Properties

Label 315.10.a.j.1.2
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(22.7661\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-22.7661 q^{2} +6.29742 q^{4} +625.000 q^{5} +2401.00 q^{7} +11512.9 q^{8} -14228.8 q^{10} +21227.5 q^{11} +47399.7 q^{13} -54661.5 q^{14} -265329. q^{16} -569500. q^{17} +1.08959e6 q^{19} +3935.89 q^{20} -483268. q^{22} +1.34776e6 q^{23} +390625. q^{25} -1.07911e6 q^{26} +15120.1 q^{28} +6.23203e6 q^{29} -413669. q^{31} +145906. q^{32} +1.29653e7 q^{34} +1.50062e6 q^{35} +1.28411e7 q^{37} -2.48057e7 q^{38} +7.19556e6 q^{40} -3.90722e6 q^{41} +1.27760e7 q^{43} +133678. q^{44} -3.06834e7 q^{46} +3.61213e7 q^{47} +5.76480e6 q^{49} -8.89303e6 q^{50} +298496. q^{52} -1.10032e8 q^{53} +1.32672e7 q^{55} +2.76425e7 q^{56} -1.41879e8 q^{58} +8.68650e6 q^{59} +1.06957e8 q^{61} +9.41766e6 q^{62} +1.32527e8 q^{64} +2.96248e7 q^{65} +1.89423e8 q^{67} -3.58638e6 q^{68} -3.41634e7 q^{70} -9.10989e7 q^{71} -9.84572e7 q^{73} -2.92341e8 q^{74} +6.86157e6 q^{76} +5.09672e7 q^{77} -2.41368e8 q^{79} -1.65830e8 q^{80} +8.89525e7 q^{82} -4.28456e8 q^{83} -3.55937e8 q^{85} -2.90861e8 q^{86} +2.44390e8 q^{88} -5.29736e7 q^{89} +1.13807e8 q^{91} +8.48743e6 q^{92} -8.22342e8 q^{94} +6.80991e8 q^{95} +3.01374e8 q^{97} -1.31242e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 832 q^{4} + 3125 q^{5} + 12005 q^{7} + 14136 q^{8} - 1250 q^{10} - 10312 q^{11} + 158638 q^{13} - 4802 q^{14} - 526696 q^{16} - 31614 q^{17} + 1655376 q^{19} + 520000 q^{20} + 3659464 q^{22}+ \cdots - 11529602 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −22.7661 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(3\) 0 0
\(4\) 6.29742 0.0122996
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 11512.9 0.993756
\(9\) 0 0
\(10\) −14228.8 −0.449955
\(11\) 21227.5 0.437151 0.218576 0.975820i \(-0.429859\pi\)
0.218576 + 0.975820i \(0.429859\pi\)
\(12\) 0 0
\(13\) 47399.7 0.460289 0.230144 0.973156i \(-0.426080\pi\)
0.230144 + 0.973156i \(0.426080\pi\)
\(14\) −54661.5 −0.380282
\(15\) 0 0
\(16\) −265329. −1.01215
\(17\) −569500. −1.65376 −0.826882 0.562376i \(-0.809887\pi\)
−0.826882 + 0.562376i \(0.809887\pi\)
\(18\) 0 0
\(19\) 1.08959e6 1.91810 0.959048 0.283245i \(-0.0914109\pi\)
0.959048 + 0.283245i \(0.0914109\pi\)
\(20\) 3935.89 0.00550057
\(21\) 0 0
\(22\) −483268. −0.439831
\(23\) 1.34776e6 1.00424 0.502121 0.864797i \(-0.332553\pi\)
0.502121 + 0.864797i \(0.332553\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −1.07911e6 −0.463111
\(27\) 0 0
\(28\) 15120.1 0.00464883
\(29\) 6.23203e6 1.63621 0.818104 0.575071i \(-0.195026\pi\)
0.818104 + 0.575071i \(0.195026\pi\)
\(30\) 0 0
\(31\) −413669. −0.0804499 −0.0402250 0.999191i \(-0.512807\pi\)
−0.0402250 + 0.999191i \(0.512807\pi\)
\(32\) 145906. 0.0245979
\(33\) 0 0
\(34\) 1.29653e7 1.66390
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) 1.28411e7 1.12640 0.563200 0.826320i \(-0.309570\pi\)
0.563200 + 0.826320i \(0.309570\pi\)
\(38\) −2.48057e7 −1.92986
\(39\) 0 0
\(40\) 7.19556e6 0.444421
\(41\) −3.90722e6 −0.215944 −0.107972 0.994154i \(-0.534436\pi\)
−0.107972 + 0.994154i \(0.534436\pi\)
\(42\) 0 0
\(43\) 1.27760e7 0.569886 0.284943 0.958544i \(-0.408025\pi\)
0.284943 + 0.958544i \(0.408025\pi\)
\(44\) 133678. 0.00537680
\(45\) 0 0
\(46\) −3.06834e7 −1.01040
\(47\) 3.61213e7 1.07975 0.539874 0.841746i \(-0.318472\pi\)
0.539874 + 0.841746i \(0.318472\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −8.89303e6 −0.201226
\(51\) 0 0
\(52\) 298496. 0.00566139
\(53\) −1.10032e8 −1.91548 −0.957740 0.287635i \(-0.907131\pi\)
−0.957740 + 0.287635i \(0.907131\pi\)
\(54\) 0 0
\(55\) 1.32672e7 0.195500
\(56\) 2.76425e7 0.375604
\(57\) 0 0
\(58\) −1.41879e8 −1.64624
\(59\) 8.68650e6 0.0933277 0.0466639 0.998911i \(-0.485141\pi\)
0.0466639 + 0.998911i \(0.485141\pi\)
\(60\) 0 0
\(61\) 1.06957e8 0.989066 0.494533 0.869159i \(-0.335339\pi\)
0.494533 + 0.869159i \(0.335339\pi\)
\(62\) 9.41766e6 0.0809432
\(63\) 0 0
\(64\) 1.32527e8 0.987400
\(65\) 2.96248e7 0.205847
\(66\) 0 0
\(67\) 1.89423e8 1.14841 0.574204 0.818712i \(-0.305312\pi\)
0.574204 + 0.818712i \(0.305312\pi\)
\(68\) −3.58638e6 −0.0203407
\(69\) 0 0
\(70\) −3.41634e7 −0.170067
\(71\) −9.10989e7 −0.425452 −0.212726 0.977112i \(-0.568234\pi\)
−0.212726 + 0.977112i \(0.568234\pi\)
\(72\) 0 0
\(73\) −9.84572e7 −0.405784 −0.202892 0.979201i \(-0.565034\pi\)
−0.202892 + 0.979201i \(0.565034\pi\)
\(74\) −2.92341e8 −1.13331
\(75\) 0 0
\(76\) 6.86157e6 0.0235919
\(77\) 5.09672e7 0.165228
\(78\) 0 0
\(79\) −2.41368e8 −0.697200 −0.348600 0.937272i \(-0.613343\pi\)
−0.348600 + 0.937272i \(0.613343\pi\)
\(80\) −1.65830e8 −0.452647
\(81\) 0 0
\(82\) 8.89525e7 0.217268
