Properties

Label 315.10.a.g.1.2
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,10,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-29.3917\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.4436 q^{2} -273.496 q^{4} +625.000 q^{5} -2401.00 q^{7} +12130.9 q^{8} -9652.23 q^{10} +8060.89 q^{11} -137129. q^{13} +37080.0 q^{14} -47313.7 q^{16} +23676.1 q^{17} +572389. q^{19} -170935. q^{20} -124489. q^{22} +997700. q^{23} +390625. q^{25} +2.11777e6 q^{26} +656664. q^{28} -1.97927e6 q^{29} -8.47740e6 q^{31} -5.48031e6 q^{32} -365643. q^{34} -1.50062e6 q^{35} -4.33062e6 q^{37} -8.83972e6 q^{38} +7.58179e6 q^{40} +1.48554e7 q^{41} +3.14842e7 q^{43} -2.20462e6 q^{44} -1.54081e7 q^{46} -2.31045e7 q^{47} +5.76480e6 q^{49} -6.03264e6 q^{50} +3.75044e7 q^{52} +6.79444e6 q^{53} +5.03805e6 q^{55} -2.91262e7 q^{56} +3.05671e7 q^{58} -8.85117e7 q^{59} +1.24823e8 q^{61} +1.30921e8 q^{62} +1.08860e8 q^{64} -8.57059e7 q^{65} +9.58712e7 q^{67} -6.47531e6 q^{68} +2.31750e7 q^{70} +2.16795e8 q^{71} -1.50701e8 q^{73} +6.68803e7 q^{74} -1.56546e8 q^{76} -1.93542e7 q^{77} -3.89487e8 q^{79} -2.95711e7 q^{80} -2.29420e8 q^{82} +7.43467e8 q^{83} +1.47975e7 q^{85} -4.86228e8 q^{86} +9.77855e7 q^{88} -2.64429e8 q^{89} +3.29248e8 q^{91} -2.72867e8 q^{92} +3.56816e8 q^{94} +3.57743e8 q^{95} +1.39343e9 q^{97} -8.90291e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 19 q^{2} + 1729 q^{4} + 2500 q^{5} - 9604 q^{7} + 30495 q^{8} + 11875 q^{10} - 82438 q^{11} - 72962 q^{13} - 45619 q^{14} + 64257 q^{16} + 357542 q^{17} + 300732 q^{19} + 1080625 q^{20} - 5595068 q^{22}+ \cdots + 109531219 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −15.4436 −0.682516 −0.341258 0.939970i \(-0.610853\pi\)
−0.341258 + 0.939970i \(0.610853\pi\)
\(3\) 0 0
\(4\) −273.496 −0.534172
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) 12130.9 1.04710
\(9\) 0 0
\(10\) −9652.23 −0.305230
\(11\) 8060.89 0.166003 0.0830015 0.996549i \(-0.473549\pi\)
0.0830015 + 0.996549i \(0.473549\pi\)
\(12\) 0 0
\(13\) −137129. −1.33164 −0.665818 0.746114i \(-0.731917\pi\)
−0.665818 + 0.746114i \(0.731917\pi\)
\(14\) 37080.0 0.257967
\(15\) 0 0
\(16\) −47313.7 −0.180488
\(17\) 23676.1 0.0687526 0.0343763 0.999409i \(-0.489056\pi\)
0.0343763 + 0.999409i \(0.489056\pi\)
\(18\) 0 0
\(19\) 572389. 1.00763 0.503814 0.863812i \(-0.331930\pi\)
0.503814 + 0.863812i \(0.331930\pi\)
\(20\) −170935. −0.238889
\(21\) 0 0
\(22\) −124489. −0.113300
\(23\) 997700. 0.743404 0.371702 0.928352i \(-0.378774\pi\)
0.371702 + 0.928352i \(0.378774\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 2.11777e6 0.908862
\(27\) 0 0
\(28\) 656664. 0.201898
\(29\) −1.97927e6 −0.519655 −0.259827 0.965655i \(-0.583666\pi\)
