Properties

Label 315.10.a.j.1.1
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(32.5415\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.5415 q^{2} +546.947 q^{4} +625.000 q^{5} +2401.00 q^{7} -1137.23 q^{8} -20338.4 q^{10} -38584.6 q^{11} +137768. q^{13} -78132.1 q^{14} -243030. q^{16} +18339.0 q^{17} -927311. q^{19} +341842. q^{20} +1.25560e6 q^{22} +1.39114e6 q^{23} +390625. q^{25} -4.48318e6 q^{26} +1.31322e6 q^{28} -200634. q^{29} -7.24758e6 q^{31} +8.49081e6 q^{32} -596776. q^{34} +1.50062e6 q^{35} +1.43970e7 q^{37} +3.01761e7 q^{38} -710767. q^{40} -9.75951e6 q^{41} -5.93288e6 q^{43} -2.11037e7 q^{44} -4.52699e7 q^{46} +3.11103e7 q^{47} +5.76480e6 q^{49} -1.27115e7 q^{50} +7.53519e7 q^{52} +6.15094e7 q^{53} -2.41154e7 q^{55} -2.73048e6 q^{56} +6.52893e6 q^{58} +7.30772e7 q^{59} +2.09425e8 q^{61} +2.35847e8 q^{62} -1.51872e8 q^{64} +8.61051e7 q^{65} -3.06068e8 q^{67} +1.00304e7 q^{68} -4.88325e7 q^{70} -1.80955e8 q^{71} +3.56483e8 q^{73} -4.68501e8 q^{74} -5.07190e8 q^{76} -9.26416e7 q^{77} +1.54673e8 q^{79} -1.51894e8 q^{80} +3.17589e8 q^{82} -7.36731e8 q^{83} +1.14618e7 q^{85} +1.93065e8 q^{86} +4.38794e7 q^{88} -2.13463e8 q^{89} +3.30781e8 q^{91} +7.60882e8 q^{92} -1.01238e9 q^{94} -5.79569e8 q^{95} -3.57772e8 q^{97} -1.87595e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 832 q^{4} + 3125 q^{5} + 12005 q^{7} + 14136 q^{8} - 1250 q^{10} - 10312 q^{11} + 158638 q^{13} - 4802 q^{14} - 526696 q^{16} - 31614 q^{17} + 1655376 q^{19} + 520000 q^{20} + 3659464 q^{22}+ \cdots - 11529602 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.5415 −1.43814 −0.719072 0.694936i \(-0.755433\pi\)
−0.719072 + 0.694936i \(0.755433\pi\)
\(3\) 0 0
\(4\) 546.947 1.06826
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) −1137.23 −0.0981617
\(9\) 0 0
\(10\) −20338.4 −0.643157
\(11\) −38584.6 −0.794597 −0.397298 0.917690i \(-0.630052\pi\)
−0.397298 + 0.917690i \(0.630052\pi\)
\(12\) 0 0
\(13\) 137768. 1.33784 0.668920 0.743335i \(-0.266757\pi\)
0.668920 + 0.743335i \(0.266757\pi\)
\(14\) −78132.1 −0.543567
\(15\) 0 0
\(16\) −243030. −0.927085
\(17\) 18339.0 0.0532543 0.0266271 0.999645i \(-0.491523\pi\)
0.0266271 + 0.999645i \(0.491523\pi\)
\(18\) 0 0
\(19\) −927311. −1.63243 −0.816214 0.577750i \(-0.803931\pi\)
−0.816214 + 0.577750i \(0.803931\pi\)
\(20\) 341842. 0.477739
\(21\) 0 0
\(22\) 1.25560e6 1.14274
\(23\) 1.39114e6 1.03657 0.518283 0.855209i \(-0.326571\pi\)
0.518283 + 0.855209i \(0.326571\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −4.48318e6 −1.92400
\(27\) 0 0
\(28\) 1.31322e6 0.403763
\(29\) −200634. −0.0526761 −0.0263381 0.999653i \(-0.508385\pi\)
−0.0263381 + 0.999653i \(0.508385\pi\)
\(30\) 0 0
\(31\) −7.24758e6 −1.40950 −0.704751 0.709455i \(-0.748941\pi\)
−0.704751 + 0.709455i \(0.748941\pi\)
\(32\) 8.49081e6 1.43144
\(33\) 0 0
\(34\) −596776. −0.0765873
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) 1.43970e7 1.26289 0.631445 0.775421i \(-0.282462\pi\)
0.631445 + 0.775421i \(0.282462\pi\)
\(38\) 3.01761e7 2.34767
\(39\) 0 0
\(40\) −710767. −0.0438992
\(41\) −9.75951e6 −0.539387 −0.269694 0.962946i \(-0.586922\pi\)
−0.269694 + 0.962946i \(0.586922\pi\)
\(42\) 0 0
\(43\) −5.93288e6 −0.264641 −0.132321 0.991207i \(-0.542243\pi\)
−0.132321 + 0.991207i \(0.542243\pi\)
\(44\) −2.11037e7 −0.848832
\(45\) 0 0
\(46\) −4.52699e7 −1.49073
\(47\) 3.11103e7 0.929960 0.464980 0.885321i \(-0.346062\pi\)
0.464980 + 0.885321i \(0.346062\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −1.27115e7 −0.287629
\(51\) 0 0
\(52\) 7.53519e7 1.42915
\(53\) 6.15094e7 1.07078 0.535390 0.844605i \(-0.320165\pi\)
0.535390 + 0.844605i \(0.320165\pi\)
\(54\) 0 0
\(55\) −2.41154e7 −0.355354
\(56\) −2.73048e6 −0.0371016
\(57\) 0 0
\(58\) 6.52893e6 0.0757558
\(59\) 7.30772e7 0.785141 0.392571 0.919722i \(-0.371586\pi\)
0.392571 + 0.919722i \(0.371586\pi\)
\(60\) 0 0
\(61\) 2.09425e8 1.93662 0.968312 0.249745i \(-0.0803466\pi\)
0.968312 + 0.249745i \(0.0803466\pi\)
\(62\) 2.35847e8 2.02706
\(63\) 0 0
\(64\) −1.51872e8 −1.13153
\(65\) 8.61051e7 0.598300
\(66\) 0 0
\(67\) −3.06068e8 −1.85559 −0.927794 0.373092i \(-0.878298\pi\)
−0.927794 + 0.373092i \(0.878298\pi\)
\(68\) 1.00304e7 0.0568892
\(69\) 0 0
\(70\) −4.88325e7 −0.243091
\(71\) −1.80955e8 −0.845098 −0.422549 0.906340i \(-0.638864\pi\)
−0.422549 + 0.906340i \(0.638864\pi\)
\(72\) 0 0
\(73\) 3.56483e8 1.46922 0.734609 0.678491i \(-0.237366\pi\)
0.734609 + 0.678491i \(0.237366\pi\)
\(74\) −4.68501e8 −1.81622
\(75\) 0 0
\(76\) −5.07190e8 −1.74385
\(77\) −9.26416e7 −0.300329
\(78\) 0 0
\(79\) 1.54673e8 0.446777 0.223389 0.974729i \(-0.428288\pi\)
0.223389 + 0.974729i \(0.428288\pi\)
\(80\) −1.51894e8 −0.414605
