Properties

Label 315.10.a.j.1.3
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.68049\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.68049 q^{2} -490.093 q^{4} +625.000 q^{5} +2401.00 q^{7} +4690.29 q^{8} -2925.31 q^{10} -61293.3 q^{11} +127788. q^{13} -11237.9 q^{14} +228975. q^{16} +374440. q^{17} +351367. q^{19} -306308. q^{20} +286883. q^{22} -1.55822e6 q^{23} +390625. q^{25} -598109. q^{26} -1.17671e6 q^{28} -3.12932e6 q^{29} +6.54089e6 q^{31} -3.47314e6 q^{32} -1.75256e6 q^{34} +1.50062e6 q^{35} -9.25714e6 q^{37} -1.64457e6 q^{38} +2.93143e6 q^{40} +8.05013e6 q^{41} +1.58627e7 q^{43} +3.00394e7 q^{44} +7.29324e6 q^{46} +8.88373e6 q^{47} +5.76480e6 q^{49} -1.82832e6 q^{50} -6.26278e7 q^{52} +5.68387e7 q^{53} -3.83083e7 q^{55} +1.12614e7 q^{56} +1.46467e7 q^{58} -8.14197e7 q^{59} -2.04282e8 q^{61} -3.06146e7 q^{62} -1.00979e8 q^{64} +7.98673e7 q^{65} +8.88281e7 q^{67} -1.83510e8 q^{68} -7.02366e6 q^{70} -2.24233e8 q^{71} +1.91441e8 q^{73} +4.33280e7 q^{74} -1.72203e8 q^{76} -1.47165e8 q^{77} +2.39411e7 q^{79} +1.43109e8 q^{80} -3.76785e7 q^{82} -4.05879e8 q^{83} +2.34025e8 q^{85} -7.42452e7 q^{86} -2.87483e8 q^{88} -2.03470e8 q^{89} +3.06818e8 q^{91} +7.63674e8 q^{92} -4.15802e7 q^{94} +2.19604e8 q^{95} +9.77776e8 q^{97} -2.69821e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 832 q^{4} + 3125 q^{5} + 12005 q^{7} + 14136 q^{8} - 1250 q^{10} - 10312 q^{11} + 158638 q^{13} - 4802 q^{14} - 526696 q^{16} - 31614 q^{17} + 1655376 q^{19} + 520000 q^{20} + 3659464 q^{22}+ \cdots - 11529602 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.68049 −0.206850 −0.103425 0.994637i \(-0.532980\pi\)
−0.103425 + 0.994637i \(0.532980\pi\)
\(3\) 0 0
\(4\) −490.093 −0.957213
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 4690.29 0.404850
\(9\) 0 0
\(10\) −2925.31 −0.0925063
\(11\) −61293.3 −1.26225 −0.631126 0.775680i \(-0.717407\pi\)
−0.631126 + 0.775680i \(0.717407\pi\)
\(12\) 0 0
\(13\) 127788. 1.24092 0.620460 0.784238i \(-0.286946\pi\)
0.620460 + 0.784238i \(0.286946\pi\)
\(14\) −11237.9 −0.0781821
\(15\) 0 0
\(16\) 228975. 0.873470
\(17\) 374440. 1.08733 0.543666 0.839302i \(-0.317036\pi\)
0.543666 + 0.839302i \(0.317036\pi\)
\(18\) 0 0
\(19\) 351367. 0.618543 0.309272 0.950974i \(-0.399915\pi\)
0.309272 + 0.950974i \(0.399915\pi\)
\(20\) −306308. −0.428079
\(21\) 0 0
\(22\) 286883. 0.261097
\(23\) −1.55822e6 −1.16106 −0.580529 0.814239i \(-0.697154\pi\)
−0.580529 + 0.814239i \(0.697154\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −598109. −0.256685
\(27\) 0 0
\(28\) −1.17671e6 −0.361792
\(29\) −3.12932e6 −0.821597 −0.410798 0.911726i \(-0.634750\pi\)
−0.410798 + 0.911726i \(0.634750\pi\)
\(30\) 0 0
\(31\) 6.54089e6 1.27206 0.636032 0.771662i \(-0.280574\pi\)
0.636032 + 0.771662i \(0.280574\pi\)
\(32\) −3.47314e6 −0.585528
\(33\) 0 0
\(34\) −1.75256e6 −0.224915
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) −9.25714e6 −0.812025 −0.406012 0.913868i \(-0.633081\pi\)
−0.406012 + 0.913868i \(0.633081\pi\)
\(38\) −1.64457e6 −0.127946
\(39\) 0 0
\(40\) 2.93143e6 0.181055
\(41\) 8.05013e6 0.444913 0.222457 0.974943i \(-0.428592\pi\)
0.222457 + 0.974943i \(0.428592\pi\)
\(42\) 0 0
\(43\) 1.58627e7 0.707570 0.353785 0.935327i \(-0.384895\pi\)
0.353785 + 0.935327i \(0.384895\pi\)
\(44\) 3.00394e7 1.20824
\(45\) 0 0
\(46\) 7.29324e6 0.240165
\(47\) 8.88373e6 0.265555 0.132778 0.991146i \(-0.457610\pi\)
0.132778 + 0.991146i \(0.457610\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −1.82832e6 −0.0413701
\(51\) 0 0
\(52\) −6.26278e7 −1.18782
\(53\) 5.68387e7 0.989471 0.494735 0.869044i \(-0.335265\pi\)
0.494735 + 0.869044i \(0.335265\pi\)
\(54\) 0 0
\(55\) −3.83083e7 −0.564496
\(56\) 1.12614e7 0.153019
\(57\) 0 0
\(58\) 1.46467e7 0.169948
\(59\) −8.14197e7 −0.874773 −0.437387 0.899274i \(-0.644096\pi\)
−0.437387 + 0.899274i \(0.644096\pi\)
\(60\) 0 0
\(61\) −2.04282e8 −1.88906 −0.944531 0.328421i \(-0.893483\pi\)
−0.944531 + 0.328421i \(0.893483\pi\)
\(62\) −3.06146e7 −0.263127
\(63\) 0 0
\(64\) −1.00979e8 −0.752353
\(65\) 7.98673e7 0.554956
\(66\) 0 0
\(67\) 8.88281e7 0.538535 0.269267 0.963065i \(-0.413218\pi\)
0.269267 + 0.963065i \(0.413218\pi\)
\(68\) −1.83510e8 −1.04081
\(69\) 0 0
\(70\) −7.02366e6 −0.0349641
\(71\) −2.24233e8 −1.04722 −0.523609 0.851959i \(-0.675415\pi\)
−0.523609 + 0.851959i \(0.675415\pi\)
\(72\) 0 0
\(73\) 1.91441e8 0.789010 0.394505 0.918894i \(-0.370916\pi\)
0.394505 + 0.918894i \(0.370916\pi\)
\(74\) 4.33280e7 0.167968
\(75\) 0 0
\(76\) −1.72203e8 −0.592077
\(77\) −1.47165e8 −0.477086
\(78\) 0 0
\(79\) 2.39411e7 0.0691549 0.0345774 0.999402i \(-0.488991\pi\)
0.0345774 + 0.999402i \(0.488991\pi\)