\(83\) −4.28456e8 −0.990956 −0.495478 0.868620i \(-0.665007\pi\)
−0.495478 + 0.868620i \(0.665007\pi\)
\(84\) 0 0
\(85\) −3.55937e8 −0.739586
\(86\) −2.90861e8 −0.573380
\(87\) 0 0
\(88\) 2.44390e8 0.434422
\(89\) −5.29736e7 −0.0894962 −0.0447481 0.998998i \(-0.514249\pi\)
−0.0447481 + 0.998998i \(0.514249\pi\)
\(90\) 0 0
\(91\) 1.13807e8 0.173973
\(92\) 8.48743e6 0.0123518
\(93\) 0 0
\(94\) −8.22342e8 −1.08637
\(95\) 6.80991e8 0.857798
\(96\) 0 0
\(97\) 3.01374e8 0.345647 0.172824 0.984953i \(-0.444711\pi\)
0.172824 + 0.984953i \(0.444711\pi\)
\(98\) −1.31242e8 −0.143733
\(99\) 0 0
\(100\) 2.45993e6 0.00245993
\(101\) −1.68070e9 −1.60710 −0.803552 0.595234i \(-0.797059\pi\)
−0.803552 + 0.595234i \(0.797059\pi\)
\(102\) 0 0
\(103\) 4.68604e8 0.410241 0.205120 0.978737i \(-0.434241\pi\)
0.205120 + 0.978737i \(0.434241\pi\)
\(104\) 5.45708e8 0.457415
\(105\) 0 0
\(106\) 2.50500e9 1.92722
\(107\) −5.15481e8 −0.380177 −0.190089 0.981767i \(-0.560877\pi\)
−0.190089 + 0.981767i \(0.560877\pi\)
\(108\) 0 0
\(109\) 5.36760e8 0.364218 0.182109 0.983278i \(-0.441708\pi\)
0.182109 + 0.983278i \(0.441708\pi\)
\(110\) −3.02043e8 −0.196699
\(111\) 0 0
\(112\) −6.37054e8 −0.382556
\(113\) 5.40168e8 0.311656 0.155828 0.987784i \(-0.450195\pi\)
0.155828 + 0.987784i \(0.450195\pi\)
\(114\) 0 0
\(115\) 8.42353e8 0.449111
\(116\) 3.92457e7 0.0201248
\(117\) 0 0
\(118\) −1.97758e8 −0.0938999
\(119\) −1.36737e9 −0.625064
\(120\) 0 0
\(121\) −1.90734e9 −0.808899
\(122\) −2.43500e9 −0.995130
\(123\) 0 0
\(124\) −2.60505e6 −0.000989505 0
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 8.96674e8 0.305857 0.152928 0.988237i \(-0.451130\pi\)
0.152928 + 0.988237i \(0.451130\pi\)
\(128\) −3.09182e9 −1.01805
\(129\) 0 0
\(130\) −6.74443e8 −0.207109
\(131\) 2.92350e9 0.867325 0.433663 0.901075i \(-0.357221\pi\)
0.433663 + 0.901075i \(0.357221\pi\)
\(132\) 0 0
\(133\) 2.61610e9 0.724972
\(134\) −4.31243e9 −1.15545
\(135\) 0 0
\(136\) −6.55659e9 −1.64344
\(137\) −4.52069e9 −1.09638 −0.548191 0.836353i \(-0.684683\pi\)
−0.548191 + 0.836353i \(0.684683\pi\)
\(138\) 0 0
\(139\) −7.23687e9 −1.64431 −0.822156 0.569262i \(-0.807229\pi\)
−0.822156 + 0.569262i \(0.807229\pi\)
\(140\) 9.45006e6 0.00207902
\(141\) 0 0
\(142\) 2.07397e9 0.428061
\(143\) 1.00618e9 0.201216
\(144\) 0 0
\(145\) 3.89502e9 0.731734
\(146\) 2.24149e9 0.408272
\(147\) 0 0
\(148\) 8.08655e7 0.0138543
\(149\) −3.83905e9 −0.638096 −0.319048 0.947739i \(-0.603363\pi\)
−0.319048 + 0.947739i \(0.603363\pi\)
\(150\) 0 0
\(151\) −6.14269e9 −0.961528 −0.480764 0.876850i \(-0.659641\pi\)
−0.480764 + 0.876850i \(0.659641\pi\)
\(152\) 1.25443e10 1.90612
\(153\) 0 0
\(154\) −1.16033e9 −0.166241
\(155\) −2.58543e8 −0.0359783
\(156\) 0 0
\(157\) 9.31680e9 1.22382 0.611911 0.790926i \(-0.290401\pi\)
0.611911 + 0.790926i \(0.290401\pi\)
\(158\) 5.49501e9 0.701474
\(159\) 0 0
\(160\) 9.11912e7 0.0110005
\(161\) 3.23598e9 0.379568
\(162\) 0 0
\(163\) 6.53147e9 0.724714 0.362357 0.932039i \(-0.381972\pi\)
0.362357 + 0.932039i \(0.381972\pi\)
\(164\) −2.46054e7 −0.00265603
\(165\) 0 0
\(166\) 9.75429e9 0.997032
\(167\) −2.73053e9 −0.271659 −0.135829 0.990732i \(-0.543370\pi\)
−0.135829 + 0.990732i \(0.543370\pi\)
\(168\) 0 0
\(169\) −8.35777e9 −0.788134
\(170\) 8.10332e9 0.744120
\(171\) 0 0
\(172\) 8.04560e7 0.00700939
\(173\) −3.68616e8 −0.0312872 −0.0156436 0.999878i \(-0.504980\pi\)
−0.0156436 + 0.999878i \(0.504980\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) −5.63226e9 −0.442462
\(177\) 0 0
\(178\) 1.20600e9 0.0900449
\(179\) 1.97250e10 1.43608 0.718040 0.696001i \(-0.245039\pi\)
0.718040 + 0.696001i \(0.245039\pi\)
\(180\) 0 0
\(181\) −3.11426e9 −0.215676 −0.107838 0.994168i \(-0.534393\pi\)
−0.107838 + 0.994168i \(0.534393\pi\)
\(182\) −2.59094e9 −0.175039
\(183\) 0 0
\(184\) 1.55167e10 0.997972
\(185\) 8.02566e9 0.503742
\(186\) 0 0
\(187\) −1.20891e10 −0.722945
\(188\) 2.27471e8 0.0132805
\(189\) 0 0
\(190\) −1.55035e10 −0.863057
\(191\) 3.17752e10 1.72758 0.863790 0.503852i \(-0.168084\pi\)
0.863790 + 0.503852i \(0.168084\pi\)
\(192\) 0 0
\(193\) −2.21167e10 −1.14739 −0.573696 0.819068i \(-0.694491\pi\)
−0.573696 + 0.819068i \(0.694491\pi\)
\(194\) −6.86112e9 −0.347766
\(195\) 0 0
\(196\) 3.63034e7 0.00175709
\(197\) −2.15871e10 −1.02116 −0.510582 0.859829i \(-0.670570\pi\)
−0.510582 + 0.859829i \(0.670570\pi\)
\(198\) 0 0
\(199\) 2.78732e10 1.25993 0.629966 0.776622i \(-0.283069\pi\)
0.629966 + 0.776622i \(0.283069\pi\)
\(200\) 4.49723e9 0.198751
\(201\) 0 0
\(202\) 3.82631e10 1.61696
\(203\) 1.49631e10 0.618428
\(204\) 0 0
\(205\) −2.44202e9 −0.0965731
\(206\) −1.06683e10 −0.412756
\(207\) 0 0
\(208\) −1.25765e10 −0.465881