\(81\) 0 0
\(82\) 3.17589e8 0.775716
\(83\) −7.36731e8 −1.70395 −0.851976 0.523580i \(-0.824596\pi\)
−0.851976 + 0.523580i \(0.824596\pi\)
\(84\) 0 0
\(85\) 1.14618e7 0.0238160
\(86\) 1.93065e8 0.380592
\(87\) 0 0
\(88\) 4.38794e7 0.0779990
\(89\) −2.13463e8 −0.360634 −0.180317 0.983609i \(-0.557712\pi\)
−0.180317 + 0.983609i \(0.557712\pi\)
\(90\) 0 0
\(91\) 3.30781e8 0.505656
\(92\) 7.60882e8 1.10732
\(93\) 0 0
\(94\) −1.01238e9 −1.33741
\(95\) −5.79569e8 −0.730044
\(96\) 0 0
\(97\) −3.57772e8 −0.410331 −0.205165 0.978727i \(-0.565773\pi\)
−0.205165 + 0.978727i \(0.565773\pi\)
\(98\) −1.87595e8 −0.205449
\(99\) 0 0
\(100\) 2.13651e8 0.213651
\(101\) 9.31890e7 0.0891084 0.0445542 0.999007i \(-0.485813\pi\)
0.0445542 + 0.999007i \(0.485813\pi\)
\(102\) 0 0
\(103\) 9.37886e8 0.821075 0.410537 0.911844i \(-0.365341\pi\)
0.410537 + 0.911844i \(0.365341\pi\)
\(104\) −1.56674e8 −0.131325
\(105\) 0 0
\(106\) −2.00161e9 −1.53993
\(107\) 1.76389e9 1.30090 0.650450 0.759549i \(-0.274580\pi\)
0.650450 + 0.759549i \(0.274580\pi\)
\(108\) 0 0
\(109\) 2.30117e7 0.0156145 0.00780727 0.999970i \(-0.497515\pi\)
0.00780727 + 0.999970i \(0.497515\pi\)
\(110\) 7.84749e8 0.511051
\(111\) 0 0
\(112\) −5.83515e8 −0.350405
\(113\) −2.46240e9 −1.42071 −0.710356 0.703842i \(-0.751466\pi\)
−0.710356 + 0.703842i \(0.751466\pi\)
\(114\) 0 0
\(115\) 8.69465e8 0.463566
\(116\) −1.09736e8 −0.0562716
\(117\) 0 0
\(118\) −2.37804e9 −1.12915
\(119\) 4.40318e7 0.0201282
\(120\) 0 0
\(121\) −8.69178e8 −0.368616
\(122\) −6.81501e9 −2.78514
\(123\) 0 0
\(124\) −3.96404e9 −1.50571
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −2.01587e9 −0.687615 −0.343807 0.939040i \(-0.611717\pi\)
−0.343807 + 0.939040i \(0.611717\pi\)
\(128\) 5.94845e8 0.195866
\(129\) 0 0
\(130\) −2.80199e9 −0.860441
\(131\) −6.57902e9 −1.95182 −0.975911 0.218167i \(-0.929992\pi\)
−0.975911 + 0.218167i \(0.929992\pi\)
\(132\) 0 0
\(133\) −2.22647e9 −0.617000
\(134\) 9.95991e9 2.66860
\(135\) 0 0
\(136\) −2.08555e7 −0.00522753
\(137\) 4.74874e9 1.15169 0.575845 0.817559i \(-0.304673\pi\)
0.575845 + 0.817559i \(0.304673\pi\)
\(138\) 0 0
\(139\) 1.25718e9 0.285648 0.142824 0.989748i \(-0.454382\pi\)
0.142824 + 0.989748i \(0.454382\pi\)
\(140\) 8.20762e8 0.180568
\(141\) 0 0
\(142\) 5.88853e9 1.21537
\(143\) −5.31573e9 −1.06304
\(144\) 0 0
\(145\) −1.25396e8 −0.0235575
\(146\) −1.16005e10 −2.11295
\(147\) 0 0
\(148\) 7.87442e9 1.34909
\(149\) −5.98036e9 −0.994006 −0.497003 0.867749i \(-0.665566\pi\)
−0.497003 + 0.867749i \(0.665566\pi\)
\(150\) 0 0
\(151\) −1.53651e9 −0.240513 −0.120256 0.992743i \(-0.538372\pi\)
−0.120256 + 0.992743i \(0.538372\pi\)
\(152\) 1.05456e9 0.160242
\(153\) 0 0
\(154\) 3.01469e9 0.431917
\(155\) −4.52974e9 −0.630348
\(156\) 0 0
\(157\) −5.59824e7 −0.00735366 −0.00367683 0.999993i \(-0.501170\pi\)
−0.00367683 + 0.999993i \(0.501170\pi\)
\(158\) −5.03327e9 −0.642530
\(159\) 0 0
\(160\) 5.30675e9 0.640161
\(161\) 3.34014e9 0.391785
\(162\) 0 0
\(163\) −6.71462e9 −0.745035 −0.372518 0.928025i \(-0.621505\pi\)
−0.372518 + 0.928025i \(0.621505\pi\)
\(164\) −5.33793e9 −0.576203
\(165\) 0 0
\(166\) 2.39743e10 2.45053
\(167\) −7.60507e9 −0.756622 −0.378311 0.925679i \(-0.623495\pi\)
−0.378311 + 0.925679i \(0.623495\pi\)
\(168\) 0 0
\(169\) 8.37558e9 0.789813
\(170\) −3.72985e8 −0.0342509
\(171\) 0 0
\(172\) −3.24497e9 −0.282704
\(173\) 1.27998e10 1.08642 0.543209 0.839598i \(-0.317209\pi\)
0.543209 + 0.839598i \(0.317209\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) 9.37720e9 0.736659
\(177\) 0 0
\(178\) 6.94639e9 0.518643
\(179\) 1.01190e10 0.736714 0.368357 0.929684i \(-0.379920\pi\)
0.368357 + 0.929684i \(0.379920\pi\)
\(180\) 0 0
\(181\) 1.65948e10 1.14926 0.574631 0.818413i \(-0.305146\pi\)
0.574631 + 0.818413i \(0.305146\pi\)
\(182\) −1.07641e10 −0.727205
\(183\) 0 0
\(184\) −1.58205e9 −0.101751
\(185\) 8.99815e9 0.564782
\(186\) 0 0
\(187\) −7.07601e8 −0.0423157
\(188\) 1.70157e10 0.993435
\(189\) 0 0
\(190\) 1.88600e10 1.04991
\(191\) −1.14204e10 −0.620912 −0.310456 0.950588i \(-0.600482\pi\)
−0.310456 + 0.950588i \(0.600482\pi\)
\(192\) 0 0
\(193\) 2.76955e10 1.43682 0.718408 0.695622i \(-0.244871\pi\)
0.718408 + 0.695622i \(0.244871\pi\)
\(194\) 1.16424e10 0.590114
\(195\) 0 0
\(196\) 3.15304e9 0.152608
\(197\) −9.30317e9 −0.440081 −0.220041 0.975491i \(-0.570619\pi\)
−0.220041 + 0.975491i \(0.570619\pi\)
\(198\) 0 0
\(199\) 2.15043e10 0.972047 0.486023 0.873946i \(-0.338447\pi\)
0.486023 + 0.873946i \(0.338447\pi\)
\(200\) −4.44229e8 −0.0196323
\(201\) 0 0
\(202\) −3.03251e9 −0.128151
\(203\) −4.81722e8 −0.0199097
\(204\) 0 0
\(205\) −6.09969e9 −0.241221
\(206\) −3.05202e10 −1.18082