\(80\) 1.43109e8 0.390627
\(81\) 0 0
\(82\) −3.76785e7 −0.0920305
\(83\) −4.05879e8 −0.938741 −0.469370 0.883001i \(-0.655519\pi\)
−0.469370 + 0.883001i \(0.655519\pi\)
\(84\) 0 0
\(85\) 2.34025e8 0.486270
\(86\) −7.42452e7 −0.146361
\(87\) 0 0
\(88\) −2.87483e8 −0.511023
\(89\) −2.03470e8 −0.343752 −0.171876 0.985119i \(-0.554983\pi\)
−0.171876 + 0.985119i \(0.554983\pi\)
\(90\) 0 0
\(91\) 3.06818e8 0.469024
\(92\) 7.63674e8 1.11138
\(93\) 0 0
\(94\) −4.15802e7 −0.0549302
\(95\) 2.19604e8 0.276621
\(96\) 0 0
\(97\) 9.77776e8 1.12142 0.560708 0.828014i \(-0.310529\pi\)
0.560708 + 0.828014i \(0.310529\pi\)
\(98\) −2.69821e7 −0.0295501
\(99\) 0 0
\(100\) −1.91443e8 −0.191443
\(101\) −1.21059e9 −1.15758 −0.578792 0.815475i \(-0.696476\pi\)
−0.578792 + 0.815475i \(0.696476\pi\)
\(102\) 0 0
\(103\) 1.67608e9 1.46733 0.733666 0.679511i \(-0.237808\pi\)
0.733666 + 0.679511i \(0.237808\pi\)
\(104\) 5.99361e8 0.502387
\(105\) 0 0
\(106\) −2.66033e8 −0.204672
\(107\) 1.18347e9 0.872831 0.436416 0.899745i \(-0.356248\pi\)
0.436416 + 0.899745i \(0.356248\pi\)
\(108\) 0 0
\(109\) −2.42544e9 −1.64578 −0.822888 0.568203i \(-0.807639\pi\)
−0.822888 + 0.568203i \(0.807639\pi\)
\(110\) 1.79302e8 0.116766
\(111\) 0 0
\(112\) 5.49768e8 0.330140
\(113\) −1.29095e9 −0.744828 −0.372414 0.928067i \(-0.621470\pi\)
−0.372414 + 0.928067i \(0.621470\pi\)
\(114\) 0 0
\(115\) −9.73889e8 −0.519241
\(116\) 1.53366e9 0.786443
\(117\) 0 0
\(118\) 3.81084e8 0.180947
\(119\) 8.99030e8 0.410973
\(120\) 0 0
\(121\) 1.39892e9 0.593280
\(122\) 9.56141e8 0.390753
\(123\) 0 0
\(124\) −3.20564e9 −1.21764
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 4.57285e9 1.55980 0.779902 0.625902i \(-0.215269\pi\)
0.779902 + 0.625902i \(0.215269\pi\)
\(128\) 2.25088e9 0.741152
\(129\) 0 0
\(130\) −3.73818e8 −0.114793
\(131\) −1.97356e9 −0.585504 −0.292752 0.956188i \(-0.594571\pi\)
−0.292752 + 0.956188i \(0.594571\pi\)
\(132\) 0 0
\(133\) 8.43632e8 0.233787
\(134\) −4.15759e8 −0.111396
\(135\) 0 0
\(136\) 1.75623e9 0.440207
\(137\) −2.91623e9 −0.707260 −0.353630 0.935385i \(-0.615053\pi\)
−0.353630 + 0.935385i \(0.615053\pi\)
\(138\) 0 0
\(139\) 1.68574e8 0.0383023 0.0191512 0.999817i \(-0.493904\pi\)
0.0191512 + 0.999817i \(0.493904\pi\)
\(140\) −7.35446e8 −0.161799
\(141\) 0 0
\(142\) 1.04952e9 0.216617
\(143\) −7.83253e9 −1.56635
\(144\) 0 0
\(145\) −1.95582e9 −0.367429
\(146\) −8.96039e8 −0.163207
\(147\) 0 0
\(148\) 4.53686e9 0.777281
\(149\) 1.03146e10 1.71440 0.857202 0.514980i \(-0.172201\pi\)
0.857202 + 0.514980i \(0.172201\pi\)
\(150\) 0 0
\(151\) −6.51350e9 −1.01957 −0.509786 0.860301i \(-0.670276\pi\)
−0.509786 + 0.860301i \(0.670276\pi\)
\(152\) 1.64801e9 0.250417
\(153\) 0 0
\(154\) 6.88805e8 0.0986855
\(155\) 4.08806e9 0.568885
\(156\) 0 0
\(157\) 1.06861e10 1.40369 0.701843 0.712332i \(-0.252361\pi\)
0.701843 + 0.712332i \(0.252361\pi\)
\(158\) −1.12056e8 −0.0143047
\(159\) 0 0
\(160\) −2.17071e9 −0.261856
\(161\) −3.74129e9 −0.438839
\(162\) 0 0
\(163\) 1.42299e10 1.57891 0.789457 0.613806i \(-0.210362\pi\)
0.789457 + 0.613806i \(0.210362\pi\)
\(164\) −3.94531e9 −0.425877
\(165\) 0 0
\(166\) 1.89971e9 0.194179
\(167\) −2.78646e9 −0.277223 −0.138611 0.990347i \(-0.544264\pi\)
−0.138611 + 0.990347i \(0.544264\pi\)
\(168\) 0 0
\(169\) 5.72518e9 0.539882
\(170\) −1.09535e9 −0.100585
\(171\) 0 0
\(172\) −7.77420e9 −0.677295
\(173\) 1.71904e10 1.45908 0.729540 0.683938i \(-0.239734\pi\)
0.729540 + 0.683938i \(0.239734\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) −1.40346e10 −1.10254
\(177\) 0 0
\(178\) 9.52340e8 0.0711053
\(179\) 2.31226e10 1.68344 0.841719 0.539915i \(-0.181544\pi\)
0.841719 + 0.539915i \(0.181544\pi\)
\(180\) 0 0
\(181\) 2.28943e10 1.58553 0.792763 0.609531i \(-0.208642\pi\)
0.792763 + 0.609531i \(0.208642\pi\)
\(182\) −1.43606e9 −0.0970177
\(183\) 0 0
\(184\) −7.30851e9 −0.470055
\(185\) −5.78572e9 −0.363149
\(186\) 0 0
\(187\) −2.29507e10 −1.37249
\(188\) −4.35386e9 −0.254193
\(189\) 0 0
\(190\) −1.02786e9 −0.0572191
\(191\) 1.66664e10 0.906131 0.453065 0.891477i \(-0.350330\pi\)
0.453065 + 0.891477i \(0.350330\pi\)
\(192\) 0 0
\(193\) −2.30952e10 −1.19816 −0.599079 0.800690i \(-0.704466\pi\)
−0.599079 + 0.800690i \(0.704466\pi\)
\(194\) −4.57647e9 −0.231965
\(195\) 0 0
\(196\) −2.82529e9 −0.136745
\(197\) 2.42166e10 1.14555 0.572776 0.819712i \(-0.305866\pi\)
0.572776 + 0.819712i \(0.305866\pi\)
\(198\) 0 0
\(199\) −2.18408e10 −0.987257 −0.493628 0.869673i \(-0.664330\pi\)
−0.493628 + 0.869673i \(0.664330\pi\)
\(200\) 1.83214e9 0.0809700
\(201\) 0 0
\(202\) 5.66617e9 0.239447
\(203\) −7.51349e9 −0.310534
\(204\) 0 0
\(205\) 5.03133e9 0.198971
\(206\) −7.84489e9 −0.303518