\(209\) 2.31292e10 0.838498
\(210\) 0 0
\(211\) 1.31458e10 0.456579 0.228290 0.973593i \(-0.426687\pi\)
0.228290 + 0.973593i \(0.426687\pi\)
\(212\) −6.92917e8 −0.0235597
\(213\) 0 0
\(214\) 1.17355e10 0.382508
\(215\) 7.98502e9 0.254861
\(216\) 0 0
\(217\) −9.93220e8 −0.0304072
\(218\) −1.22200e10 −0.366451
\(219\) 0 0
\(220\) 8.35490e7 0.00240458
\(221\) −2.69941e10 −0.761209
\(222\) 0 0
\(223\) 5.58951e10 1.51357 0.756784 0.653665i \(-0.226769\pi\)
0.756784 + 0.653665i \(0.226769\pi\)
\(224\) 3.50320e8 0.00929713
\(225\) 0 0
\(226\) −1.22975e10 −0.313567
\(227\) 5.98856e10 1.49695 0.748473 0.663165i \(-0.230787\pi\)
0.748473 + 0.663165i \(0.230787\pi\)
\(228\) 0 0
\(229\) 6.62019e10 1.59078 0.795391 0.606097i \(-0.207266\pi\)
0.795391 + 0.606097i \(0.207266\pi\)
\(230\) −1.91771e10 −0.451864
\(231\) 0 0
\(232\) 7.17487e10 1.62599
\(233\) −6.50041e10 −1.44490 −0.722452 0.691421i \(-0.756985\pi\)
−0.722452 + 0.691421i \(0.756985\pi\)
\(234\) 0 0
\(235\) 2.25758e10 0.482878
\(236\) 5.47025e7 0.00114790
\(237\) 0 0
\(238\) 3.11297e10 0.628896
\(239\) −9.18633e9 −0.182117 −0.0910587 0.995846i \(-0.529025\pi\)
−0.0910587 + 0.995846i \(0.529025\pi\)
\(240\) 0 0
\(241\) 1.49904e10 0.286244 0.143122 0.989705i \(-0.454286\pi\)
0.143122 + 0.989705i \(0.454286\pi\)
\(242\) 4.34228e10 0.813858
\(243\) 0 0
\(244\) 6.73553e8 0.0121652
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) 5.16460e10 0.882878
\(248\) −4.76253e9 −0.0799476
\(249\) 0 0
\(250\) −5.55814e9 −0.0899911
\(251\) 1.03095e11 1.63947 0.819737 0.572741i \(-0.194120\pi\)
0.819737 + 0.572741i \(0.194120\pi\)
\(252\) 0 0
\(253\) 2.86097e10 0.439006
\(254\) −2.04138e10 −0.307732
\(255\) 0 0
\(256\) 2.53529e9 0.0368934
\(257\) −7.34759e10 −1.05062 −0.525310 0.850911i \(-0.676051\pi\)
−0.525310 + 0.850911i \(0.676051\pi\)
\(258\) 0 0
\(259\) 3.08314e10 0.425739
\(260\) 1.86560e8 0.00253185
\(261\) 0 0
\(262\) −6.65568e10 −0.872643
\(263\) 8.95222e10 1.15380 0.576899 0.816815i \(-0.304263\pi\)
0.576899 + 0.816815i \(0.304263\pi\)
\(264\) 0 0
\(265\) −6.87700e10 −0.856629
\(266\) −5.95584e10 −0.729417
\(267\) 0 0
\(268\) 1.19288e9 0.0141250
\(269\) −1.00270e11 −1.16758 −0.583791 0.811904i \(-0.698431\pi\)
−0.583791 + 0.811904i \(0.698431\pi\)
\(270\) 0 0
\(271\) 1.05822e11 1.19183 0.595915 0.803048i \(-0.296790\pi\)
0.595915 + 0.803048i \(0.296790\pi\)
\(272\) 1.51105e11 1.67385
\(273\) 0 0
\(274\) 1.02919e11 1.10310
\(275\) 8.29199e9 0.0874303
\(276\) 0 0
\(277\) −1.20160e10 −0.122631 −0.0613156 0.998118i \(-0.519530\pi\)
−0.0613156 + 0.998118i \(0.519530\pi\)
\(278\) 1.64756e11 1.65439
\(279\) 0 0
\(280\) 1.72765e10 0.167975
\(281\) 2.03641e11 1.94844 0.974218 0.225610i \(-0.0724375\pi\)
0.974218 + 0.225610i \(0.0724375\pi\)
\(282\) 0 0
\(283\) 1.52674e11 1.41490 0.707449 0.706765i \(-0.249846\pi\)
0.707449 + 0.706765i \(0.249846\pi\)
\(284\) −5.73688e8 −0.00523291
\(285\) 0 0
\(286\) −2.29068e10 −0.202449
\(287\) −9.38125e9 −0.0816191
\(288\) 0 0
\(289\) 2.05742e11 1.73493
\(290\) −8.86745e10 −0.736220
\(291\) 0 0
\(292\) −6.20026e8 −0.00499099
\(293\) 1.91313e11 1.51649 0.758244 0.651970i \(-0.226057\pi\)
0.758244 + 0.651970i \(0.226057\pi\)
\(294\) 0 0
\(295\) 5.42906e9 0.0417374
\(296\) 1.47838e11 1.11937
\(297\) 0 0
\(298\) 8.74004e10 0.642008
\(299\) 6.38836e10 0.462242
\(300\) 0 0
\(301\) 3.06753e10 0.215397
\(302\) 1.39845e11 0.967423
\(303\) 0 0
\(304\) −2.89098e11 −1.94140
\(305\) 6.68482e10 0.442324
\(306\) 0 0
\(307\) −7.89027e10 −0.506955 −0.253477 0.967341i \(-0.581574\pi\)
−0.253477 + 0.967341i \(0.581574\pi\)
\(308\) 3.20962e8 0.00203224
\(309\) 0 0
\(310\) 5.88603e9 0.0361989
\(311\) −1.17336e11 −0.711230 −0.355615 0.934633i \(-0.615729\pi\)
−0.355615 + 0.934633i \(0.615729\pi\)
\(312\) 0 0
\(313\) −1.77136e11 −1.04318 −0.521588 0.853198i \(-0.674660\pi\)
−0.521588 + 0.853198i \(0.674660\pi\)
\(314\) −2.12108e11 −1.23133
\(315\) 0 0
\(316\) −1.51999e9 −0.00857531
\(317\) −3.17183e11 −1.76418 −0.882091 0.471080i \(-0.843864\pi\)
−0.882091 + 0.471080i \(0.843864\pi\)
\(318\) 0 0
\(319\) 1.32290e11 0.715270
\(320\) 8.28291e10 0.441579
\(321\) 0 0
\(322\) −7.36708e10 −0.381895
\(323\) −6.20519e11 −3.17208
\(324\) 0 0
\(325\) 1.85155e10 0.0920578
\(326\) −1.48696e11 −0.729157
\(327\) 0 0
\(328\) −4.49835e10 −0.214596
\(329\) 8.67272e10 0.408107
\(330\) 0 0
\(331\) −7.29998e10 −0.334269 −0.167134 0.985934i \(-0.553451\pi\)
−0.167134 + 0.985934i \(0.553451\pi\)
\(332\) −2.69816e9 −0.0121884
\(333\) 0 0
\(334\) 6.21637e10 0.273324
\(335\) 1.18389e11 0.513584
\(336\) 0 0
\(337\) −1.07231e11 −0.452882 −0.226441 0.974025i \(-0.572709\pi\)
−0.226441 + 0.974025i \(0.572709\pi\)
\(338\) 1.90274e11 0.792966
\(339\) 0 0