\(207\) 0 0
\(208\) −3.34818e10 −1.24029
\(209\) 3.57799e10 1.29712
\(210\) 0 0
\(211\) 1.60265e10 0.556633 0.278316 0.960489i \(-0.410224\pi\)
0.278316 + 0.960489i \(0.410224\pi\)
\(212\) 3.36424e10 1.14387
\(213\) 0 0
\(214\) −5.73995e10 −1.87088
\(215\) −3.70805e9 −0.118351
\(216\) 0 0
\(217\) −1.74014e10 −0.532741
\(218\) −7.48834e8 −0.0224559
\(219\) 0 0
\(220\) −1.31898e10 −0.379609
\(221\) 2.52652e9 0.0712456
\(222\) 0 0
\(223\) 4.34766e10 1.17729 0.588646 0.808391i \(-0.299661\pi\)
0.588646 + 0.808391i \(0.299661\pi\)
\(224\) 2.03864e10 0.541035
\(225\) 0 0
\(226\) 8.01302e10 2.04319
\(227\) 6.61741e10 1.65414 0.827068 0.562101i \(-0.190007\pi\)
0.827068 + 0.562101i \(0.190007\pi\)
\(228\) 0 0
\(229\) 4.51697e10 1.08540 0.542698 0.839928i \(-0.317403\pi\)
0.542698 + 0.839928i \(0.317403\pi\)
\(230\) −2.82937e10 −0.666675
\(231\) 0 0
\(232\) 2.28166e8 0.00517078
\(233\) 5.88888e10 1.30897 0.654487 0.756073i \(-0.272884\pi\)
0.654487 + 0.756073i \(0.272884\pi\)
\(234\) 0 0
\(235\) 1.94439e10 0.415891
\(236\) 3.99694e10 0.838732
\(237\) 0 0
\(238\) −1.43286e9 −0.0289473
\(239\) 6.91640e10 1.37116 0.685582 0.727995i \(-0.259548\pi\)
0.685582 + 0.727995i \(0.259548\pi\)
\(240\) 0 0
\(241\) −1.58739e10 −0.303115 −0.151557 0.988448i \(-0.548429\pi\)
−0.151557 + 0.988448i \(0.548429\pi\)
\(242\) 2.82843e10 0.530123
\(243\) 0 0
\(244\) 1.14545e11 2.06881
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −1.27754e11 −2.18393
\(248\) 8.24214e9 0.138359
\(249\) 0 0
\(250\) −7.94469e9 −0.128631
\(251\) −3.64132e10 −0.579064 −0.289532 0.957168i \(-0.593500\pi\)
−0.289532 + 0.957168i \(0.593500\pi\)
\(252\) 0 0
\(253\) −5.36767e10 −0.823651
\(254\) 6.55993e10 0.988889
\(255\) 0 0
\(256\) 5.84013e10 0.849851
\(257\) 3.53518e10 0.505490 0.252745 0.967533i \(-0.418667\pi\)
0.252745 + 0.967533i \(0.418667\pi\)
\(258\) 0 0
\(259\) 3.45673e10 0.477328
\(260\) 4.70949e10 0.639137
\(261\) 0 0
\(262\) 2.14091e11 2.80700
\(263\) 3.92117e10 0.505376 0.252688 0.967548i \(-0.418685\pi\)
0.252688 + 0.967548i \(0.418685\pi\)
\(264\) 0 0
\(265\) 3.84434e10 0.478867
\(266\) 7.24527e10 0.887334
\(267\) 0 0
\(268\) −1.67403e11 −1.98224
\(269\) 7.55728e10 0.879995 0.439998 0.897999i \(-0.354979\pi\)
0.439998 + 0.897999i \(0.354979\pi\)
\(270\) 0 0
\(271\) −1.40812e11 −1.58591 −0.792954 0.609282i \(-0.791458\pi\)
−0.792954 + 0.609282i \(0.791458\pi\)
\(272\) −4.45691e9 −0.0493712
\(273\) 0 0
\(274\) −1.54531e11 −1.65630
\(275\) −1.50721e10 −0.158919
\(276\) 0 0
\(277\) 1.66935e11 1.70368 0.851839 0.523803i \(-0.175487\pi\)
0.851839 + 0.523803i \(0.175487\pi\)
\(278\) −4.09105e10 −0.410802
\(279\) 0 0
\(280\) −1.70655e9 −0.0165924
\(281\) −3.51000e10 −0.335837 −0.167919 0.985801i \(-0.553705\pi\)
−0.167919 + 0.985801i \(0.553705\pi\)
\(282\) 0 0
\(283\) −1.28495e11 −1.19082 −0.595410 0.803422i \(-0.703010\pi\)
−0.595410 + 0.803422i \(0.703010\pi\)
\(284\) −9.89725e10 −0.902780
\(285\) 0 0
\(286\) 1.72982e11 1.52881
\(287\) −2.34326e10 −0.203869
\(288\) 0 0
\(289\) −1.18252e11 −0.997164
\(290\) 4.08058e9 0.0338790
\(291\) 0 0
\(292\) 1.94977e11 1.56950
\(293\) −1.95418e11 −1.54903 −0.774514 0.632556i \(-0.782006\pi\)
−0.774514 + 0.632556i \(0.782006\pi\)
\(294\) 0 0
\(295\) 4.56732e10 0.351126
\(296\) −1.63727e10 −0.123967
\(297\) 0 0
\(298\) 1.94610e11 1.42952
\(299\) 1.91655e11 1.38676
\(300\) 0 0
\(301\) −1.42448e10 −0.100025
\(302\) 5.00002e10 0.345892
\(303\) 0 0
\(304\) 2.25364e11 1.51340
\(305\) 1.30891e11 0.866084
\(306\) 0 0
\(307\) −7.89206e10 −0.507069 −0.253535 0.967326i \(-0.581593\pi\)
−0.253535 + 0.967326i \(0.581593\pi\)
\(308\) −5.06700e10 −0.320829
\(309\) 0 0
\(310\) 1.47404e11 0.906531
\(311\) −3.56793e10 −0.216269 −0.108135 0.994136i \(-0.534488\pi\)
−0.108135 + 0.994136i \(0.534488\pi\)
\(312\) 0 0
\(313\) 1.86669e11 1.09932 0.549659 0.835389i \(-0.314758\pi\)
0.549659 + 0.835389i \(0.314758\pi\)
\(314\) 1.82175e9 0.0105756
\(315\) 0 0
\(316\) 8.45977e10 0.477273
\(317\) 3.39631e10 0.188904 0.0944519 0.995529i \(-0.469890\pi\)
0.0944519 + 0.995529i \(0.469890\pi\)
\(318\) 0 0
\(319\) 7.74138e9 0.0418563
\(320\) −9.49200e10 −0.506038
\(321\) 0 0
\(322\) −1.08693e11 −0.563443
\(323\) −1.70059e10 −0.0869338
\(324\) 0 0
\(325\) 5.38157e10 0.267568
\(326\) 2.18503e11 1.07147
\(327\) 0 0
\(328\) 1.10988e10 0.0529472
\(329\) 7.46959e10 0.351492
\(330\) 0 0
\(331\) −1.44127e11 −0.659963 −0.329981 0.943987i \(-0.607043\pi\)
−0.329981 + 0.943987i \(0.607043\pi\)
\(332\) −4.02953e11 −1.82026
\(333\) 0 0
\(334\) 2.47480e11 1.08813
\(335\) −1.91293e11 −0.829845
\(336\) 0 0
\(337\) 3.62496e11 1.53098 0.765489 0.643449i \(-0.222497\pi\)
0.765489 + 0.643449i \(0.222497\pi\)