\(207\) 0 0
\(208\) 2.92601e10 1.08391
\(209\) −2.15365e10 −0.780757
\(210\) 0 0
\(211\) 7.72507e9 0.268307 0.134153 0.990961i \(-0.457169\pi\)
0.134153 + 0.990961i \(0.457169\pi\)
\(212\) −2.78563e10 −0.947134
\(213\) 0 0
\(214\) −5.53922e9 −0.180545
\(215\) 9.91419e9 0.316435
\(216\) 0 0
\(217\) 1.57047e10 0.480795
\(218\) 1.13522e10 0.340429
\(219\) 0 0
\(220\) 1.87746e10 0.540343
\(221\) 4.78488e10 1.34929
\(222\) 0 0
\(223\) 2.17022e10 0.587668 0.293834 0.955856i \(-0.405069\pi\)
0.293834 + 0.955856i \(0.405069\pi\)
\(224\) −8.33901e9 −0.221309
\(225\) 0 0
\(226\) 6.04227e9 0.154068
\(227\) −4.79669e10 −1.19902 −0.599508 0.800369i \(-0.704637\pi\)
−0.599508 + 0.800369i \(0.704637\pi\)
\(228\) 0 0
\(229\) 4.12350e10 0.990846 0.495423 0.868652i \(-0.335013\pi\)
0.495423 + 0.868652i \(0.335013\pi\)
\(230\) 4.55828e9 0.107405
\(231\) 0 0
\(232\) −1.46774e10 −0.332624
\(233\) 7.25284e10 1.61215 0.806077 0.591811i \(-0.201587\pi\)
0.806077 + 0.591811i \(0.201587\pi\)
\(234\) 0 0
\(235\) 5.55233e9 0.118760
\(236\) 3.99032e10 0.837344
\(237\) 0 0
\(238\) −4.20790e9 −0.0850099
\(239\) −8.27096e10 −1.63970 −0.819852 0.572576i \(-0.805944\pi\)
−0.819852 + 0.572576i \(0.805944\pi\)
\(240\) 0 0
\(241\) 5.66304e10 1.08137 0.540683 0.841226i \(-0.318166\pi\)
0.540683 + 0.841226i \(0.318166\pi\)
\(242\) −6.54765e9 −0.122720
\(243\) 0 0
\(244\) 1.00117e11 1.80824
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) 4.49004e10 0.767562
\(248\) 3.06786e10 0.514996
\(249\) 0 0
\(250\) −1.14270e9 −0.0185013
\(251\) 4.37000e10 0.694944 0.347472 0.937690i \(-0.387040\pi\)
0.347472 + 0.937690i \(0.387040\pi\)
\(252\) 0 0
\(253\) 9.55086e10 1.46555
\(254\) −2.14032e10 −0.322646
\(255\) 0 0
\(256\) 4.11661e10 0.599045
\(257\) 1.04178e11 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(258\) 0 0
\(259\) −2.22264e10 −0.306917
\(260\) −3.91424e10 −0.531211
\(261\) 0 0
\(262\) 9.23723e9 0.121112
\(263\) 1.04346e11 1.34485 0.672424 0.740166i \(-0.265253\pi\)
0.672424 + 0.740166i \(0.265253\pi\)
\(264\) 0 0
\(265\) 3.55242e10 0.442505
\(266\) −3.94861e9 −0.0483590
\(267\) 0 0
\(268\) −4.35340e10 −0.515493
\(269\) −9.25092e10 −1.07721 −0.538604 0.842559i \(-0.681048\pi\)
−0.538604 + 0.842559i \(0.681048\pi\)
\(270\) 0 0
\(271\) −5.41823e10 −0.610233 −0.305117 0.952315i \(-0.598695\pi\)
−0.305117 + 0.952315i \(0.598695\pi\)
\(272\) 8.57373e10 0.949751
\(273\) 0 0
\(274\) 1.36494e10 0.146297
\(275\) −2.39427e10 −0.252450
\(276\) 0 0
\(277\) 1.18973e11 1.21420 0.607099 0.794627i \(-0.292333\pi\)
0.607099 + 0.794627i \(0.292333\pi\)
\(278\) −7.89011e8 −0.00792285
\(279\) 0 0
\(280\) 7.03836e9 0.0684322
\(281\) 7.86550e10 0.752572 0.376286 0.926504i \(-0.377201\pi\)
0.376286 + 0.926504i \(0.377201\pi\)
\(282\) 0 0
\(283\) −8.35155e10 −0.773977 −0.386989 0.922085i \(-0.626485\pi\)
−0.386989 + 0.922085i \(0.626485\pi\)
\(284\) 1.09895e11 1.00241
\(285\) 0 0
\(286\) 3.66601e10 0.324001
\(287\) 1.93284e10 0.168161
\(288\) 0 0
\(289\) 2.16174e10 0.182290
\(290\) 9.15421e9 0.0760029
\(291\) 0 0
\(292\) −9.38240e10 −0.755251
\(293\) 6.91745e10 0.548330 0.274165 0.961683i \(-0.411599\pi\)
0.274165 + 0.961683i \(0.411599\pi\)
\(294\) 0 0
\(295\) −5.08873e10 −0.391210
\(296\) −4.34187e10 −0.328748
\(297\) 0 0
\(298\) −4.82773e10 −0.354625
\(299\) −1.99122e11 −1.44078
\(300\) 0 0
\(301\) 3.80864e10 0.267436
\(302\) 3.04864e10 0.210899
\(303\) 0 0
\(304\) 8.04542e10 0.540278
\(305\) −1.27676e11 −0.844814
\(306\) 0 0
\(307\) 1.72821e10 0.111039 0.0555194 0.998458i \(-0.482319\pi\)
0.0555194 + 0.998458i \(0.482319\pi\)
\(308\) 7.21247e10 0.456673
\(309\) 0 0
\(310\) −1.91341e10 −0.117674
\(311\) 2.24570e11 1.36123 0.680614 0.732642i \(-0.261713\pi\)
0.680614 + 0.732642i \(0.261713\pi\)
\(312\) 0 0
\(313\) 6.15640e10 0.362558 0.181279 0.983432i \(-0.441976\pi\)
0.181279 + 0.983432i \(0.441976\pi\)
\(314\) −5.00161e10 −0.290353
\(315\) 0 0
\(316\) −1.17334e10 −0.0661959
\(317\) 1.03866e11 0.577705 0.288853 0.957374i \(-0.406726\pi\)
0.288853 + 0.957374i \(0.406726\pi\)
\(318\) 0 0
\(319\) 1.91806e11 1.03706
\(320\) −6.31119e10 −0.336462
\(321\) 0 0
\(322\) 1.75111e10 0.0907740
\(323\) 1.31566e11 0.672561
\(324\) 0 0
\(325\) 4.99170e10 0.248184
\(326\) −6.66030e10 −0.326599
\(327\) 0 0
\(328\) 3.77574e10 0.180123
\(329\) 2.13298e10 0.100371
\(330\) 0 0
\(331\) 1.19600e11 0.547651 0.273826 0.961779i \(-0.411711\pi\)
0.273826 + 0.961779i \(0.411711\pi\)
\(332\) 1.98919e11 0.898575
\(333\) 0 0
\(334\) 1.30420e10 0.0573436
\(335\) 5.55176e10 0.240840
\(336\) 0 0
\(337\) 1.78854e11 0.755379 0.377690 0.925932i \(-0.376719\pi\)
0.377690 + 0.925932i \(0.376719\pi\)
\(338\) −2.67967e10 −0.111675
\(339\) 0 0