\(340\) −2.24149e9 −0.00909664
\(341\) −8.78116e9 −0.0351688
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 1.47089e11 0.566328
\(345\) 0 0
\(346\) 8.39196e9 0.0314790
\(347\) 2.66192e11 0.985627 0.492813 0.870135i \(-0.335969\pi\)
0.492813 + 0.870135i \(0.335969\pi\)
\(348\) 0 0
\(349\) 7.30078e10 0.263424 0.131712 0.991288i \(-0.457953\pi\)
0.131712 + 0.991288i \(0.457953\pi\)
\(350\) −2.13522e10 −0.0760564
\(351\) 0 0
\(352\) 3.09722e9 0.0107530
\(353\) −1.03915e11 −0.356198 −0.178099 0.984013i \(-0.556995\pi\)
−0.178099 + 0.984013i \(0.556995\pi\)
\(354\) 0 0
\(355\) −5.69368e10 −0.190268
\(356\) −3.33597e8 −0.00110077
\(357\) 0 0
\(358\) −4.49063e11 −1.44489
\(359\) −8.28712e10 −0.263317 −0.131658 0.991295i \(-0.542030\pi\)
−0.131658 + 0.991295i \(0.542030\pi\)
\(360\) 0 0
\(361\) 8.64509e11 2.67909
\(362\) 7.08997e10 0.216998
\(363\) 0 0
\(364\) 7.16688e8 0.00213980
\(365\) −6.15357e10 −0.181472
\(366\) 0 0
\(367\) −1.99606e11 −0.574348 −0.287174 0.957878i \(-0.592716\pi\)
−0.287174 + 0.957878i \(0.592716\pi\)
\(368\) −3.57600e11 −1.01644
\(369\) 0 0
\(370\) −1.82713e11 −0.506830
\(371\) −2.64187e11 −0.723983
\(372\) 0 0
\(373\) 4.49796e10 0.120317 0.0601583 0.998189i \(-0.480839\pi\)
0.0601583 + 0.998189i \(0.480839\pi\)
\(374\) 2.75221e11 0.727377
\(375\) 0 0
\(376\) 4.15861e11 1.07301
\(377\) 2.95396e11 0.753128
\(378\) 0 0
\(379\) −1.89077e9 −0.00470718 −0.00235359 0.999997i \(-0.500749\pi\)
−0.00235359 + 0.999997i \(0.500749\pi\)
\(380\) 4.28848e9 0.0105506
\(381\) 0 0
\(382\) −7.23399e11 −1.73817
\(383\) −3.12549e11 −0.742205 −0.371103 0.928592i \(-0.621020\pi\)
−0.371103 + 0.928592i \(0.621020\pi\)
\(384\) 0 0
\(385\) 3.18545e10 0.0738920
\(386\) 5.03511e11 1.15443
\(387\) 0 0
\(388\) 1.89788e9 0.00425134
\(389\) −2.84599e11 −0.630173 −0.315086 0.949063i \(-0.602033\pi\)
−0.315086 + 0.949063i \(0.602033\pi\)
\(390\) 0 0
\(391\) −7.67551e11 −1.66078
\(392\) 6.63696e10 0.141965
\(393\) 0 0
\(394\) 4.91454e11 1.02742
\(395\) −1.50855e11 −0.311797
\(396\) 0 0
\(397\) −7.92352e11 −1.60089 −0.800444 0.599408i \(-0.795403\pi\)
−0.800444 + 0.599408i \(0.795403\pi\)
\(398\) −6.34564e11 −1.26766
\(399\) 0 0
\(400\) −1.03644e11 −0.202430
\(401\) −6.62180e11 −1.27887 −0.639435 0.768845i \(-0.720832\pi\)
−0.639435 + 0.768845i \(0.720832\pi\)
\(402\) 0 0
\(403\) −1.96078e10 −0.0370302
\(404\) −1.05841e10 −0.0197668
\(405\) 0 0
\(406\) −3.40652e11 −0.622220
\(407\) 2.72583e11 0.492407
\(408\) 0 0
\(409\) 1.09286e12 1.93112 0.965560 0.260182i \(-0.0837825\pi\)
0.965560 + 0.260182i \(0.0837825\pi\)
\(410\) 5.55953e10 0.0971652
\(411\) 0 0
\(412\) 2.95100e9 0.00504581
\(413\) 2.08563e10 0.0352746
\(414\) 0 0
\(415\) −2.67785e11 −0.443169
\(416\) 6.91589e9 0.0113221
\(417\) 0 0
\(418\) −5.26562e11 −0.843639
\(419\) −3.74698e11 −0.593907 −0.296953 0.954892i \(-0.595971\pi\)
−0.296953 + 0.954892i \(0.595971\pi\)
\(420\) 0 0
\(421\) 7.35051e11 1.14038 0.570188 0.821514i \(-0.306870\pi\)
0.570188 + 0.821514i \(0.306870\pi\)
\(422\) −2.99279e11 −0.459379
\(423\) 0 0
\(424\) −1.26679e12 −1.90352
\(425\) −2.22461e11 −0.330753
\(426\) 0 0
\(427\) 2.56804e11 0.373832
\(428\) −3.24620e9 −0.00467604
\(429\) 0 0
\(430\) −1.81788e11 −0.256423
\(431\) 5.29788e11 0.739528 0.369764 0.929126i \(-0.379439\pi\)
0.369764 + 0.929126i \(0.379439\pi\)
\(432\) 0 0
\(433\) 1.82162e11 0.249036 0.124518 0.992217i \(-0.460262\pi\)
0.124518 + 0.992217i \(0.460262\pi\)
\(434\) 2.26118e10 0.0305936
\(435\) 0 0
\(436\) 3.38020e9 0.00447975
\(437\) 1.46850e12 1.92623
\(438\) 0 0
\(439\) −8.13895e11 −1.04587 −0.522936 0.852372i \(-0.675163\pi\)
−0.522936 + 0.852372i \(0.675163\pi\)
\(440\) 1.52744e11 0.194279
\(441\) 0 0
\(442\) 6.14552e11 0.765876
\(443\) 5.65176e11 0.697215 0.348607 0.937269i \(-0.386655\pi\)
0.348607 + 0.937269i \(0.386655\pi\)
\(444\) 0 0
\(445\) −3.31085e10 −0.0400239
\(446\) −1.27252e12 −1.52285
\(447\) 0 0
\(448\) 3.18196e11 0.373202
\(449\) 5.86919e11 0.681506 0.340753 0.940153i \(-0.389318\pi\)
0.340753 + 0.940153i \(0.389318\pi\)
\(450\) 0 0
\(451\) −8.29406e10 −0.0944002
\(452\) 3.40166e9 0.00383326
\(453\) 0 0
\(454\) −1.36337e12 −1.50612
\(455\) 7.11292e10 0.0778030
\(456\) 0 0
\(457\) −2.06593e10 −0.0221561 −0.0110781 0.999939i \(-0.503526\pi\)
−0.0110781 + 0.999939i \(0.503526\pi\)
\(458\) −1.50716e12 −1.60054
\(459\) 0 0
\(460\) 5.30464e9 0.00552390
\(461\) −2.59983e11 −0.268096 −0.134048 0.990975i \(-0.542798\pi\)
−0.134048 + 0.990975i \(0.542798\pi\)
\(462\) 0 0
\(463\) −6.62434e11 −0.669928 −0.334964 0.942231i \(-0.608724\pi\)
−0.334964 + 0.942231i \(0.608724\pi\)
\(464\) −1.65353e12 −1.65608
\(465\) 0 0
\(466\) 1.47989e12 1.45376
\(467\) 5.78561e11 0.562890 0.281445 0.959577i \(-0.409186\pi\)