\(338\) −2.72554e11 −1.13586
\(339\) 0 0
\(340\) 6.26902e9 0.0254416
\(341\) 2.79645e11 1.11999
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 6.74703e9 0.0259776
\(345\) 0 0
\(346\) −4.16525e11 −1.56242
\(347\) 6.79594e10 0.251633 0.125816 0.992054i \(-0.459845\pi\)
0.125816 + 0.992054i \(0.459845\pi\)
\(348\) 0 0
\(349\) −2.69779e11 −0.973407 −0.486704 0.873567i \(-0.661801\pi\)
−0.486704 + 0.873567i \(0.661801\pi\)
\(350\) −3.05203e10 −0.108713
\(351\) 0 0
\(352\) −3.27614e11 −1.13742
\(353\) 2.54313e11 0.871731 0.435865 0.900012i \(-0.356442\pi\)
0.435865 + 0.900012i \(0.356442\pi\)
\(354\) 0 0
\(355\) −1.13097e11 −0.377939
\(356\) −1.16753e11 −0.385249
\(357\) 0 0
\(358\) −3.29287e11 −1.05950
\(359\) 2.09684e11 0.666254 0.333127 0.942882i \(-0.391896\pi\)
0.333127 + 0.942882i \(0.391896\pi\)
\(360\) 0 0
\(361\) 5.37217e11 1.66482
\(362\) −5.40020e11 −1.65280
\(363\) 0 0
\(364\) 1.80920e11 0.540170
\(365\) 2.22802e11 0.657054
\(366\) 0 0
\(367\) 2.33213e11 0.671051 0.335525 0.942031i \(-0.391086\pi\)
0.335525 + 0.942031i \(0.391086\pi\)
\(368\) −3.38089e11 −0.960985
\(369\) 0 0
\(370\) −2.92813e11 −0.812237
\(371\) 1.47684e11 0.404716
\(372\) 0 0
\(373\) −1.47353e11 −0.394157 −0.197078 0.980388i \(-0.563145\pi\)
−0.197078 + 0.980388i \(0.563145\pi\)
\(374\) 2.30264e10 0.0608560
\(375\) 0 0
\(376\) −3.53795e10 −0.0912864
\(377\) −2.76410e10 −0.0704722
\(378\) 0 0
\(379\) −2.22389e11 −0.553651 −0.276825 0.960920i \(-0.589282\pi\)
−0.276825 + 0.960920i \(0.589282\pi\)
\(380\) −3.16994e11 −0.779874
\(381\) 0 0
\(382\) 3.71635e11 0.892960
\(383\) −5.03966e11 −1.19676 −0.598379 0.801213i \(-0.704188\pi\)
−0.598379 + 0.801213i \(0.704188\pi\)
\(384\) 0 0
\(385\) −5.79010e10 −0.134311
\(386\) −9.01252e11 −2.06635
\(387\) 0 0
\(388\) −1.95683e11 −0.438338
\(389\) −3.87228e10 −0.0857420 −0.0428710 0.999081i \(-0.513650\pi\)
−0.0428710 + 0.999081i \(0.513650\pi\)
\(390\) 0 0
\(391\) 2.55121e10 0.0552015
\(392\) −6.55588e9 −0.0140231
\(393\) 0 0
\(394\) 3.02739e11 0.632900
\(395\) 9.66703e10 0.199805
\(396\) 0 0
\(397\) 2.12003e11 0.428337 0.214168 0.976797i \(-0.431296\pi\)
0.214168 + 0.976797i \(0.431296\pi\)
\(398\) −6.99783e11 −1.39794
\(399\) 0 0
\(400\) −9.49335e10 −0.185417
\(401\) 2.81856e10 0.0544350 0.0272175 0.999630i \(-0.491335\pi\)
0.0272175 + 0.999630i \(0.491335\pi\)
\(402\) 0 0
\(403\) −9.98486e11 −1.88569
\(404\) 5.09694e10 0.0951905
\(405\) 0 0
\(406\) 1.56760e10 0.0286330
\(407\) −5.55504e11 −1.00349
\(408\) 0 0
\(409\) −5.47583e11 −0.967599 −0.483799 0.875179i \(-0.660744\pi\)
−0.483799 + 0.875179i \(0.660744\pi\)
\(410\) 1.98493e11 0.346911
\(411\) 0 0
\(412\) 5.12974e11 0.877118
\(413\) 1.75458e11 0.296756
\(414\) 0 0
\(415\) −4.60457e11 −0.762031
\(416\) 1.16976e12 1.91504
\(417\) 0 0
\(418\) −1.16433e12 −1.86545
\(419\) −3.60982e10 −0.0572167 −0.0286083 0.999591i \(-0.509108\pi\)
−0.0286083 + 0.999591i \(0.509108\pi\)
\(420\) 0 0
\(421\) −7.12011e11 −1.10463 −0.552315 0.833635i \(-0.686256\pi\)
−0.552315 + 0.833635i \(0.686256\pi\)
\(422\) −5.21527e11 −0.800518
\(423\) 0 0
\(424\) −6.99501e10 −0.105109
\(425\) 7.16365e9 0.0106509
\(426\) 0 0
\(427\) 5.02831e11 0.731975
\(428\) 9.64754e11 1.38969
\(429\) 0 0
\(430\) 1.20665e11 0.170206
\(431\) 7.80249e11 1.08914 0.544572 0.838714i \(-0.316692\pi\)
0.544572 + 0.838714i \(0.316692\pi\)
\(432\) 0 0
\(433\) −1.24062e11 −0.169607 −0.0848036 0.996398i \(-0.527026\pi\)
−0.0848036 + 0.996398i \(0.527026\pi\)
\(434\) 5.66269e11 0.766159
\(435\) 0 0
\(436\) 1.25862e10 0.0166803
\(437\) −1.29002e12 −1.69212
\(438\) 0 0
\(439\) 1.53033e12 1.96650 0.983252 0.182252i \(-0.0583386\pi\)
0.983252 + 0.182252i \(0.0583386\pi\)
\(440\) 2.74246e10 0.0348822
\(441\) 0 0
\(442\) −8.22168e10 −0.102461
\(443\) 1.37078e11 0.169103 0.0845515 0.996419i \(-0.473054\pi\)
0.0845515 + 0.996419i \(0.473054\pi\)
\(444\) 0 0
\(445\) −1.33414e11 −0.161280
\(446\) −1.41479e12 −1.69311
\(447\) 0 0
\(448\) −3.64645e11 −0.427680
\(449\) 1.01260e12 1.17579 0.587894 0.808938i \(-0.299957\pi\)
0.587894 + 0.808938i \(0.299957\pi\)
\(450\) 0 0
\(451\) 3.76567e11 0.428595
\(452\) −1.34680e12 −1.51768
\(453\) 0 0
\(454\) −2.15340e12 −2.37889
\(455\) 2.06738e11 0.226136
\(456\) 0 0
\(457\) −3.44289e11 −0.369233 −0.184616 0.982811i \(-0.559104\pi\)
−0.184616 + 0.982811i \(0.559104\pi\)
\(458\) −1.46989e12 −1.56095
\(459\) 0 0
\(460\) 4.75551e11 0.495207
\(461\) 2.93939e11 0.303112 0.151556 0.988449i \(-0.451572\pi\)
0.151556 + 0.988449i \(0.451572\pi\)
\(462\) 0 0
\(463\) 1.08058e12 1.09280 0.546401 0.837524i \(-0.315997\pi\)
0.546401 + 0.837524i \(0.315997\pi\)
\(464\) 4.87601e10 0.0488352
\(465\) 0 0
\(466\) −1.91633e12 −1.88249