\(340\) −1.14694e11 −0.465464
\(341\) −4.00913e11 −1.60567
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 7.44006e10 0.286460
\(345\) 0 0
\(346\) −8.04596e10 −0.301811
\(347\) −2.90904e11 −1.07713 −0.538563 0.842585i \(-0.681033\pi\)
−0.538563 + 0.842585i \(0.681033\pi\)
\(348\) 0 0
\(349\) −1.20156e11 −0.433543 −0.216772 0.976222i \(-0.569553\pi\)
−0.216772 + 0.976222i \(0.569553\pi\)
\(350\) −4.38979e9 −0.0156364
\(351\) 0 0
\(352\) 2.12880e11 0.739084
\(353\) −2.68637e11 −0.920831 −0.460415 0.887704i \(-0.652300\pi\)
−0.460415 + 0.887704i \(0.652300\pi\)
\(354\) 0 0
\(355\) −1.40146e11 −0.468330
\(356\) 9.97193e10 0.329044
\(357\) 0 0
\(358\) −1.08225e11 −0.348220
\(359\) −4.23529e11 −1.34573 −0.672865 0.739765i \(-0.734937\pi\)
−0.672865 + 0.739765i \(0.734937\pi\)
\(360\) 0 0
\(361\) −1.99229e11 −0.617405
\(362\) −1.07156e11 −0.327966
\(363\) 0 0
\(364\) −1.50369e11 −0.448956
\(365\) 1.19651e11 0.352856
\(366\) 0 0
\(367\) −3.14338e11 −0.904480 −0.452240 0.891896i \(-0.649375\pi\)
−0.452240 + 0.891896i \(0.649375\pi\)
\(368\) −3.56794e11 −1.01415
\(369\) 0 0
\(370\) 2.70800e10 0.0751174
\(371\) 1.36470e11 0.373985
\(372\) 0 0
\(373\) 4.22978e11 1.13143 0.565715 0.824601i \(-0.308600\pi\)
0.565715 + 0.824601i \(0.308600\pi\)
\(374\) 1.07420e11 0.283899
\(375\) 0 0
\(376\) 4.16673e10 0.107510
\(377\) −3.99888e11 −1.01954
\(378\) 0 0
\(379\) −4.54590e11 −1.13173 −0.565866 0.824497i \(-0.691458\pi\)
−0.565866 + 0.824497i \(0.691458\pi\)
\(380\) −1.07627e11 −0.264785
\(381\) 0 0
\(382\) −7.80068e10 −0.187433
\(383\) 2.56165e11 0.608311 0.304155 0.952622i \(-0.401626\pi\)
0.304155 + 0.952622i \(0.401626\pi\)
\(384\) 0 0
\(385\) −9.19783e10 −0.213360
\(386\) 1.08097e11 0.247839
\(387\) 0 0
\(388\) −4.79201e11 −1.07343
\(389\) −4.07620e9 −0.00902572 −0.00451286 0.999990i \(-0.501436\pi\)
−0.00451286 + 0.999990i \(0.501436\pi\)
\(390\) 0 0
\(391\) −5.83461e11 −1.26246
\(392\) 2.70386e10 0.0578357
\(393\) 0 0
\(394\) −1.13346e11 −0.236958
\(395\) 1.49632e10 0.0309270
\(396\) 0 0
\(397\) 5.25740e11 1.06222 0.531109 0.847303i \(-0.321775\pi\)
0.531109 + 0.847303i \(0.321775\pi\)
\(398\) 1.02226e11 0.204214
\(399\) 0 0
\(400\) 8.94433e10 0.174694
\(401\) 4.96583e11 0.959051 0.479526 0.877528i \(-0.340809\pi\)
0.479526 + 0.877528i \(0.340809\pi\)
\(402\) 0 0
\(403\) 8.35845e11 1.57853
\(404\) 5.93304e11 1.10805
\(405\) 0 0
\(406\) 3.51668e10 0.0642341
\(407\) 5.67401e11 1.02498
\(408\) 0 0
\(409\) −6.22845e11 −1.10059 −0.550294 0.834971i \(-0.685484\pi\)
−0.550294 + 0.834971i \(0.685484\pi\)
\(410\) −2.35491e10 −0.0411573
\(411\) 0 0
\(412\) −8.21437e11 −1.40455
\(413\) −1.95489e11 −0.330633
\(414\) 0 0
\(415\) −2.53675e11 −0.419818
\(416\) −4.43824e11 −0.726593
\(417\) 0 0
\(418\) 1.00801e11 0.161500
\(419\) 9.02432e11 1.43038 0.715190 0.698930i \(-0.246340\pi\)
0.715190 + 0.698930i \(0.246340\pi\)
\(420\) 0 0
\(421\) 1.13768e12 1.76502 0.882509 0.470296i \(-0.155853\pi\)
0.882509 + 0.470296i \(0.155853\pi\)
\(422\) −3.61571e10 −0.0554993
\(423\) 0 0
\(424\) 2.66590e11 0.400587
\(425\) 1.46266e11 0.217466
\(426\) 0 0
\(427\) −4.90482e11 −0.713999
\(428\) −5.80010e11 −0.835485
\(429\) 0 0
\(430\) −4.64033e10 −0.0654547
\(431\) −4.68899e11 −0.654533 −0.327266 0.944932i \(-0.606127\pi\)
−0.327266 + 0.944932i \(0.606127\pi\)
\(432\) 0 0
\(433\) 3.39136e11 0.463638 0.231819 0.972759i \(-0.425532\pi\)
0.231819 + 0.972759i \(0.425532\pi\)
\(434\) −7.35056e10 −0.0994527
\(435\) 0 0
\(436\) 1.18869e12 1.57536
\(437\) −5.47508e11 −0.718165
\(438\) 0 0
\(439\) −8.34074e11 −1.07180 −0.535901 0.844281i \(-0.680028\pi\)
−0.535901 + 0.844281i \(0.680028\pi\)
\(440\) −1.79677e11 −0.228536
\(441\) 0 0
\(442\) −2.23956e11 −0.279101
\(443\) 8.87244e11 1.09453 0.547263 0.836961i \(-0.315670\pi\)
0.547263 + 0.836961i \(0.315670\pi\)
\(444\) 0 0
\(445\) −1.27169e11 −0.153731
\(446\) −1.01577e11 −0.121559
\(447\) 0 0
\(448\) −2.42451e11 −0.284363
\(449\) 2.68409e9 0.00311665 0.00155832 0.999999i \(-0.499504\pi\)
0.00155832 + 0.999999i \(0.499504\pi\)
\(450\) 0 0
\(451\) −4.93419e11 −0.561593
\(452\) 6.32685e11 0.712959
\(453\) 0 0
\(454\) 2.24509e11 0.248017
\(455\) 1.91761e11 0.209754
\(456\) 0 0
\(457\) 9.37032e11 1.00492 0.502460 0.864600i \(-0.332428\pi\)
0.502460 + 0.864600i \(0.332428\pi\)
\(458\) −1.93000e11 −0.204957
\(459\) 0 0
\(460\) 4.77296e11 0.497024
\(461\) 2.76095e11 0.284711 0.142356 0.989816i \(-0.454532\pi\)
0.142356 + 0.989816i \(0.454532\pi\)
\(462\) 0 0
\(463\) −1.47542e11 −0.149211 −0.0746055 0.997213i \(-0.523770\pi\)
−0.0746055 + 0.997213i \(0.523770\pi\)
\(464\) −7.16535e11 −0.717640
\(465\) 0 0
\(466\) −3.39468e11 −0.333475
\(467\) −1.62968e12 −1.58554 −0.792770 0.609521i \(-0.791362\pi\)