0.281445 + 0.959577i \(0.409186\pi\)
\(468\) 0 0
\(469\) 4.54805e11 0.434058
\(470\) −5.13964e11 −0.485839
\(471\) 0 0
\(472\) 1.00007e11 0.0927450
\(473\) 2.71203e11 0.249126
\(474\) 0 0
\(475\) 4.25619e11 0.383619
\(476\) −8.61089e9 −0.00768806
\(477\) 0 0
\(478\) 2.09137e11 0.183234
\(479\) −1.30509e12 −1.13274 −0.566370 0.824151i \(-0.691653\pi\)
−0.566370 + 0.824151i \(0.691653\pi\)
\(480\) 0 0
\(481\) 6.08662e11 0.518470
\(482\) −3.41274e11 −0.287999
\(483\) 0 0
\(484\) −1.20113e10 −0.00994916
\(485\) 1.88359e11 0.154578
\(486\) 0 0
\(487\) 2.26035e12 1.82094 0.910468 0.413579i \(-0.135722\pi\)
0.910468 + 0.413579i \(0.135722\pi\)
\(488\) 1.23139e12 0.982890
\(489\) 0 0
\(490\) −8.20264e10 −0.0642794
\(491\) 2.05833e11 0.159827 0.0799133 0.996802i \(-0.474536\pi\)
0.0799133 + 0.996802i \(0.474536\pi\)
\(492\) 0 0
\(493\) −3.54914e12 −2.70590
\(494\) −1.17578e12 −0.888291
\(495\) 0 0
\(496\) 1.09758e11 0.0814273
\(497\) −2.18729e11 −0.160806
\(498\) 0 0
\(499\) −2.10713e11 −0.152139 −0.0760693 0.997103i \(-0.524237\pi\)
−0.0760693 + 0.997103i \(0.524237\pi\)
\(500\) 1.53746e9 0.00110011
\(501\) 0 0
\(502\) −2.34707e12 −1.64953
\(503\) −7.30487e10 −0.0508811 −0.0254406 0.999676i \(-0.508099\pi\)
−0.0254406 + 0.999676i \(0.508099\pi\)
\(504\) 0 0
\(505\) −1.05044e12 −0.718719
\(506\) −6.51332e11 −0.441697
\(507\) 0 0
\(508\) 5.64673e9 0.00376193
\(509\) 1.52888e11 0.100958 0.0504792 0.998725i \(-0.483925\pi\)
0.0504792 + 0.998725i \(0.483925\pi\)
\(510\) 0 0
\(511\) −2.36396e11 −0.153372
\(512\) 1.52529e12 0.980932
\(513\) 0 0
\(514\) 1.67276e12 1.05706
\(515\) 2.92878e11 0.183465
\(516\) 0 0
\(517\) 7.66764e11 0.472014
\(518\) −7.01911e11 −0.428350
\(519\) 0 0
\(520\) 3.41067e11 0.204562
\(521\) 3.12005e11 0.185520 0.0927601 0.995688i \(-0.470431\pi\)
0.0927601 + 0.995688i \(0.470431\pi\)
\(522\) 0 0
\(523\) 7.13578e11 0.417046 0.208523 0.978017i \(-0.433134\pi\)
0.208523 + 0.978017i \(0.433134\pi\)
\(524\) 1.84105e10 0.0106678
\(525\) 0 0
\(526\) −2.03808e12 −1.16087
\(527\) 2.35585e11 0.133045
\(528\) 0 0
\(529\) 1.53155e10 0.00850315
\(530\) 1.56563e12 0.861881
\(531\) 0 0
\(532\) 1.64746e10 0.00891689
\(533\) −1.85201e11 −0.0993966
\(534\) 0 0
\(535\) −3.22176e11 −0.170020
\(536\) 2.18081e12 1.14124
\(537\) 0 0
\(538\) 2.28277e12 1.17474
\(539\) 1.22372e11 0.0624502
\(540\) 0 0
\(541\) −7.80203e9 −0.00391580 −0.00195790 0.999998i \(-0.500623\pi\)
−0.00195790 + 0.999998i \(0.500623\pi\)
\(542\) −2.40916e12 −1.19914
\(543\) 0 0
\(544\) −8.30934e10 −0.0406791
\(545\) 3.35475e11 0.162883
\(546\) 0 0
\(547\) −2.00379e12 −0.956994 −0.478497 0.878089i \(-0.658818\pi\)
−0.478497 + 0.878089i \(0.658818\pi\)
\(548\) −2.84687e10 −0.0134851
\(549\) 0 0
\(550\) −1.88777e11 −0.0879663
\(551\) 6.79033e12 3.13840
\(552\) 0 0
\(553\) −5.79524e11 −0.263517
\(554\) 2.73558e11 0.123383
\(555\) 0 0
\(556\) −4.55736e10 −0.0202245
\(557\) −6.30817e11 −0.277687 −0.138843 0.990314i \(-0.544338\pi\)
−0.138843 + 0.990314i \(0.544338\pi\)
\(558\) 0 0
\(559\) 6.05580e11 0.262312
\(560\) −3.98159e11 −0.171084
\(561\) 0 0
\(562\) −4.63611e12 −1.96038
\(563\) −2.72592e12 −1.14347 −0.571736 0.820438i \(-0.693730\pi\)
−0.571736 + 0.820438i \(0.693730\pi\)
\(564\) 0 0
\(565\) 3.37605e11 0.139377
\(566\) −3.47579e12 −1.42357
\(567\) 0 0
\(568\) −1.04881e12 −0.422796
\(569\) 3.54264e12 1.41684 0.708422 0.705789i \(-0.249408\pi\)
0.708422 + 0.705789i \(0.249408\pi\)
\(570\) 0 0
\(571\) 3.74623e12 1.47480 0.737398 0.675458i \(-0.236054\pi\)
0.737398 + 0.675458i \(0.236054\pi\)
\(572\) 6.33631e9 0.00247488
\(573\) 0 0
\(574\) 2.13575e11 0.0821196
\(575\) 5.26470e11 0.200849
\(576\) 0 0
\(577\) 3.74243e12 1.40560 0.702802 0.711386i \(-0.251932\pi\)
0.702802 + 0.711386i \(0.251932\pi\)
\(578\) −4.68396e12 −1.74557
\(579\) 0 0
\(580\) 2.45285e10 0.00900007
\(581\) −1.02872e12 −0.374546
\(582\) 0 0
\(583\) −2.33570e12 −0.837354
\(584\) −1.13353e12 −0.403250
\(585\) 0 0
\(586\) −4.35545e12 −1.52579
\(587\) 2.19633e12 0.763532 0.381766 0.924259i \(-0.375316\pi\)
0.381766 + 0.924259i \(0.375316\pi\)
\(588\) 0 0
\(589\) −4.50728e11 −0.154311
\(590\) −1.23599e11 −0.0419933
\(591\) 0 0
\(592\) −3.40710e12 −1.14008
\(593\) 5.88312e12 1.95372 0.976859 0.213884i \(-0.0686114\pi\)
0.976859 + 0.213884i \(0.0686114\pi\)
\(594\) 0 0
\(595\) −8.54606e11 −0.279537
\(596\) −2.41761e10 −0.00784835
\(597\) 0 0
\(598\) −1.45438e12 −0.465076
\(599\) 1.32770e12 0.421385 0.210692 0.977552i \(-0.432428\pi\)
0.210692 + 0.977552i \(0.432428\pi\)
\(600\) 0 0
\(601\) −5.90463e11 −0.184611 −0.0923055 0.995731i \(-0.529424\pi\)
−0.0923055 + 0.995731i \(0.529424\pi\)
\(602\) −6.98357e11 −0.216717
\(603\) 0 0
\(604\) −3.86830e10 −0.0118265