−0.259827 + 0.965655i \(0.583666\pi\)
\(30\) 0 0
\(31\) −8.47740e6 −1.64867 −0.824337 0.566099i \(-0.808452\pi\)
−0.824337 + 0.566099i \(0.808452\pi\)
\(32\) −5.48031e6 −0.923911
\(33\) 0 0
\(34\) −365643. −0.0469247
\(35\) −1.50062e6 −0.169031
\(36\) 0 0
\(37\) −4.33062e6 −0.379877 −0.189938 0.981796i \(-0.560829\pi\)
−0.189938 + 0.981796i \(0.560829\pi\)
\(38\) −8.83972e6 −0.687721
\(39\) 0 0
\(40\) 7.58179e6 0.468276
\(41\) 1.48554e7 0.821024 0.410512 0.911855i \(-0.365350\pi\)
0.410512 + 0.911855i \(0.365350\pi\)
\(42\) 0 0
\(43\) 3.14842e7 1.40438 0.702189 0.711991i \(-0.252206\pi\)
0.702189 + 0.711991i \(0.252206\pi\)
\(44\) −2.20462e6 −0.0886742
\(45\) 0 0
\(46\) −1.54081e7 −0.507385
\(47\) −2.31045e7 −0.690647 −0.345324 0.938484i \(-0.612231\pi\)
−0.345324 + 0.938484i \(0.612231\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −6.03264e6 −0.136503
\(51\) 0 0
\(52\) 3.75044e7 0.711323
\(53\) 6.79444e6 0.118280 0.0591401 0.998250i \(-0.481164\pi\)
0.0591401 + 0.998250i \(0.481164\pi\)
\(54\) 0 0
\(55\) 5.03805e6 0.0742388
\(56\) −2.91262e7 −0.395765
\(57\) 0 0
\(58\) 3.05671e7 0.354673
\(59\) −8.85117e7 −0.950969 −0.475485 0.879724i \(-0.657727\pi\)
−0.475485 + 0.879724i \(0.657727\pi\)
\(60\) 0 0
\(61\) 1.24823e8 1.15428 0.577138 0.816647i \(-0.304169\pi\)
0.577138 + 0.816647i \(0.304169\pi\)
\(62\) 1.30921e8 1.12525
\(63\) 0 0
\(64\) 1.08860e8 0.811071
\(65\) −8.57059e7 −0.595526
\(66\) 0 0
\(67\) 9.58712e7 0.581235 0.290617 0.956839i \(-0.406139\pi\)
0.290617 + 0.956839i \(0.406139\pi\)
\(68\) −6.47531e6 −0.0367257
\(69\) 0 0
\(70\) 2.31750e7 0.115366
\(71\) 2.16795e8 1.01248 0.506241 0.862392i \(-0.331035\pi\)
0.506241 + 0.862392i \(0.331035\pi\)
\(72\) 0 0
\(73\) −1.50701e8 −0.621101 −0.310551 0.950557i \(-0.600513\pi\)
−0.310551 + 0.950557i \(0.600513\pi\)
\(74\) 6.68803e7 0.259272
\(75\) 0 0
\(76\) −1.56546e8 −0.538247
\(77\) −1.93542e7 −0.0627432
\(78\) 0 0
\(79\) −3.89487e8 −1.12505 −0.562523 0.826781i \(-0.690169\pi\)
−0.562523 + 0.826781i \(0.690169\pi\)
\(80\) −2.95711e7 −0.0807165
\(81\) 0 0
\(82\) −2.29420e8 −0.560362
\(83\) 7.43467e8 1.71953 0.859766 0.510688i \(-0.170609\pi\)
0.859766 + 0.510688i \(0.170609\pi\)
\(84\) 0 0
\(85\) 1.47975e7 0.0307471
\(86\) −4.86228e8 −0.958510
\(87\) 0 0
\(88\) 9.77855e7 0.173821
\(89\) −2.64429e8 −0.446739 −0.223369 0.974734i \(-0.571706\pi\)
−0.223369 + 0.974734i \(0.571706\pi\)
\(90\) 0 0
\(91\) 3.29248e8 0.503311
\(92\) −2.72867e8 −0.397106
\(93\) 0 0
\(94\) 3.56816e8 0.471378
\(95\) 3.57743e8 0.450625
\(96\) 0 0
\(97\) 1.39343e9 1.59813 0.799063 0.601248i \(-0.205329\pi\)
0.799063 + 0.601248i \(0.205329\pi\)
\(98\) −8.90291e7 −0.0975022
\(99\) 0 0