−0.792770 + 0.609521i \(0.791362\pi\)
\(468\) 0 0
\(469\) 2.13276e11 0.203547
\(470\) −2.59876e10 −0.0245656
\(471\) 0 0
\(472\) −3.81882e11 −0.354152
\(473\) −9.72278e11 −0.893131
\(474\) 0 0
\(475\) 1.37253e11 0.123709
\(476\) −4.40609e11 −0.393388
\(477\) 0 0
\(478\) 3.87121e11 0.339173
\(479\) −1.04475e12 −0.906779 −0.453389 0.891313i \(-0.649785\pi\)
−0.453389 + 0.891313i \(0.649785\pi\)
\(480\) 0 0
\(481\) −1.18295e12 −1.00766
\(482\) −2.65058e11 −0.223681
\(483\) 0 0
\(484\) −6.85603e11 −0.567895
\(485\) 6.11110e11 0.501512
\(486\) 0 0
\(487\) −6.55197e11 −0.527827 −0.263913 0.964546i \(-0.585013\pi\)
−0.263913 + 0.964546i \(0.585013\pi\)
\(488\) −9.58142e11 −0.764787
\(489\) 0 0
\(490\) −1.68638e10 −0.0132152
\(491\) 1.69481e12 1.31600 0.657998 0.753019i \(-0.271403\pi\)
0.657998 + 0.753019i \(0.271403\pi\)
\(492\) 0 0
\(493\) −1.17174e12 −0.893348
\(494\) −2.10156e11 −0.158771
\(495\) 0 0
\(496\) 1.49770e12 1.11111
\(497\) −5.38383e11 −0.395811
\(498\) 0 0
\(499\) −9.93558e11 −0.717366 −0.358683 0.933459i \(-0.616774\pi\)
−0.358683 + 0.933459i \(0.616774\pi\)
\(500\) −1.19652e11 −0.0856157
\(501\) 0 0
\(502\) −2.04537e11 −0.143749
\(503\) −2.36079e11 −0.164438 −0.0822188 0.996614i \(-0.526201\pi\)
−0.0822188 + 0.996614i \(0.526201\pi\)
\(504\) 0 0
\(505\) −7.56621e11 −0.517687
\(506\) −4.47027e11 −0.303149
\(507\) 0 0
\(508\) −2.24112e12 −1.49306
\(509\) −6.12223e11 −0.404277 −0.202139 0.979357i \(-0.564789\pi\)
−0.202139 + 0.979357i \(0.564789\pi\)
\(510\) 0 0
\(511\) 4.59651e11 0.298218
\(512\) −1.34513e12 −0.865065
\(513\) 0 0
\(514\) −4.87605e11 −0.308130
\(515\) 1.04755e12 0.656211
\(516\) 0 0
\(517\) −5.44514e11 −0.335198
\(518\) 1.04030e11 0.0634858
\(519\) 0 0
\(520\) 3.74600e11 0.224674
\(521\) 3.50205e11 0.208235 0.104117 0.994565i \(-0.466798\pi\)
0.104117 + 0.994565i \(0.466798\pi\)
\(522\) 0 0
\(523\) −2.61442e12 −1.52798 −0.763989 0.645229i \(-0.776762\pi\)
−0.763989 + 0.645229i \(0.776762\pi\)
\(524\) 9.67229e11 0.560452
\(525\) 0 0
\(526\) −4.88388e11 −0.278182
\(527\) 2.44917e12 1.38316
\(528\) 0 0
\(529\) 6.26903e11 0.348057
\(530\) −1.66271e11 −0.0915323
\(531\) 0 0
\(532\) −4.13458e11 −0.223784
\(533\) 1.02871e12 0.552102
\(534\) 0 0
\(535\) 7.39669e11 0.390342
\(536\) 4.16629e11 0.218026
\(537\) 0 0
\(538\) 4.32988e11 0.222821
\(539\) −3.53344e11 −0.180322
\(540\) 0 0
\(541\) −1.47804e12 −0.741821 −0.370911 0.928669i \(-0.620954\pi\)
−0.370911 + 0.928669i \(0.620954\pi\)
\(542\) 2.53600e11 0.126227
\(543\) 0 0
\(544\) −1.30048e12 −0.636663
\(545\) −1.51590e12 −0.736014
\(546\) 0 0
\(547\) 7.35485e11 0.351262 0.175631 0.984456i \(-0.443804\pi\)
0.175631 + 0.984456i \(0.443804\pi\)
\(548\) 1.42922e12 0.676999
\(549\) 0 0
\(550\) 1.12064e11 0.0522195
\(551\) −1.09954e12 −0.508193
\(552\) 0 0
\(553\) 5.74827e10 0.0261381
\(554\) −5.56852e11 −0.251157
\(555\) 0 0
\(556\) −8.26172e10 −0.0366635
\(557\) 9.41535e11 0.414465 0.207233 0.978292i \(-0.433554\pi\)
0.207233 + 0.978292i \(0.433554\pi\)
\(558\) 0 0
\(559\) 2.02706e12 0.878037
\(560\) 3.43605e11 0.147643
\(561\) 0 0
\(562\) −3.68144e11 −0.155670
\(563\) −3.00632e12 −1.26110 −0.630548 0.776151i \(-0.717170\pi\)
−0.630548 + 0.776151i \(0.717170\pi\)
\(564\) 0 0
\(565\) −8.06843e11 −0.333097
\(566\) 3.90893e11 0.160097
\(567\) 0 0
\(568\) −1.05172e12 −0.423966
\(569\) −3.42996e12 −1.37178 −0.685889 0.727706i \(-0.740587\pi\)
−0.685889 + 0.727706i \(0.740587\pi\)
\(570\) 0 0
\(571\) −3.90075e12 −1.53563 −0.767814 0.640673i \(-0.778656\pi\)
−0.767814 + 0.640673i \(0.778656\pi\)
\(572\) 3.83867e12 1.49933
\(573\) 0 0
\(574\) −9.04662e10 −0.0347843
\(575\) −6.08680e11 −0.232212
\(576\) 0 0
\(577\) 6.26050e11 0.235135 0.117568 0.993065i \(-0.462490\pi\)
0.117568 + 0.993065i \(0.462490\pi\)
\(578\) −1.01180e11 −0.0377069
\(579\) 0 0
\(580\) 9.58535e11 0.351708
\(581\) −9.74517e11 −0.354811
\(582\) 0 0
\(583\) −3.48383e12 −1.24896
\(584\) 8.97914e11 0.319431
\(585\) 0 0
\(586\) −3.23771e11 −0.113422
\(587\) −1.68145e12 −0.584538 −0.292269 0.956336i \(-0.594410\pi\)
−0.292269 + 0.956336i \(0.594410\pi\)
\(588\) 0 0
\(589\) 2.29825e12 0.786827
\(590\) 2.38177e11 0.0809220
\(591\) 0 0
\(592\) −2.11965e12 −0.709279
\(593\) 1.58522e12 0.526434 0.263217 0.964737i \(-0.415217\pi\)
0.263217 + 0.964737i \(0.415217\pi\)
\(594\) 0 0
\(595\) 5.61894e11 0.183793
\(596\) −5.05510e12 −1.64105
\(597\) 0 0
\(598\) 9.31986e11 0.298026
\(599\) 4.78087e12 1.51735 0.758675 0.651469i \(-0.225847\pi\)
0.758675 + 0.651469i \(0.225847\pi\)
\(600\) 0 0
\(601\) 2.13180e10 0.00666516 0.00333258 0.999994i \(-0.498939\pi\)
0.00333258 + 0.999994i \(0.498939\pi\)
\(602\) −1.78263e11 −0.0553193
\(603\) 0 0