\(467\) 1.94592e12 1.89321 0.946605 0.322395i \(-0.104488\pi\)
0.946605 + 0.322395i \(0.104488\pi\)
\(468\) 0 0
\(469\) −7.34870e11 −0.701347
\(470\) −6.32735e11 −0.598110
\(471\) 0 0
\(472\) −8.31053e10 −0.0770708
\(473\) 2.28918e11 0.210283
\(474\) 0 0
\(475\) −3.62231e11 −0.326486
\(476\) 2.40831e10 0.0215021
\(477\) 0 0
\(478\) −2.25070e12 −1.97193
\(479\) −2.08918e12 −1.81329 −0.906644 0.421897i \(-0.861365\pi\)
−0.906644 + 0.421897i \(0.861365\pi\)
\(480\) 0 0
\(481\) 1.98345e12 1.68954
\(482\) 5.16560e11 0.435922
\(483\) 0 0
\(484\) −4.75394e11 −0.393776
\(485\) −2.23608e11 −0.183505
\(486\) 0 0
\(487\) 6.80509e11 0.548218 0.274109 0.961699i \(-0.411617\pi\)
0.274109 + 0.961699i \(0.411617\pi\)
\(488\) −2.38164e11 −0.190102
\(489\) 0 0
\(490\) −1.17247e11 −0.0918796
\(491\) 1.00628e12 0.781360 0.390680 0.920527i \(-0.372240\pi\)
0.390680 + 0.920527i \(0.372240\pi\)
\(492\) 0 0
\(493\) −3.67942e9 −0.00280523
\(494\) 4.15730e12 3.14080
\(495\) 0 0
\(496\) 1.76138e12 1.30673
\(497\) −4.34472e11 −0.319417
\(498\) 0 0
\(499\) −1.83579e12 −1.32547 −0.662735 0.748854i \(-0.730604\pi\)
−0.662735 + 0.748854i \(0.730604\pi\)
\(500\) 1.33532e11 0.0955477
\(501\) 0 0
\(502\) 1.18494e12 0.832777
\(503\) 1.62569e12 1.13236 0.566178 0.824283i \(-0.308422\pi\)
0.566178 + 0.824283i \(0.308422\pi\)
\(504\) 0 0
\(505\) 5.82431e10 0.0398505
\(506\) 1.74672e12 1.18453
\(507\) 0 0
\(508\) −1.10257e12 −0.734549
\(509\) 1.68020e12 1.10951 0.554753 0.832015i \(-0.312813\pi\)
0.554753 + 0.832015i \(0.312813\pi\)
\(510\) 0 0
\(511\) 8.55916e11 0.555312
\(512\) −2.20503e12 −1.41807
\(513\) 0 0
\(514\) −1.15040e12 −0.726967
\(515\) 5.86179e11 0.367196
\(516\) 0 0
\(517\) −1.20038e12 −0.738943
\(518\) −1.12487e12 −0.686465
\(519\) 0 0
\(520\) −9.79210e10 −0.0587301
\(521\) 1.35429e12 0.805268 0.402634 0.915361i \(-0.368095\pi\)
0.402634 + 0.915361i \(0.368095\pi\)
\(522\) 0 0
\(523\) 2.50673e11 0.146504 0.0732522 0.997313i \(-0.476662\pi\)
0.0732522 + 0.997313i \(0.476662\pi\)
\(524\) −3.59838e12 −2.08505
\(525\) 0 0
\(526\) −1.27600e12 −0.726803
\(527\) −1.32913e11 −0.0750620
\(528\) 0 0
\(529\) 1.34129e11 0.0744681
\(530\) −1.25100e12 −0.688679
\(531\) 0 0
\(532\) −1.21776e12 −0.659114
\(533\) −1.34455e12 −0.721613
\(534\) 0 0
\(535\) 1.10243e12 0.581780
\(536\) 3.48069e11 0.182148
\(537\) 0 0
\(538\) −2.45925e12 −1.26556
\(539\) −2.22432e11 −0.113514
\(540\) 0 0
\(541\) 1.76350e12 0.885091 0.442545 0.896746i \(-0.354076\pi\)
0.442545 + 0.896746i \(0.354076\pi\)
\(542\) 4.58223e12 2.28076
\(543\) 0 0
\(544\) 1.55713e11 0.0762305
\(545\) 1.43823e10 0.00698303
\(546\) 0 0
\(547\) 1.51530e12 0.723695 0.361847 0.932237i \(-0.382146\pi\)
0.361847 + 0.932237i \(0.382146\pi\)
\(548\) 2.59731e12 1.23030
\(549\) 0 0
\(550\) 4.90468e11 0.228549
\(551\) 1.86050e11 0.0859900
\(552\) 0 0
\(553\) 3.71369e11 0.168866
\(554\) −5.43230e12 −2.45013
\(555\) 0 0
\(556\) 6.87611e11 0.305145
\(557\) 2.99849e12 1.31994 0.659970 0.751292i \(-0.270569\pi\)
0.659970 + 0.751292i \(0.270569\pi\)
\(558\) 0 0
\(559\) −8.17362e11 −0.354047
\(560\) −3.64697e11 −0.156706
\(561\) 0 0
\(562\) 1.14221e12 0.482982
\(563\) 3.32713e12 1.39567 0.697835 0.716259i \(-0.254147\pi\)
0.697835 + 0.716259i \(0.254147\pi\)
\(564\) 0 0
\(565\) −1.53900e12 −0.635362
\(566\) 4.18140e12 1.71257
\(567\) 0 0
\(568\) 2.05786e11 0.0829562
\(569\) −3.34495e12 −1.33778 −0.668890 0.743361i \(-0.733230\pi\)
−0.668890 + 0.743361i \(0.733230\pi\)
\(570\) 0 0
\(571\) 2.21613e12 0.872433 0.436217 0.899842i \(-0.356318\pi\)
0.436217 + 0.899842i \(0.356318\pi\)
\(572\) −2.90742e12 −1.13560
\(573\) 0 0
\(574\) 7.62530e11 0.293193
\(575\) 5.43416e11 0.207313
\(576\) 0 0
\(577\) 2.78139e12 1.04465 0.522325 0.852746i \(-0.325065\pi\)
0.522325 + 0.852746i \(0.325065\pi\)
\(578\) 3.84808e12 1.43406
\(579\) 0 0
\(580\) −6.85851e10 −0.0251654
\(581\) −1.76889e12 −0.644034
\(582\) 0 0
\(583\) −2.37331e12 −0.850838
\(584\) −4.05402e11 −0.144221
\(585\) 0 0
\(586\) 6.35918e12 2.22773
\(587\) 1.65679e12 0.575966 0.287983 0.957636i \(-0.407015\pi\)
0.287983 + 0.957636i \(0.407015\pi\)
\(588\) 0 0
\(589\) 6.72076e12 2.30091
\(590\) −1.48627e12 −0.504969
\(591\) 0 0
\(592\) −3.49891e12 −1.17081
\(593\) −5.08969e12 −1.69023 −0.845114 0.534586i \(-0.820467\pi\)
−0.845114 + 0.534586i \(0.820467\pi\)
\(594\) 0 0
\(595\) 2.75199e10 0.00900161
\(596\) −3.27094e12 −1.06185
\(597\) 0 0
\(598\) −6.23675e12 −1.99436
\(599\) 7.76622e11 0.246484 0.123242 0.992377i \(-0.460671\pi\)
0.123242 + 0.992377i \(0.460671\pi\)
\(600\) 0 0
\(601\) −1.12953e11 −0.0353154 −0.0176577 0.999844i \(-0.505621\pi\)
−0.0176577 + 0.999844i \(0.505621\pi\)
\(602\) 4.63548e11 0.143850
\(603\) 0 0