\(605\) −1.19209e12 −0.361751
\(606\) 0 0
\(607\) 1.15860e12 0.346404 0.173202 0.984886i \(-0.444589\pi\)
0.173202 + 0.984886i \(0.444589\pi\)
\(608\) 1.58977e11 0.0471811
\(609\) 0 0
\(610\) −1.52187e12 −0.445036
\(611\) 1.71214e12 0.496996
\(612\) 0 0
\(613\) −4.56114e12 −1.30467 −0.652337 0.757929i \(-0.726211\pi\)
−0.652337 + 0.757929i \(0.726211\pi\)
\(614\) 1.79631e12 0.510063
\(615\) 0 0
\(616\) 5.86781e11 0.164196
\(617\) 5.85962e10 0.0162774 0.00813872 0.999967i \(-0.497409\pi\)
0.00813872 + 0.999967i \(0.497409\pi\)
\(618\) 0 0
\(619\) 2.31615e12 0.634101 0.317050 0.948409i \(-0.397308\pi\)
0.317050 + 0.948409i \(0.397308\pi\)
\(620\) −1.62815e9 −0.000442520 0
\(621\) 0 0
\(622\) 2.67129e12 0.715590
\(623\) −1.27190e11 −0.0338264
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 4.03271e12 1.04957
\(627\) 0 0
\(628\) 5.86718e10 0.0150526
\(629\) −7.31298e12 −1.86280
\(630\) 0 0
\(631\) 1.36072e12 0.341693 0.170847 0.985298i \(-0.445350\pi\)
0.170847 + 0.985298i \(0.445350\pi\)
\(632\) −2.77884e12 −0.692847
\(633\) 0 0
\(634\) 7.22103e12 1.77500
\(635\) 5.60422e11 0.136783
\(636\) 0 0
\(637\) 2.73250e11 0.0657555
\(638\) −3.01174e12 −0.719655
\(639\) 0 0
\(640\) −1.93239e12 −0.455286
\(641\) 5.19542e12 1.21551 0.607756 0.794124i \(-0.292070\pi\)
0.607756 + 0.794124i \(0.292070\pi\)
\(642\) 0 0
\(643\) −5.15183e12 −1.18854 −0.594268 0.804267i \(-0.702558\pi\)
−0.594268 + 0.804267i \(0.702558\pi\)
\(644\) 2.03783e10 0.00466855
\(645\) 0 0
\(646\) 1.41268e13 3.19152
\(647\) 9.10873e11 0.204357 0.102178 0.994766i \(-0.467419\pi\)
0.102178 + 0.994766i \(0.467419\pi\)
\(648\) 0 0
\(649\) 1.84393e11 0.0407983
\(650\) −4.21527e11 −0.0926222
\(651\) 0 0
\(652\) 4.11314e10 0.00891372
\(653\) 3.27767e12 0.705433 0.352717 0.935730i \(-0.385258\pi\)
0.352717 + 0.935730i \(0.385258\pi\)
\(654\) 0 0
\(655\) 1.82719e12 0.387880
\(656\) 1.03670e12 0.218567
\(657\) 0 0
\(658\) −1.97444e12 −0.410609
\(659\) −2.27024e12 −0.468907 −0.234453 0.972127i \(-0.575330\pi\)
−0.234453 + 0.972127i \(0.575330\pi\)
\(660\) 0 0
\(661\) −3.17394e12 −0.646684 −0.323342 0.946282i \(-0.604806\pi\)
−0.323342 + 0.946282i \(0.604806\pi\)
\(662\) 1.66192e12 0.336318
\(663\) 0 0
\(664\) −4.93277e12 −0.984769
\(665\) 1.63506e12 0.324217
\(666\) 0 0
\(667\) 8.39930e12 1.64315
\(668\) −1.71953e10 −0.00334130
\(669\) 0 0
\(670\) −2.69527e12 −0.516733
\(671\) 2.27043e12 0.432371
\(672\) 0 0
\(673\) −4.96227e12 −0.932423 −0.466212 0.884673i \(-0.654381\pi\)
−0.466212 + 0.884673i \(0.654381\pi\)
\(674\) 2.44124e12 0.455659
\(675\) 0 0
\(676\) −5.26324e10 −0.00969377
\(677\) −6.67904e12 −1.22198 −0.610991 0.791638i \(-0.709229\pi\)
−0.610991 + 0.791638i \(0.709229\pi\)
\(678\) 0 0
\(679\) 7.23599e11 0.130642
\(680\) −4.09787e12 −0.734968
\(681\) 0 0
\(682\) 1.99913e11 0.0353844
\(683\) −5.75109e12 −1.01125 −0.505623 0.862755i \(-0.668737\pi\)
−0.505623 + 0.862755i \(0.668737\pi\)
\(684\) 0 0
\(685\) −2.82543e12 −0.490317
\(686\) −3.15113e11 −0.0543260
\(687\) 0 0
\(688\) −3.38985e12 −0.576809
\(689\) −5.21548e12 −0.881674
\(690\) 0 0
\(691\) 4.84476e12 0.808391 0.404196 0.914673i \(-0.367552\pi\)
0.404196 + 0.914673i \(0.367552\pi\)
\(692\) −2.32133e9 −0.000384821 0
\(693\) 0 0
\(694\) −6.06017e12 −0.991669
\(695\) −4.52305e12 −0.735359
\(696\) 0 0
\(697\) 2.22516e12 0.357120
\(698\) −1.66211e12 −0.265039
\(699\) 0 0
\(700\) 5.90629e9 0.000929765 0
\(701\) 2.61772e12 0.409441 0.204721 0.978820i \(-0.434371\pi\)
0.204721 + 0.978820i \(0.434371\pi\)
\(702\) 0 0
\(703\) 1.39914e13 2.16054
\(704\) 2.81321e12 0.431643
\(705\) 0 0
\(706\) 2.36574e12 0.358382
\(707\) −4.03536e12 −0.607429
\(708\) 0 0
\(709\) 2.83866e12 0.421897 0.210948 0.977497i \(-0.432345\pi\)
0.210948 + 0.977497i \(0.432345\pi\)
\(710\) 1.29623e12 0.191435
\(711\) 0 0
\(712\) −6.09880e11 −0.0889373
\(713\) −5.57529e11 −0.0807912
\(714\) 0 0
\(715\) 6.28861e11 0.0899865
\(716\) 1.24217e11 0.0176633
\(717\) 0 0
\(718\) 1.88666e12 0.264931
\(719\) 3.57178e12 0.498430 0.249215 0.968448i \(-0.419827\pi\)
0.249215 + 0.968448i \(0.419827\pi\)
\(720\) 0 0
\(721\) 1.12512e12 0.155056
\(722\) −1.96815e13 −2.69552
\(723\) 0 0
\(724\) −1.96118e10 −0.00265273
\(725\) 2.43439e12 0.327241
\(726\) 0 0
\(727\) 2.44104e12 0.324094 0.162047 0.986783i \(-0.448190\pi\)
0.162047 + 0.986783i \(0.448190\pi\)
\(728\) 1.31024e12 0.172887
\(729\) 0 0
\(730\) 1.40093e12 0.182585
\(731\) −7.27595e12 −0.942457
\(732\) 0 0
\(733\) −2.05203e12 −0.262553 −0.131276 0.991346i \(-0.541908\pi\)
−0.131276 + 0.991346i \(0.541908\pi\)
\(734\) 4.54425e12 0.577870
\(735\) 0 0
\(736\) 1.96647e11 0.0247023
\(737\) 4.02098e12 0.502028
\(738\) 0 0
\(739\) 5.67988e12 0.700550 0.350275 0.936647i \(-0.386088\pi\)