\(604\) 3.19222e12 0.975948
\(605\) 8.74327e11 0.265323
\(606\) 0 0
\(607\) 3.71643e12 1.11116 0.555580 0.831463i \(-0.312496\pi\)
0.555580 + 0.831463i \(0.312496\pi\)
\(608\) −1.22035e12 −0.362174
\(609\) 0 0
\(610\) 5.97588e11 0.174750
\(611\) 1.13523e12 0.329533
\(612\) 0 0
\(613\) 2.28399e12 0.653315 0.326657 0.945143i \(-0.394078\pi\)
0.326657 + 0.945143i \(0.394078\pi\)
\(614\) −8.08889e10 −0.0229684
\(615\) 0 0
\(616\) −6.90247e11 −0.193149
\(617\) −4.11730e12 −1.14374 −0.571872 0.820343i \(-0.693783\pi\)
−0.571872 + 0.820343i \(0.693783\pi\)
\(618\) 0 0
\(619\) 5.99191e12 1.64043 0.820214 0.572057i \(-0.193854\pi\)
0.820214 + 0.572057i \(0.193854\pi\)
\(620\) −2.00353e12 −0.544544
\(621\) 0 0
\(622\) −1.05110e12 −0.281571
\(623\) −4.88532e11 −0.129926
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −2.88150e11 −0.0749952
\(627\) 0 0
\(628\) −5.23717e12 −1.34363
\(629\) −3.46625e12 −0.882940
\(630\) 0 0
\(631\) 4.14396e12 1.04060 0.520300 0.853984i \(-0.325820\pi\)
0.520300 + 0.853984i \(0.325820\pi\)
\(632\) 1.12291e11 0.0279974
\(633\) 0 0
\(634\) −4.86143e11 −0.119498
\(635\) 2.85803e12 0.697565
\(636\) 0 0
\(637\) 7.36670e11 0.177274
\(638\) −8.97747e11 −0.214517
\(639\) 0 0
\(640\) 1.40680e12 0.331453
\(641\) 3.87177e12 0.905833 0.452917 0.891553i \(-0.350383\pi\)
0.452917 + 0.891553i \(0.350383\pi\)
\(642\) 0 0
\(643\) 6.81081e12 1.57127 0.785633 0.618693i \(-0.212338\pi\)
0.785633 + 0.618693i \(0.212338\pi\)
\(644\) 1.83358e12 0.420062
\(645\) 0 0
\(646\) −6.15793e11 −0.139120
\(647\) −2.40797e12 −0.540233 −0.270117 0.962828i \(-0.587062\pi\)
−0.270117 + 0.962828i \(0.587062\pi\)
\(648\) 0 0
\(649\) 4.99048e12 1.10418
\(650\) −2.33636e11 −0.0513370
\(651\) 0 0
\(652\) −6.97399e12 −1.51136
\(653\) 4.90892e12 1.05652 0.528259 0.849083i \(-0.322845\pi\)
0.528259 + 0.849083i \(0.322845\pi\)
\(654\) 0 0
\(655\) −1.23348e12 −0.261845
\(656\) 1.84328e12 0.388618
\(657\) 0 0
\(658\) −9.98341e10 −0.0207617
\(659\) 3.36518e11 0.0695062 0.0347531 0.999396i \(-0.488936\pi\)
0.0347531 + 0.999396i \(0.488936\pi\)
\(660\) 0 0
\(661\) −5.58058e11 −0.113703 −0.0568516 0.998383i \(-0.518106\pi\)
−0.0568516 + 0.998383i \(0.518106\pi\)
\(662\) −5.59785e11 −0.113282
\(663\) 0 0
\(664\) −1.90369e12 −0.380049
\(665\) 5.27270e11 0.104553
\(666\) 0 0
\(667\) 4.87617e12 0.953922
\(668\) 1.36563e12 0.265361
\(669\) 0 0
\(670\) −2.59849e11 −0.0498179
\(671\) 1.25211e13 2.38447
\(672\) 0 0
\(673\) −3.26341e12 −0.613202 −0.306601 0.951838i \(-0.599192\pi\)
−0.306601 + 0.951838i \(0.599192\pi\)
\(674\) −8.37126e11 −0.156250
\(675\) 0 0
\(676\) −2.80587e12 −0.516782
\(677\) 2.71325e12 0.496410 0.248205 0.968708i \(-0.420159\pi\)
0.248205 + 0.968708i \(0.420159\pi\)
\(678\) 0 0
\(679\) 2.34764e12 0.423855
\(680\) 1.09764e12 0.196866
\(681\) 0 0
\(682\) 1.87647e12 0.332133
\(683\) −2.42887e12 −0.427082 −0.213541 0.976934i \(-0.568500\pi\)
−0.213541 + 0.976934i \(0.568500\pi\)
\(684\) 0 0
\(685\) −1.82264e12 −0.316296
\(686\) −6.47840e10 −0.0111689
\(687\) 0 0
\(688\) 3.63216e12 0.618041
\(689\) 7.26329e12 1.22785
\(690\) 0 0
\(691\) 5.97125e12 0.996355 0.498178 0.867075i \(-0.334003\pi\)
0.498178 + 0.867075i \(0.334003\pi\)
\(692\) −8.42491e12 −1.39665
\(693\) 0 0
\(694\) 1.36157e12 0.222804
\(695\) 1.05359e11 0.0171293
\(696\) 0 0
\(697\) 3.01429e12 0.483768
\(698\) 5.62391e11 0.0896786
\(699\) 0 0
\(700\) −4.59654e11 −0.0723585
\(701\) 4.18398e12 0.654423 0.327212 0.944951i \(-0.393891\pi\)
0.327212 + 0.944951i \(0.393891\pi\)
\(702\) 0 0
\(703\) −3.25266e12 −0.502272
\(704\) 6.18934e12 0.949659
\(705\) 0 0
\(706\) 1.25735e12 0.190474
\(707\) −2.90664e12 −0.437525
\(708\) 0 0
\(709\) −8.83893e12 −1.31369 −0.656843 0.754027i \(-0.728109\pi\)
−0.656843 + 0.754027i \(0.728109\pi\)
\(710\) 6.55950e11 0.0968742
\(711\) 0 0
\(712\) −9.54333e11 −0.139168
\(713\) −1.01922e13 −1.47694
\(714\) 0 0
\(715\) −4.89533e12 −0.700495
\(716\) −1.13322e13 −1.61141
\(717\) 0 0
\(718\) 1.98232e12 0.278365
\(719\) 2.92264e12 0.407845 0.203922 0.978987i \(-0.434631\pi\)
0.203922 + 0.978987i \(0.434631\pi\)
\(720\) 0 0
\(721\) 4.02428e12 0.554599
\(722\) 9.32489e11 0.127710
\(723\) 0 0
\(724\) −1.12203e13 −1.51769
\(725\) −1.22239e12 −0.164319
\(726\) 0 0
\(727\) −1.21723e13 −1.61610 −0.808048 0.589117i \(-0.799476\pi\)
−0.808048 + 0.589117i \(0.799476\pi\)
\(728\) 1.43906e12 0.189884
\(729\) 0 0
\(730\) −5.60024e11 −0.0729884
\(731\) 5.93963e12 0.769363
\(732\) 0 0
\(733\) 1.08103e13 1.38315 0.691574 0.722305i \(-0.256918\pi\)
0.691574 + 0.722305i \(0.256918\pi\)
\(734\) 1.47125e12 0.187092
\(735\) 0 0
\(736\) 5.41192e12 0.679832
\(737\) −5.44457e12 −0.679767
\(738\) 0 0