\(604\) −8.40388e11 −0.256929
\(605\) −5.43236e11 −0.164850
\(606\) 0 0
\(607\) 2.46011e12 0.735539 0.367770 0.929917i \(-0.380121\pi\)
0.367770 + 0.929917i \(0.380121\pi\)
\(608\) −7.87362e12 −2.33673
\(609\) 0 0
\(610\) −4.25938e12 −1.24555
\(611\) 4.28601e12 1.24414
\(612\) 0 0
\(613\) 5.49948e12 1.57307 0.786537 0.617543i \(-0.211872\pi\)
0.786537 + 0.617543i \(0.211872\pi\)
\(614\) 2.56819e12 0.729238
\(615\) 0 0
\(616\) 1.05354e11 0.0294808
\(617\) −3.30419e12 −0.917872 −0.458936 0.888469i \(-0.651769\pi\)
−0.458936 + 0.888469i \(0.651769\pi\)
\(618\) 0 0
\(619\) −6.99545e11 −0.191517 −0.0957586 0.995405i \(-0.530528\pi\)
−0.0957586 + 0.995405i \(0.530528\pi\)
\(620\) −2.47753e12 −0.673373
\(621\) 0 0
\(622\) 1.16106e12 0.311026
\(623\) −5.12524e11 −0.136307
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −6.07450e12 −1.58098
\(627\) 0 0
\(628\) −3.06194e10 −0.00785559
\(629\) 2.64027e11 0.0672543
\(630\) 0 0
\(631\) 2.84950e12 0.715543 0.357772 0.933809i \(-0.383537\pi\)
0.357772 + 0.933809i \(0.383537\pi\)
\(632\) −1.75898e11 −0.0438564
\(633\) 0 0
\(634\) −1.10521e12 −0.271671
\(635\) −1.25992e12 −0.307511
\(636\) 0 0
\(637\) 7.94206e11 0.191120
\(638\) −2.51916e11 −0.0601953
\(639\) 0 0
\(640\) 3.71778e11 0.0875940
\(641\) 5.81049e12 1.35941 0.679706 0.733484i \(-0.262107\pi\)
0.679706 + 0.733484i \(0.262107\pi\)
\(642\) 0 0
\(643\) 3.50664e11 0.0808988 0.0404494 0.999182i \(-0.487121\pi\)
0.0404494 + 0.999182i \(0.487121\pi\)
\(644\) 1.82688e12 0.418527
\(645\) 0 0
\(646\) 5.53397e11 0.125023
\(647\) −1.57151e12 −0.352571 −0.176286 0.984339i \(-0.556408\pi\)
−0.176286 + 0.984339i \(0.556408\pi\)
\(648\) 0 0
\(649\) −2.81965e12 −0.623871
\(650\) −1.75124e12 −0.384801
\(651\) 0 0
\(652\) −3.67254e12 −0.795889
\(653\) 1.58869e12 0.341925 0.170963 0.985278i \(-0.445312\pi\)
0.170963 + 0.985278i \(0.445312\pi\)
\(654\) 0 0
\(655\) −4.11189e12 −0.872882
\(656\) 2.37185e12 0.500058
\(657\) 0 0
\(658\) −2.43071e12 −0.505495
\(659\) 1.18042e12 0.243810 0.121905 0.992542i \(-0.461100\pi\)
0.121905 + 0.992542i \(0.461100\pi\)
\(660\) 0 0
\(661\) −2.84810e12 −0.580294 −0.290147 0.956982i \(-0.593704\pi\)
−0.290147 + 0.956982i \(0.593704\pi\)
\(662\) 4.69011e12 0.949121
\(663\) 0 0
\(664\) 8.37830e11 0.167263
\(665\) −1.39155e12 −0.275931
\(666\) 0 0
\(667\) −2.79111e11 −0.0546022
\(668\) −4.15957e12 −0.808266
\(669\) 0 0
\(670\) 6.22494e12 1.19344
\(671\) −8.08059e12 −1.53883
\(672\) 0 0
\(673\) −3.70205e12 −0.695624 −0.347812 0.937564i \(-0.613075\pi\)
−0.347812 + 0.937564i \(0.613075\pi\)
\(674\) −1.17962e13 −2.20177
\(675\) 0 0
\(676\) 4.58100e12 0.843723
\(677\) 2.27798e12 0.416775 0.208388 0.978046i \(-0.433178\pi\)
0.208388 + 0.978046i \(0.433178\pi\)
\(678\) 0 0
\(679\) −8.59012e11 −0.155090
\(680\) −1.30347e10 −0.00233782
\(681\) 0 0
\(682\) −9.10006e12 −1.61070
\(683\) 1.46467e12 0.257542 0.128771 0.991674i \(-0.458897\pi\)
0.128771 + 0.991674i \(0.458897\pi\)
\(684\) 0 0
\(685\) 2.96796e12 0.515052
\(686\) −4.50416e11 −0.0776524
\(687\) 0 0
\(688\) 1.44187e12 0.245345
\(689\) 8.47404e12 1.43253
\(690\) 0 0
\(691\) 6.20353e12 1.03511 0.517557 0.855649i \(-0.326842\pi\)
0.517557 + 0.855649i \(0.326842\pi\)
\(692\) 7.00083e12 1.16057
\(693\) 0 0
\(694\) −2.21150e12 −0.361884
\(695\) 7.85737e11 0.127746
\(696\) 0 0
\(697\) −1.78979e11 −0.0287247
\(698\) 8.77902e12 1.39990
\(699\) 0 0
\(700\) 5.12976e11 0.0807526
\(701\) 4.91335e12 0.768505 0.384252 0.923228i \(-0.374459\pi\)
0.384252 + 0.923228i \(0.374459\pi\)
\(702\) 0 0
\(703\) −1.33505e13 −2.06158
\(704\) 5.85992e12 0.899114
\(705\) 0 0
\(706\) −8.27572e12 −1.25367
\(707\) 2.23747e11 0.0336798
\(708\) 0 0
\(709\) −5.12256e12 −0.761340 −0.380670 0.924711i \(-0.624307\pi\)
−0.380670 + 0.924711i \(0.624307\pi\)
\(710\) 3.68033e12 0.543531
\(711\) 0 0
\(712\) 2.42755e11 0.0354005
\(713\) −1.00824e13 −1.46104
\(714\) 0 0
\(715\) −3.32233e12 −0.475407
\(716\) 5.53456e12 0.787000
\(717\) 0 0
\(718\) −6.82342e12 −0.958168
\(719\) −5.84180e12 −0.815205 −0.407602 0.913160i \(-0.633635\pi\)
−0.407602 + 0.913160i \(0.633635\pi\)
\(720\) 0 0
\(721\) 2.25187e12 0.310337
\(722\) −1.74818e13 −2.39425
\(723\) 0 0
\(724\) 9.07649e12 1.22771
\(725\) −7.83727e10 −0.0105352
\(726\) 0 0
\(727\) 3.28001e12 0.435482 0.217741 0.976007i \(-0.430131\pi\)
0.217741 + 0.976007i \(0.430131\pi\)
\(728\) −3.76173e11 −0.0496360
\(729\) 0 0
\(730\) −7.25031e12 −0.944938
\(731\) −1.08803e11 −0.0140933
\(732\) 0 0
\(733\) −5.27370e12 −0.674757 −0.337378 0.941369i \(-0.609540\pi\)
−0.337378 + 0.941369i \(0.609540\pi\)
\(734\) −7.58909e12 −0.965067
\(735\) 0 0
\(736\) 1.18119e13 1.48378
\(737\) 1.18095e13 1.47444
\(738\) 0 0
