0.175921
\(932\) −1.50466e12 −0.0653229
\(933\) 0 0
\(934\) −2.53098e13 −1.08825
\(935\) 1.71502e12 0.0733866
\(936\) 0 0
\(937\) −4.01643e13 −1.70220 −0.851102 0.525000i \(-0.824065\pi\)
−0.851102 + 0.525000i \(0.824065\pi\)
\(938\) −1.67521e12 −0.0706571
\(939\) 0 0
\(940\) 1.62290e12 0.0677978
\(941\) 2.70938e13 1.12646 0.563231 0.826300i \(-0.309558\pi\)
0.563231 + 0.826300i \(0.309558\pi\)
\(942\) 0 0
\(943\) 3.20286e11 0.0131897
\(944\) −3.97226e13 −1.62803
\(945\) 0 0
\(946\) 8.49728e11 0.0344961
\(947\) 2.97937e13 1.20379 0.601894 0.798576i \(-0.294413\pi\)
0.601894 + 0.798576i \(0.294413\pi\)
\(948\) 0 0
\(949\) 2.79682e13 1.11935
\(950\) 5.88212e12 0.234303
\(951\) 0 0
\(952\) 1.09450e13 0.431868
\(953\) 4.34409e13 1.70601 0.853003 0.521906i \(-0.174779\pi\)
0.853003 + 0.521906i \(0.174779\pi\)
\(954\) 0 0
\(955\) −8.53864e11 −0.0332180
\(956\) 1.13155e11 0.00438142
\(957\) 0 0
\(958\) −5.60440e12 −0.214973
\(959\) 5.00516e12 0.191088
\(960\) 0 0
\(961\) 5.83953e13 2.20863
\(962\) −3.66260e13 −1.37880
\(963\) 0 0
\(964\) 3.53310e12 0.131768
\(965\) −9.94055e12 −0.369010
\(966\) 0 0
\(967\) −3.35056e13 −1.23225 −0.616123 0.787650i \(-0.711298\pi\)
−0.616123 + 0.787650i \(0.711298\pi\)
\(968\) 2.78191e13 1.01836
\(969\) 0 0
\(970\) −4.89937e12 −0.177692
\(971\) −4.36552e13 −1.57598 −0.787988 0.615690i \(-0.788877\pi\)
−0.787988 + 0.615690i \(0.788877\pi\)
\(972\) 0 0
\(973\) 1.99156e13 0.712336
\(974\) −2.81163e13 −1.00102
\(975\) 0 0
\(976\) 1.14192e13 0.402822
\(977\) 6.90081e12 0.242312 0.121156 0.992633i \(-0.461340\pi\)
0.121156 + 0.992633i \(0.461340\pi\)
\(978\) 0 0
\(979\) −6.40747e12 −0.222928
\(980\) −1.75193e11 −0.00606736
\(981\) 0 0
\(982\) 1.71348e13 0.587999
\(983\) 3.55554e13 1.21455 0.607274 0.794492i \(-0.292263\pi\)
0.607274 + 0.794492i \(0.292263\pi\)
\(984\) 0 0
\(985\) −1.41975e13 −0.480560
\(986\) 3.93497e13 1.32585
\(987\) 0 0
\(988\) 3.57103e12 0.119230
\(989\) −7.66877e11 −0.0254884
\(990\) 0 0
\(991\) −4.59127e13 −1.51217 −0.756086 0.654472i \(-0.772891\pi\)
−0.756086 + 0.654472i \(0.772891\pi\)
\(992\) 1.03408e13 0.339041
\(993\) 0 0
\(994\) 5.95207e12 0.193388
\(995\) 1.28788e13 0.416554
\(996\) 0 0
\(997\) 2.33439e13 0.748249 0.374124 0.927378i \(-0.377943\pi\)
0.374124 + 0.927378i \(0.377943\pi\)
\(998\) −4.16667e12 −0.132954
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.j.1.4 5
3.2 odd 2 35.10.a.d.1.2 5
15.2 even 4 175.10.b.f.99.4 10
15.8 even 4 175.10.b.f.99.7 10
15.14 odd 2 175.10.a.f.1.4 5
21.20 even 2 245.10.a.f.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.2 5 3.2 odd 2
175.10.a.f.1.4 5 15.14 odd 2
175.10.b.f.99.4 10 15.2 even 4
175.10.b.f.99.7 10 15.8 even 4
245.10.a.f.1.2 5 21.20 even 2
315.10.a.j.1.4 5 1.1 even 1 trivial