\(739\) 9.83935e12 1.21357 0.606787 0.794864i \(-0.292458\pi\)
0.606787 + 0.794864i \(0.292458\pi\)
\(740\) 2.83554e12 0.347610
\(741\) 0 0
\(742\) −6.38745e11 −0.0773589
\(743\) 1.84462e12 0.222053 0.111027 0.993817i \(-0.464586\pi\)
0.111027 + 0.993817i \(0.464586\pi\)
\(744\) 0 0
\(745\) 6.44661e12 0.766705
\(746\) −1.97974e12 −0.234037
\(747\) 0 0
\(748\) 1.12480e13 1.31376
\(749\) 2.84151e12 0.329899
\(750\) 0 0
\(751\) 1.55156e13 1.77987 0.889936 0.456085i \(-0.150749\pi\)
0.889936 + 0.456085i \(0.150749\pi\)
\(752\) 2.03415e12 0.231955
\(753\) 0 0
\(754\) 1.87167e12 0.210891
\(755\) −4.07094e12 −0.455967
\(756\) 0 0
\(757\) −1.10594e12 −0.122406 −0.0612029 0.998125i \(-0.519494\pi\)
−0.0612029 + 0.998125i \(0.519494\pi\)
\(758\) 2.12770e12 0.234099
\(759\) 0 0
\(760\) 1.03001e12 0.111990
\(761\) −1.94850e12 −0.210606 −0.105303 0.994440i \(-0.533581\pi\)
−0.105303 + 0.994440i \(0.533581\pi\)
\(762\) 0 0
\(763\) −5.82347e12 −0.622045
\(764\) −8.16807e12 −0.867360
\(765\) 0 0
\(766\) −1.19898e12 −0.125829
\(767\) −1.04044e13 −1.08552
\(768\) 0 0
\(769\) −1.56599e13 −1.61481 −0.807405 0.589998i \(-0.799129\pi\)
−0.807405 + 0.589998i \(0.799129\pi\)
\(770\) 4.30503e11 0.0441335
\(771\) 0 0
\(772\) 1.13188e13 1.14689
\(773\) −1.42340e13 −1.43390 −0.716949 0.697126i \(-0.754462\pi\)
−0.716949 + 0.697126i \(0.754462\pi\)
\(774\) 0 0
\(775\) 2.55504e12 0.254413
\(776\) 4.58605e12 0.454005
\(777\) 0 0
\(778\) 1.90786e10 0.00186697
\(779\) 2.82855e12 0.275198
\(780\) 0 0
\(781\) 1.37440e13 1.32185
\(782\) 2.73088e12 0.261139
\(783\) 0 0
\(784\) 1.31999e12 0.124781
\(785\) 6.67880e12 0.627747
\(786\) 0 0
\(787\) 1.81218e13 1.68390 0.841949 0.539556i \(-0.181408\pi\)
0.841949 + 0.539556i \(0.181408\pi\)
\(788\) −1.18684e13 −1.09654
\(789\) 0 0
\(790\) −7.00351e10 −0.00639726
\(791\) −3.09957e12 −0.281518
\(792\) 0 0
\(793\) −2.61047e13 −2.34418
\(794\) −2.46072e12 −0.219720
\(795\) 0 0
\(796\) 1.07040e13 0.945015
\(797\) 2.21087e13 1.94089 0.970446 0.241319i \(-0.0775799\pi\)
0.970446 + 0.241319i \(0.0775799\pi\)
\(798\) 0 0
\(799\) 3.32643e12 0.288747
\(800\) −1.35670e12 −0.117106
\(801\) 0 0
\(802\) −2.32425e12 −0.198380
\(803\) −1.17341e13 −0.995930
\(804\) 0 0
\(805\) −2.33831e12 −0.196255
\(806\) −3.91216e12 −0.326520
\(807\) 0 0
\(808\) −5.67803e12 −0.468648
\(809\) −1.80822e12 −0.148417 −0.0742084 0.997243i \(-0.523643\pi\)
−0.0742084 + 0.997243i \(0.523643\pi\)
\(810\) 0 0
\(811\) −1.59062e13 −1.29113 −0.645567 0.763703i \(-0.723379\pi\)
−0.645567 + 0.763703i \(0.723379\pi\)
\(812\) 3.68231e12 0.297247
\(813\) 0 0
\(814\) −2.65572e12 −0.212017
\(815\) 8.89370e12 0.706112
\(816\) 0 0
\(817\) 5.57363e12 0.437662
\(818\) 2.91522e12 0.227657
\(819\) 0 0
\(820\) −2.46582e12 −0.190458
\(821\) 1.49953e13 1.15189 0.575945 0.817489i \(-0.304634\pi\)
0.575945 + 0.817489i \(0.304634\pi\)
\(822\) 0 0
\(823\) 2.41121e13 1.83204 0.916020 0.401132i \(-0.131383\pi\)
0.916020 + 0.401132i \(0.131383\pi\)
\(824\) 7.86131e12 0.594049
\(825\) 0 0
\(826\) 9.14983e11 0.0683916
\(827\) 3.51697e12 0.261453 0.130727 0.991418i \(-0.458269\pi\)
0.130727 + 0.991418i \(0.458269\pi\)
\(828\) 0 0
\(829\) −2.21258e13 −1.62706 −0.813531 0.581522i \(-0.802457\pi\)
−0.813531 + 0.581522i \(0.802457\pi\)
\(830\) 1.18732e12 0.0868394
\(831\) 0 0
\(832\) −1.29039e13 −0.933610
\(833\) 2.15857e12 0.155333
\(834\) 0 0
\(835\) −1.74154e12 −0.123978
\(836\) 1.05549e13 0.747351
\(837\) 0 0
\(838\) −4.22382e12 −0.295875
\(839\) −4.84005e12 −0.337226 −0.168613 0.985682i \(-0.553929\pi\)
−0.168613 + 0.985682i \(0.553929\pi\)
\(840\) 0 0
\(841\) −4.71452e12 −0.324979
\(842\) −5.32488e12 −0.365095
\(843\) 0 0
\(844\) −3.78600e12 −0.256827
\(845\) 3.57824e12 0.241443
\(846\) 0 0
\(847\) 3.35882e12 0.224239
\(848\) 1.30146e13 0.864272
\(849\) 0 0
\(850\) −6.84595e11 −0.0449830
\(851\) 1.44247e13 0.942808
\(852\) 0 0
\(853\) 2.65572e13 1.71756 0.858779 0.512345i \(-0.171223\pi\)
0.858779 + 0.512345i \(0.171223\pi\)
\(854\) 2.29569e12 0.147691
\(855\) 0 0
\(856\) 5.55081e12 0.353366
\(857\) 1.86512e13 1.18112 0.590560 0.806994i \(-0.298907\pi\)
0.590560 + 0.806994i \(0.298907\pi\)
\(858\) 0 0
\(859\) 1.19252e13 0.747305 0.373652 0.927569i \(-0.378105\pi\)
0.373652 + 0.927569i \(0.378105\pi\)
\(860\) −4.85888e12 −0.302895
\(861\) 0 0
\(862\) 2.19468e12 0.135390
\(863\) 1.97885e13 1.21441 0.607205 0.794545i \(-0.292291\pi\)
0.607205 + 0.794545i \(0.292291\pi\)
\(864\) 0 0
\(865\) 1.07440e13 0.652521
\(866\) −1.58732e12 −0.0959037
\(867\) 0 0
\(868\) −7.69675e12 −0.460223
\(869\) −1.46743e12 −0.0872909
\(870\) 0 0
\(871\) 1.13511e13 0.668279
\(872\) −1.13760e13 −0.666293
\(873\) 0 0
\(874\) 2.56261e12 0.148553