\(739\) 2.97794e12 0.367295 0.183648 0.982992i \(-0.441209\pi\)
0.183648 + 0.982992i \(0.441209\pi\)
\(740\) 4.92151e12 0.603331
\(741\) 0 0
\(742\) −4.80585e12 −0.582040
\(743\) 4.16813e11 0.0501754 0.0250877 0.999685i \(-0.492013\pi\)
0.0250877 + 0.999685i \(0.492013\pi\)
\(744\) 0 0
\(745\) −3.73772e12 −0.444533
\(746\) 4.79508e12 0.566854
\(747\) 0 0
\(748\) −3.87020e11 −0.0452040
\(749\) 4.23510e12 0.491694
\(750\) 0 0
\(751\) 1.70758e13 1.95885 0.979423 0.201817i \(-0.0646847\pi\)
0.979423 + 0.201817i \(0.0646847\pi\)
\(752\) −7.56074e12 −0.862152
\(753\) 0 0
\(754\) 8.99478e11 0.101349
\(755\) −9.60317e11 −0.107561
\(756\) 0 0
\(757\) 1.86789e12 0.206738 0.103369 0.994643i \(-0.467038\pi\)
0.103369 + 0.994643i \(0.467038\pi\)
\(758\) 7.23685e12 0.796229
\(759\) 0 0
\(760\) 6.59101e11 0.0716624
\(761\) 1.21579e12 0.131409 0.0657047 0.997839i \(-0.479070\pi\)
0.0657047 + 0.997839i \(0.479070\pi\)
\(762\) 0 0
\(763\) 5.52511e10 0.00590174
\(764\) −6.24634e12 −0.663293
\(765\) 0 0
\(766\) 1.63998e13 1.72111
\(767\) 1.00677e13 1.05039
\(768\) 0 0
\(769\) −1.95773e12 −0.201876 −0.100938 0.994893i \(-0.532184\pi\)
−0.100938 + 0.994893i \(0.532184\pi\)
\(770\) 1.88418e12 0.193159
\(771\) 0 0
\(772\) 1.51480e13 1.53489
\(773\) −1.13109e13 −1.13943 −0.569716 0.821842i \(-0.692947\pi\)
−0.569716 + 0.821842i \(0.692947\pi\)
\(774\) 0 0
\(775\) −2.83109e12 −0.281900
\(776\) 4.06868e11 0.0402788
\(777\) 0 0
\(778\) 1.26010e12 0.123309
\(779\) 9.05010e12 0.880511
\(780\) 0 0
\(781\) 6.98205e12 0.671512
\(782\) −8.30202e11 −0.0793877
\(783\) 0 0
\(784\) −1.40102e12 −0.132441
\(785\) −3.49890e10 −0.00328866
\(786\) 0 0
\(787\) 1.40494e13 1.30549 0.652744 0.757579i \(-0.273618\pi\)
0.652744 + 0.757579i \(0.273618\pi\)
\(788\) −5.08834e12 −0.470119
\(789\) 0 0
\(790\) −3.14579e12 −0.287348
\(791\) −5.91223e12 −0.536979
\(792\) 0 0
\(793\) 2.88522e13 2.59089
\(794\) −6.89890e12 −0.616010
\(795\) 0 0
\(796\) 1.17617e13 1.03839
\(797\) −9.87211e12 −0.866657 −0.433329 0.901236i \(-0.642661\pi\)
−0.433329 + 0.901236i \(0.642661\pi\)
\(798\) 0 0
\(799\) 5.70531e11 0.0495243
\(800\) 3.31672e12 0.286289
\(801\) 0 0
\(802\) −9.17201e11 −0.0782853
\(803\) −1.37548e13 −1.16744
\(804\) 0 0
\(805\) 2.08759e12 0.175212
\(806\) 3.24922e13 2.71189
\(807\) 0 0
\(808\) −1.05977e11 −0.00874703
\(809\) −9.74950e11 −0.0800229 −0.0400114 0.999199i \(-0.512739\pi\)
−0.0400114 + 0.999199i \(0.512739\pi\)
\(810\) 0 0
\(811\) 1.52765e13 1.24002 0.620011 0.784593i \(-0.287128\pi\)
0.620011 + 0.784593i \(0.287128\pi\)
\(812\) −2.63477e11 −0.0212687
\(813\) 0 0
\(814\) 1.80769e13 1.44316
\(815\) −4.19663e12 −0.333190
\(816\) 0 0
\(817\) 5.50162e12 0.432008
\(818\) 1.78192e13 1.39155
\(819\) 0 0
\(820\) −3.33621e12 −0.257686
\(821\) 1.05334e13 0.809142 0.404571 0.914507i \(-0.367421\pi\)
0.404571 + 0.914507i \(0.367421\pi\)
\(822\) 0 0
\(823\) 7.09376e12 0.538986 0.269493 0.963002i \(-0.413144\pi\)
0.269493 + 0.963002i \(0.413144\pi\)
\(824\) −1.06659e12 −0.0805981
\(825\) 0 0
\(826\) −5.70967e12 −0.426777
\(827\) −7.40831e12 −0.550737 −0.275368 0.961339i \(-0.588800\pi\)
−0.275368 + 0.961339i \(0.588800\pi\)
\(828\) 0 0
\(829\) −2.61672e12 −0.192425 −0.0962126 0.995361i \(-0.530673\pi\)
−0.0962126 + 0.995361i \(0.530673\pi\)
\(830\) 1.49839e13 1.09591
\(831\) 0 0
\(832\) −2.09231e13 −1.51381
\(833\) 1.05720e11 0.00760775
\(834\) 0 0
\(835\) −4.75317e12 −0.338372
\(836\) 1.95697e13 1.38566
\(837\) 0 0
\(838\) 1.17469e12 0.0822858
\(839\) −1.06924e13 −0.744985 −0.372492 0.928035i \(-0.621497\pi\)
−0.372492 + 0.928035i \(0.621497\pi\)
\(840\) 0 0
\(841\) −1.44669e13 −0.997225
\(842\) 2.31699e13 1.58862
\(843\) 0 0
\(844\) 8.76567e12 0.594626
\(845\) 5.23474e12 0.353215
\(846\) 0 0
\(847\) −2.08690e12 −0.139324
\(848\) −1.49486e13 −0.992704
\(849\) 0 0
\(850\) −2.33116e11 −0.0153175
\(851\) 2.00284e13 1.30907
\(852\) 0 0
\(853\) −8.94214e12 −0.578324 −0.289162 0.957280i \(-0.593377\pi\)
−0.289162 + 0.957280i \(0.593377\pi\)
\(854\) −1.63628e13 −1.05268
\(855\) 0 0
\(856\) −2.00594e12 −0.127699
\(857\) 1.05093e12 0.0665520 0.0332760 0.999446i \(-0.489406\pi\)
0.0332760 + 0.999446i \(0.489406\pi\)
\(858\) 0 0
\(859\) 5.88230e12 0.368619 0.184310 0.982868i \(-0.440995\pi\)
0.184310 + 0.982868i \(0.440995\pi\)
\(860\) −2.02811e12 −0.126429
\(861\) 0 0
\(862\) −2.53904e13 −1.56635
\(863\) 1.70026e13 1.04344 0.521718 0.853118i \(-0.325291\pi\)
0.521718 + 0.853118i \(0.325291\pi\)
\(864\) 0 0
\(865\) 7.99989e12 0.485861
\(866\) 4.03717e12 0.243920
\(867\) 0 0
\(868\) −9.51767e12 −0.569104
\(869\) −5.96798e12 −0.355008
\(870\) 0 0
\(871\) −4.21665e13 −2.48248
\(872\) −2.61695e10 −0.00153275
\(873\) 0 0
\(874\) 4.19792e13 2.43351