0.350275 + 0.936647i \(0.386088\pi\)
\(740\) 5.05409e10 0.00619584
\(741\) 0 0
\(742\) 6.01452e12 0.728422
\(743\) 1.78018e12 0.214296 0.107148 0.994243i \(-0.465828\pi\)
0.107148 + 0.994243i \(0.465828\pi\)
\(744\) 0 0
\(745\) −2.39941e12 −0.285365
\(746\) −1.02401e12 −0.121054
\(747\) 0 0
\(748\) −7.61298e10 −0.00889196
\(749\) −1.23767e12 −0.143693
\(750\) 0 0
\(751\) 4.66195e12 0.534796 0.267398 0.963586i \(-0.413836\pi\)
0.267398 + 0.963586i \(0.413836\pi\)
\(752\) −9.58401e12 −1.09287
\(753\) 0 0
\(754\) −6.72503e12 −0.757745
\(755\) −3.83918e12 −0.430008
\(756\) 0 0
\(757\) 6.36622e12 0.704612 0.352306 0.935885i \(-0.385398\pi\)
0.352306 + 0.935885i \(0.385398\pi\)
\(758\) 4.30454e10 0.00473604
\(759\) 0 0
\(760\) 7.84018e12 0.852442
\(761\) 9.79260e12 1.05844 0.529221 0.848484i \(-0.322484\pi\)
0.529221 + 0.848484i \(0.322484\pi\)
\(762\) 0 0
\(763\) 1.28876e12 0.137661
\(764\) 2.00102e11 0.0212486
\(765\) 0 0
\(766\) 7.11554e12 0.746756
\(767\) 4.11737e11 0.0429577
\(768\) 0 0
\(769\) 1.05064e13 1.08339 0.541696 0.840575i \(-0.317783\pi\)
0.541696 + 0.840575i \(0.317783\pi\)
\(770\) −7.25205e11 −0.0743451
\(771\) 0 0
\(772\) −1.39278e11 −0.0141125
\(773\) −6.50971e12 −0.655774 −0.327887 0.944717i \(-0.606337\pi\)
−0.327887 + 0.944717i \(0.606337\pi\)
\(774\) 0 0
\(775\) −1.61590e11 −0.0160900
\(776\) 3.46969e12 0.343489
\(777\) 0 0
\(778\) 6.47921e12 0.634036
\(779\) −4.25726e12 −0.414201
\(780\) 0 0
\(781\) −1.93380e12 −0.185987
\(782\) 1.74742e13 1.67096
\(783\) 0 0
\(784\) −1.52957e12 −0.144593
\(785\) 5.82300e12 0.547310
\(786\) 0 0
\(787\) −1.85396e13 −1.72272 −0.861359 0.507996i \(-0.830386\pi\)
−0.861359 + 0.507996i \(0.830386\pi\)
\(788\) −1.35943e11 −0.0125599
\(789\) 0 0
\(790\) 3.43438e12 0.313709
\(791\) 1.29694e12 0.117795
\(792\) 0 0
\(793\) 5.06973e12 0.455256
\(794\) 1.80388e13 1.61070
\(795\) 0 0
\(796\) 1.75529e11 0.0154967
\(797\) 4.13989e12 0.363435 0.181718 0.983351i \(-0.441834\pi\)
0.181718 + 0.983351i \(0.441834\pi\)
\(798\) 0 0
\(799\) −2.05711e13 −1.78565
\(800\) 5.69945e10 0.00491958
\(801\) 0 0
\(802\) 1.50753e13 1.28671
\(803\) −2.09000e12 −0.177389
\(804\) 0 0
\(805\) 2.02249e12 0.169748
\(806\) 4.46394e11 0.0372572
\(807\) 0 0
\(808\) −1.93497e13 −1.59707
\(809\) 1.06411e13 0.873408 0.436704 0.899605i \(-0.356146\pi\)
0.436704 + 0.899605i \(0.356146\pi\)
\(810\) 0 0
\(811\) 1.16080e11 0.00942244 0.00471122 0.999989i \(-0.498500\pi\)
0.00471122 + 0.999989i \(0.498500\pi\)
\(812\) 9.42288e10 0.00760644
\(813\) 0 0
\(814\) −6.20567e12 −0.495426
\(815\) 4.08217e12 0.324102
\(816\) 0 0
\(817\) 1.39206e13 1.09310
\(818\) −2.48802e13 −1.94296
\(819\) 0 0
\(820\) −1.53784e10 −0.00118781
\(821\) 2.47649e13 1.90236 0.951179 0.308641i \(-0.0998741\pi\)
0.951179 + 0.308641i \(0.0998741\pi\)
\(822\) 0 0
\(823\) 7.59942e12 0.577406 0.288703 0.957419i \(-0.406776\pi\)
0.288703 + 0.957419i \(0.406776\pi\)
\(824\) 5.39499e12 0.407679
\(825\) 0 0
\(826\) −4.74817e11 −0.0354908
\(827\) 9.92558e12 0.737872 0.368936 0.929455i \(-0.379722\pi\)
0.368936 + 0.929455i \(0.379722\pi\)
\(828\) 0 0
\(829\) 2.17549e12 0.159978 0.0799891 0.996796i \(-0.474511\pi\)
0.0799891 + 0.996796i \(0.474511\pi\)
\(830\) 6.09643e12 0.445886
\(831\) 0 0
\(832\) 6.28172e12 0.454489
\(833\) −3.28305e12 −0.236252
\(834\) 0 0
\(835\) −1.70658e12 −0.121489
\(836\) 1.45654e11 0.0103132
\(837\) 0 0
\(838\) 8.53043e12 0.597548
\(839\) 8.79323e12 0.612660 0.306330 0.951925i \(-0.400899\pi\)
0.306330 + 0.951925i \(0.400899\pi\)
\(840\) 0 0
\(841\) 2.43310e13 1.67717
\(842\) −1.67343e13 −1.14737
\(843\) 0 0
\(844\) 8.27846e10 0.00561576
\(845\) −5.22361e12 −0.352464
\(846\) 0 0
\(847\) −4.57953e12 −0.305735
\(848\) 2.91946e13 1.93875
\(849\) 0 0
\(850\) 5.06458e12 0.332781
\(851\) 1.73067e13 1.13118
\(852\) 0 0
\(853\) −2.98980e13 −1.93362 −0.966811 0.255494i \(-0.917762\pi\)
−0.966811 + 0.255494i \(0.917762\pi\)
\(854\) −5.84643e12 −0.376124
\(855\) 0 0
\(856\) −5.93468e12 −0.377803
\(857\) −1.46014e13 −0.924654 −0.462327 0.886709i \(-0.652985\pi\)
−0.462327 + 0.886709i \(0.652985\pi\)
\(858\) 0 0
\(859\) −6.23914e11 −0.0390981 −0.0195490 0.999809i \(-0.506223\pi\)
−0.0195490 + 0.999809i \(0.506223\pi\)
\(860\) 5.02850e10 0.00313470
\(861\) 0 0
\(862\) −1.20612e13 −0.744062
\(863\) −2.27436e12 −0.139576 −0.0697879 0.997562i \(-0.522232\pi\)
−0.0697879 + 0.997562i \(0.522232\pi\)
\(864\) 0 0
\(865\) −2.30385e11 −0.0139920
\(866\) −4.14712e12 −0.250563
\(867\) 0 0
\(868\) −6.25472e9 −0.000373998 0
\(869\) −5.12363e12 −0.304782
\(870\) 0 0
\(871\) 8.97860e12 0.528600
\(872\) 6.17966e12 0.361943
\(873\) 0 0
\(874\) −3.34322e13 −1.93804