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −3.21002e12 −0.183235 −0.0916177 0.995794i \(-0.529204\pi\)
−0.0916177 + 0.995794i \(0.529204\pi\)
\(878\) 3.90387e12 0.221702
\(879\) 0 0
\(880\) −8.77164e12 −0.493070
\(881\) 3.43067e13 1.91862 0.959308 0.282363i \(-0.0911182\pi\)
0.959308 + 0.282363i \(0.0911182\pi\)
\(882\) 0 0
\(883\) −2.27401e13 −1.25884 −0.629418 0.777067i \(-0.716707\pi\)
−0.629418 + 0.777067i \(0.716707\pi\)
\(884\) −2.34504e13 −1.29156
\(885\) 0 0
\(886\) −4.15274e12 −0.226403
\(887\) −3.40833e13 −1.84878 −0.924390 0.381448i \(-0.875426\pi\)
−0.924390 + 0.381448i \(0.875426\pi\)
\(888\) 0 0
\(889\) 1.09794e13 0.589550
\(890\) 5.95212e11 0.0317993
\(891\) 0 0
\(892\) −1.06361e13 −0.562524
\(893\) 3.12145e12 0.164257
\(894\) 0 0
\(895\) 1.44516e13 0.752857
\(896\) 5.40436e12 0.280129
\(897\) 0 0
\(898\) −1.25628e10 −0.000644680 0
\(899\) −2.04685e13 −1.04512
\(900\) 0 0
\(901\) 2.12827e13 1.07588
\(902\) 2.30944e12 0.116166
\(903\) 0 0
\(904\) −6.05492e12 −0.301544
\(905\) 1.43089e13 0.709068
\(906\) 0 0
\(907\) −2.39990e13 −1.17750 −0.588750 0.808315i \(-0.700380\pi\)
−0.588750 + 0.808315i \(0.700380\pi\)
\(908\) 2.35082e13 1.14771
\(909\) 0 0
\(910\) −8.97537e11 −0.0433876
\(911\) −1.81078e13 −0.871029 −0.435515 0.900182i \(-0.643434\pi\)
−0.435515 + 0.900182i \(0.643434\pi\)
\(912\) 0 0
\(913\) 2.48777e13 1.18493
\(914\) −4.38577e12 −0.207868
\(915\) 0 0
\(916\) −2.02090e13 −0.948451
\(917\) −4.73852e12 −0.221300
\(918\) 0 0
\(919\) −1.93468e12 −0.0894724 −0.0447362 0.998999i \(-0.514245\pi\)
−0.0447362 + 0.998999i \(0.514245\pi\)
\(920\) −4.56782e12 −0.210215
\(921\) 0 0
\(922\) −1.29226e12 −0.0588926
\(923\) −2.86542e13 −1.29951
\(924\) 0 0
\(925\) −3.61607e12 −0.162405
\(926\) 6.90568e11 0.0308644
\(927\) 0 0
\(928\) 1.08686e13 0.481068
\(929\) −2.56977e13 −1.13194 −0.565971 0.824425i \(-0.691499\pi\)
−0.565971 + 0.824425i \(0.691499\pi\)
\(930\) 0 0
\(931\) 2.02556e12 0.0883633
\(932\) −3.55457e13 −1.54317
\(933\) 0 0
\(934\) 7.62771e12 0.327969
\(935\) −1.43442e13 −0.613795
\(936\) 0 0
\(937\) 2.26453e13 0.959731 0.479865 0.877342i \(-0.340686\pi\)
0.479865 + 0.877342i \(0.340686\pi\)
\(938\) −9.98237e11 −0.0421038
\(939\) 0 0
\(940\) −2.72116e12 −0.113679
\(941\) −2.28097e13 −0.948345 −0.474173 0.880432i \(-0.657253\pi\)
−0.474173 + 0.880432i \(0.657253\pi\)
\(942\) 0 0
\(943\) −1.25439e13 −0.516570
\(944\) −1.86431e13 −0.764088
\(945\) 0 0
\(946\) 4.55074e12 0.184745
\(947\) −3.24218e12 −0.130997 −0.0654987 0.997853i \(-0.520864\pi\)
−0.0654987 + 0.997853i \(0.520864\pi\)
\(948\) 0 0
\(949\) 2.44638e13 0.979099
\(950\) −6.42410e11 −0.0255892
\(951\) 0 0
\(952\) 4.21671e12 0.166382
\(953\) 4.96092e13 1.94825 0.974124 0.226014i \(-0.0725697\pi\)
0.974124 + 0.226014i \(0.0725697\pi\)
\(954\) 0 0
\(955\) 1.04165e13 0.405234
\(956\) 4.05354e13 1.56955
\(957\) 0 0
\(958\) 4.88993e12 0.187567
\(959\) −7.00187e12 −0.267319
\(960\) 0 0
\(961\) 1.63436e13 0.618149
\(962\) 5.53678e12 0.208434
\(963\) 0 0
\(964\) −2.77542e13 −1.03510
\(965\) −1.44345e13 −0.535832
\(966\) 0 0
\(967\) −2.45015e13 −0.901100 −0.450550 0.892751i \(-0.648772\pi\)
−0.450550 + 0.892751i \(0.648772\pi\)
\(968\) 6.56135e12 0.240190
\(969\) 0 0
\(970\) −2.86029e12 −0.103738
\(971\) 1.85016e13 0.667917 0.333958 0.942588i \(-0.391616\pi\)
0.333958 + 0.942588i \(0.391616\pi\)
\(972\) 0 0
\(973\) 4.04747e11 0.0144769
\(974\) 3.06664e12 0.109181
\(975\) 0 0
\(976\) −4.67755e13 −1.65004
\(977\) 2.19913e13 0.772193 0.386096 0.922458i \(-0.373823\pi\)
0.386096 + 0.922458i \(0.373823\pi\)
\(978\) 0 0
\(979\) 1.24714e13 0.433902
\(980\) −1.76581e12 −0.0611541
\(981\) 0 0
\(982\) −7.93255e12 −0.272214
\(983\) −1.25865e12 −0.0429946 −0.0214973 0.999769i \(-0.506843\pi\)
−0.0214973 + 0.999769i \(0.506843\pi\)
\(984\) 0 0
\(985\) 1.51354e13 0.512307
\(986\) 5.48432e12 0.184789
\(987\) 0 0
\(988\) −2.20054e13 −0.734721
\(989\) −2.47176e13 −0.821530
\(990\) 0 0
\(991\) −5.19617e12 −0.171140 −0.0855701 0.996332i \(-0.527271\pi\)
−0.0855701 + 0.996332i \(0.527271\pi\)
\(992\) −2.27174e13 −0.744829
\(993\) 0 0
\(994\) 2.51990e12 0.0818736
\(995\) −1.36505e13 −0.441515
\(996\) 0 0
\(997\) 5.63563e12 0.180640 0.0903200 0.995913i \(-0.471211\pi\)
0.0903200 + 0.995913i \(0.471211\pi\)
\(998\) 4.65034e12 0.148387
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.j.1.3 5
3.2 odd 2 35.10.a.d.1.3 5
15.2 even 4 175.10.b.f.99.6 10
15.8 even 4 175.10.b.f.99.5 10
15.14 odd 2 175.10.a.f.1.3 5
21.20 even 2 245.10.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.3 5 3.2 odd 2
175.10.a.f.1.3 5 15.14 odd 2
175.10.b.f.99.5 10 15.8 even 4
175.10.b.f.99.6 10 15.2 even 4
245.10.a.f.1.3 5 21.20 even 2
315.10.a.j.1.3 5 1.1 even 1 trivial