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −1.00896e13 −0.575940 −0.287970 0.957639i \(-0.592980\pi\)
−0.287970 + 0.957639i \(0.592980\pi\)
\(878\) −4.97992e13 −2.82811
\(879\) 0 0
\(880\) 5.86075e12 0.329444
\(881\) 9.85298e12 0.551031 0.275515 0.961297i \(-0.411151\pi\)
0.275515 + 0.961297i \(0.411151\pi\)
\(882\) 0 0
\(883\) 2.89958e12 0.160514 0.0802568 0.996774i \(-0.474426\pi\)
0.0802568 + 0.996774i \(0.474426\pi\)
\(884\) 1.38188e12 0.0761086
\(885\) 0 0
\(886\) −4.46072e12 −0.243194
\(887\) 1.46987e13 0.797302 0.398651 0.917103i \(-0.369478\pi\)
0.398651 + 0.917103i \(0.369478\pi\)
\(888\) 0 0
\(889\) −4.84010e12 −0.259894
\(890\) 4.34149e12 0.231944
\(891\) 0 0
\(892\) 2.37794e13 1.25765
\(893\) −2.88489e13 −1.51809
\(894\) 0 0
\(895\) 6.32438e12 0.329469
\(896\) 1.42822e12 0.0740304
\(897\) 0 0
\(898\) −3.29515e13 −1.69095
\(899\) 1.45411e12 0.0742470
\(900\) 0 0
\(901\) 1.12802e12 0.0570236
\(902\) −1.22540e13 −0.616381
\(903\) 0 0
\(904\) 2.80031e12 0.139460
\(905\) 1.03718e13 0.513966
\(906\) 0 0
\(907\) 3.52924e13 1.73160 0.865801 0.500388i \(-0.166809\pi\)
0.865801 + 0.500388i \(0.166809\pi\)
\(908\) 3.61937e13 1.76704
\(909\) 0 0
\(910\) −6.72757e12 −0.325216
\(911\) −5.03252e12 −0.242077 −0.121038 0.992648i \(-0.538622\pi\)
−0.121038 + 0.992648i \(0.538622\pi\)
\(912\) 0 0
\(913\) 2.84265e13 1.35396
\(914\) 1.12037e13 0.531009
\(915\) 0 0
\(916\) 2.47055e13 1.15948
\(917\) −1.57962e13 −0.737720
\(918\) 0 0
\(919\) −9.71752e12 −0.449403 −0.224701 0.974428i \(-0.572141\pi\)
−0.224701 + 0.974428i \(0.572141\pi\)
\(920\) −9.88779e11 −0.0455044
\(921\) 0 0
\(922\) −9.56522e12 −0.435919
\(923\) −2.49298e13 −1.13060
\(924\) 0 0
\(925\) 5.62385e12 0.252578
\(926\) −3.51636e13 −1.57161
\(927\) 0 0
\(928\) −1.70355e12 −0.0754028
\(929\) 3.66898e13 1.61613 0.808063 0.589096i \(-0.200516\pi\)
0.808063 + 0.589096i \(0.200516\pi\)
\(930\) 0 0
\(931\) −5.34576e12 −0.233204
\(932\) 3.22091e13 1.39832
\(933\) 0 0
\(934\) −6.33231e13 −2.72271
\(935\) −4.42251e11 −0.0189241
\(936\) 0 0
\(937\) −3.33628e13 −1.41395 −0.706975 0.707239i \(-0.749941\pi\)
−0.706975 + 0.707239i \(0.749941\pi\)
\(938\) 2.39137e13 1.00864
\(939\) 0 0
\(940\) 1.06348e13 0.444278
\(941\) 1.83859e12 0.0764419 0.0382210 0.999269i \(-0.487831\pi\)
0.0382210 + 0.999269i \(0.487831\pi\)
\(942\) 0 0
\(943\) −1.35769e13 −0.559110
\(944\) −1.77599e13 −0.727893
\(945\) 0 0
\(946\) −7.44931e12 −0.302417
\(947\) 1.28031e13 0.517296 0.258648 0.965972i \(-0.416723\pi\)
0.258648 + 0.965972i \(0.416723\pi\)
\(948\) 0 0
\(949\) 4.91121e13 1.96558
\(950\) 1.17875e13 0.469533
\(951\) 0 0
\(952\) −5.00742e10 −0.00197582
\(953\) −2.18141e13 −0.856682 −0.428341 0.903617i \(-0.640902\pi\)
−0.428341 + 0.903617i \(0.640902\pi\)
\(954\) 0 0
\(955\) −7.13773e12 −0.277680
\(956\) 3.78290e13 1.46475
\(957\) 0 0
\(958\) 6.79851e13 2.60777
\(959\) 1.14017e13 0.435298
\(960\) 0 0
\(961\) 2.60878e13 0.986694
\(962\) −6.45445e13 −2.42981
\(963\) 0 0
\(964\) −8.68218e12 −0.323804
\(965\) 1.73097e13 0.642564
\(966\) 0 0
\(967\) −1.37098e13 −0.504212 −0.252106 0.967700i \(-0.581123\pi\)
−0.252106 + 0.967700i \(0.581123\pi\)
\(968\) 9.88452e11 0.0361840
\(969\) 0 0
\(970\) 7.27652e12 0.263907
\(971\) 2.48005e12 0.0895312 0.0447656 0.998998i \(-0.485746\pi\)
0.0447656 + 0.998998i \(0.485746\pi\)
\(972\) 0 0
\(973\) 3.01849e12 0.107965
\(974\) −2.21448e13 −0.788417
\(975\) 0 0
\(976\) −5.08966e13 −1.79542
\(977\) −1.24356e13 −0.436659 −0.218330 0.975875i \(-0.570061\pi\)
−0.218330 + 0.975875i \(0.570061\pi\)
\(978\) 0 0
\(979\) 8.23636e12 0.286559
\(980\) 1.97065e12 0.0682484
\(981\) 0 0
\(982\) −3.27457e13 −1.12371
\(983\) −2.26526e13 −0.773797 −0.386899 0.922122i \(-0.626454\pi\)
−0.386899 + 0.922122i \(0.626454\pi\)
\(984\) 0 0
\(985\) −5.81448e12 −0.196810
\(986\) 1.19734e11 0.00403432
\(987\) 0 0
\(988\) −6.98746e13 −2.33299
\(989\) −8.25349e12 −0.274318
\(990\) 0 0
\(991\) −2.61705e13 −0.861948 −0.430974 0.902364i \(-0.641830\pi\)
−0.430974 + 0.902364i \(0.641830\pi\)
\(992\) −6.15378e13 −2.01762
\(993\) 0 0
\(994\) 1.41383e13 0.459367
\(995\) 1.34402e13 0.434713
\(996\) 0 0
\(997\) −7.08868e12 −0.227215 −0.113608 0.993526i \(-0.536241\pi\)
−0.113608 + 0.993526i \(0.536241\pi\)
\(998\) 5.97392e13 1.90621
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.j.1.1 5
3.2 odd 2 35.10.a.d.1.5 5
15.2 even 4 175.10.b.f.99.9 10
15.8 even 4 175.10.b.f.99.2 10
15.14 odd 2 175.10.a.f.1.1 5
21.20 even 2 245.10.a.f.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.5 5 3.2 odd 2
175.10.a.f.1.1 5 15.14 odd 2
175.10.b.f.99.2 10 15.8 even 4
175.10.b.f.99.9 10 15.2 even 4
245.10.a.f.1.5 5 21.20 even 2
315.10.a.j.1.1 5 1.1 even 1 trivial