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) 2.75045e13 1.57002 0.785011 0.619482i \(-0.212657\pi\)
0.785011 + 0.619482i \(0.212657\pi\)
\(878\) 1.85293e13 1.05228
\(879\) 0 0
\(880\) −3.52016e12 −0.197875
\(881\) 1.54100e13 0.861809 0.430904 0.902398i \(-0.358195\pi\)
0.430904 + 0.902398i \(0.358195\pi\)
\(882\) 0 0
\(883\) −1.77905e13 −0.984838 −0.492419 0.870358i \(-0.663887\pi\)
−0.492419 + 0.870358i \(0.663887\pi\)
\(884\) −1.69993e11 −0.00936260
\(885\) 0 0
\(886\) −1.28669e13 −0.701489
\(887\) 1.07061e13 0.580734 0.290367 0.956915i \(-0.406223\pi\)
0.290367 + 0.956915i \(0.406223\pi\)
\(888\) 0 0
\(889\) 2.15292e12 0.115603
\(890\) 7.53753e11 0.0402693
\(891\) 0 0
\(892\) 3.51995e11 0.0186163
\(893\) 3.93572e13 2.07106
\(894\) 0 0
\(895\) 1.23281e13 0.642235
\(896\) −7.42347e12 −0.384787
\(897\) 0 0
\(898\) −1.33619e13 −0.685684
\(899\) −2.57800e12 −0.131633
\(900\) 0 0
\(901\) 6.26632e13 3.16775
\(902\) 1.88824e12 0.0949789
\(903\) 0 0
\(904\) 6.21890e12 0.309710
\(905\) −1.94641e12 −0.0964531
\(906\) 0 0
\(907\) −9.46109e12 −0.464203 −0.232102 0.972692i \(-0.574560\pi\)
−0.232102 + 0.972692i \(0.574560\pi\)
\(908\) 3.77125e11 0.0184119
\(909\) 0 0
\(910\) −1.61934e12 −0.0782800
\(911\) −3.69156e13 −1.77573 −0.887865 0.460104i \(-0.847812\pi\)
−0.887865 + 0.460104i \(0.847812\pi\)
\(912\) 0 0
\(913\) −9.09504e12 −0.433198
\(914\) 4.70334e11 0.0222920
\(915\) 0 0
\(916\) 4.16901e11 0.0195660
\(917\) 7.01932e12 0.327818
\(918\) 0 0
\(919\) 2.21297e13 1.02343 0.511713 0.859156i \(-0.329011\pi\)
0.511713 + 0.859156i \(0.329011\pi\)
\(920\) 9.69792e12 0.446307
\(921\) 0 0
\(922\) 5.91882e12 0.269740
\(923\) −4.31806e12 −0.195831
\(924\) 0 0
\(925\) 5.01604e12 0.225280
\(926\) 1.50811e13 0.674035
\(927\) 0 0
\(928\) 9.09289e11 0.0402472
\(929\) −1.24192e13 −0.547043 −0.273521 0.961866i \(-0.588188\pi\)
−0.273521 + 0.961866i \(0.588188\pi\)
\(930\) 0 0
\(931\) 6.28124e12 0.274014
\(932\) −4.09358e11 −0.0177718
\(933\) 0 0
\(934\) −1.31716e13 −0.566341
\(935\) −7.55566e12 −0.323311
\(936\) 0 0
\(937\) −3.54355e13 −1.50179 −0.750896 0.660420i \(-0.770378\pi\)
−0.750896 + 0.660420i \(0.770378\pi\)
\(938\) −1.03542e13 −0.436719
\(939\) 0 0
\(940\) 1.42169e11 0.00593923
\(941\) −1.16327e13 −0.483646 −0.241823 0.970320i \(-0.577745\pi\)
−0.241823 + 0.970320i \(0.577745\pi\)
\(942\) 0 0
\(943\) −5.26602e12 −0.216860
\(944\) −2.30478e12 −0.0944615
\(945\) 0 0
\(946\) −6.17425e12 −0.250654
\(947\) −3.20915e13 −1.29663 −0.648314 0.761373i \(-0.724526\pi\)
−0.648314 + 0.761373i \(0.724526\pi\)
\(948\) 0 0
\(949\) −4.66684e12 −0.186778
\(950\) −9.68971e12 −0.385971
\(951\) 0 0
\(952\) −1.57424e13 −0.621161
\(953\) −3.35135e12 −0.131614 −0.0658069 0.997832i \(-0.520962\pi\)
−0.0658069 + 0.997832i \(0.520962\pi\)
\(954\) 0 0
\(955\) 1.98595e13 0.772597
\(956\) −5.78502e10 −0.00223998
\(957\) 0 0
\(958\) 2.97118e13 1.13968
\(959\) −1.08542e13 −0.414394
\(960\) 0 0
\(961\) −2.62685e13 −0.993528
\(962\) −1.38569e13 −0.521648
\(963\) 0 0
\(964\) 9.44009e10 0.00352070
\(965\) −1.38229e13 −0.513129
\(966\) 0 0
\(967\) 3.10299e13 1.14120 0.570599 0.821229i \(-0.306711\pi\)
0.570599 + 0.821229i \(0.306711\pi\)
\(968\) −2.19590e13 −0.803848
\(969\) 0 0
\(970\) −4.28820e12 −0.155526
\(971\) 1.95452e13 0.705591 0.352796 0.935700i \(-0.385231\pi\)
0.352796 + 0.935700i \(0.385231\pi\)
\(972\) 0 0
\(973\) −1.73757e13 −0.621492
\(974\) −5.14594e13 −1.83210
\(975\) 0 0
\(976\) −2.83788e13 −1.00108
\(977\) 2.92875e13 1.02839 0.514194 0.857674i \(-0.328091\pi\)
0.514194 + 0.857674i \(0.328091\pi\)
\(978\) 0 0
\(979\) −1.12450e12 −0.0391234
\(980\) 2.26896e10 0.000785795 0
\(981\) 0 0
\(982\) −4.68603e12 −0.160806
\(983\) −2.28350e13 −0.780029 −0.390014 0.920809i \(-0.627530\pi\)
−0.390014 + 0.920809i \(0.627530\pi\)
\(984\) 0 0
\(985\) −1.34919e13 −0.456678
\(986\) 8.08002e13 2.72249
\(987\) 0 0
\(988\) 3.25236e11 0.0108591
\(989\) 1.72191e13 0.572304
\(990\) 0 0
\(991\) −9.28345e11 −0.0305758 −0.0152879 0.999883i \(-0.504866\pi\)
−0.0152879 + 0.999883i \(0.504866\pi\)
\(992\) −6.03568e10 −0.00197890
\(993\) 0 0
\(994\) 4.97961e12 0.161792
\(995\) 1.74207e13 0.563459
\(996\) 0 0
\(997\) −3.95911e13 −1.26902 −0.634511 0.772914i \(-0.718798\pi\)
−0.634511 + 0.772914i \(0.718798\pi\)
\(998\) 4.79713e12 0.153071
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.j.1.2 5
3.2 odd 2 35.10.a.d.1.4 5
15.2 even 4 175.10.b.f.99.8 10
15.8 even 4 175.10.b.f.99.3 10
15.14 odd 2 175.10.a.f.1.2 5
21.20 even 2 245.10.a.f.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.4 5 3.2 odd 2
175.10.a.f.1.2 5 15.14 odd 2
175.10.b.f.99.3 10 15.8 even 4
175.10.b.f.99.8 10 15.2 even 4
245.10.a.f.1.4 5 21.20 even 2
315.10.a.j.1.2 5 1.1 even 1 trivial