\(100\) −1.06834e8 −0.106834
\(101\) 6.43863e8 0.615669 0.307834 0.951440i \(-0.400396\pi\)
0.307834 + 0.951440i \(0.400396\pi\)
\(102\) 0 0
\(103\) −9.64216e8 −0.844125 −0.422063 0.906567i \(-0.638694\pi\)
−0.422063 + 0.906567i \(0.638694\pi\)
\(104\) −1.66350e9 −1.39435
\(105\) 0 0
\(106\) −1.04930e8 −0.0807281
\(107\) 1.97477e9 1.45643 0.728215 0.685348i \(-0.240350\pi\)
0.728215 + 0.685348i \(0.240350\pi\)
\(108\) 0 0
\(109\) 1.03957e9 0.705401 0.352701 0.935736i \(-0.385263\pi\)
0.352701 + 0.935736i \(0.385263\pi\)
\(110\) −7.78055e7 −0.0506691
\(111\) 0 0
\(112\) 1.13600e8 0.0682179
\(113\) −5.48265e8 −0.316328 −0.158164 0.987413i \(-0.550557\pi\)
−0.158164 + 0.987413i \(0.550557\pi\)
\(114\) 0 0
\(115\) 6.23563e8 0.332460
\(116\) 5.41324e8 0.277585
\(117\) 0 0
\(118\) 1.36694e9 0.649052
\(119\) −5.68462e7 −0.0259860
\(120\) 0 0
\(121\) −2.29297e9 −0.972443
\(122\) −1.92771e9 −0.787811
\(123\) 0 0
\(124\) 2.31854e9 0.880676
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −5.40565e9 −1.84387 −0.921936 0.387341i \(-0.873394\pi\)
−0.921936 + 0.387341i \(0.873394\pi\)
\(128\) 1.12473e9 0.370342
\(129\) 0 0
\(130\) 1.32360e9 0.406456
\(131\) 1.81287e9 0.537832 0.268916 0.963164i \(-0.413335\pi\)
0.268916 + 0.963164i \(0.413335\pi\)
\(132\) 0 0
\(133\) −1.37431e9 −0.380847
\(134\) −1.48059e9 −0.396702
\(135\) 0 0
\(136\) 2.87211e8 0.0719906
\(137\) 7.50191e8 0.181940 0.0909702 0.995854i \(-0.471003\pi\)
0.0909702 + 0.995854i \(0.471003\pi\)
\(138\) 0 0
\(139\) 6.59090e9 1.49754 0.748769 0.662831i \(-0.230645\pi\)
0.748769 + 0.662831i \(0.230645\pi\)
\(140\) 4.10415e8 0.0902916
\(141\) 0 0
\(142\) −3.34809e9 −0.691035
\(143\) −1.10538e9 −0.221055
\(144\) 0 0
\(145\) −1.23705e9 −0.232397
\(146\) 2.32736e9 0.423911
\(147\) 0 0
\(148\) 1.18441e9 0.202920
\(149\) 3.29437e9 0.547564 0.273782 0.961792i \(-0.411725\pi\)
0.273782 + 0.961792i \(0.411725\pi\)
\(150\) 0 0
\(151\) −1.04401e10 −1.63421 −0.817103 0.576492i \(-0.804421\pi\)
−0.817103 + 0.576492i \(0.804421\pi\)
\(152\) 6.94357e9 1.05508
\(153\) 0 0
\(154\) 2.98898e8 0.0428232
\(155\) −5.29837e9 −0.737310
\(156\) 0 0
\(157\) −4.88247e9 −0.641344 −0.320672 0.947190i \(-0.603909\pi\)
−0.320672 + 0.947190i \(0.603909\pi\)
\(158\) 6.01506e9 0.767862
\(159\) 0 0
\(160\) −3.42519e9 −0.413186
\(161\) −2.39548e9 −0.280980
\(162\) 0 0
\(163\) −1.00685e10 −1.11717 −0.558584 0.829448i \(-0.688655\pi\)
−0.558584 + 0.829448i \(0.688655\pi\)
\(164\) −4.06289e9 −0.438568
\(165\) 0 0
\(166\) −1.14818e10 −1.17361
\(167\) −1.11826e10 −1.11255 −0.556273 0.831000i \(-0.687769\pi\)
−0.556273 + 0.831000i \(0.687769\pi\)
\(168\) 0 0
\(169\) 8.19997e9 0.773254
\(170\) −2.28527e8 −0.0209854
\(171\) 0 0
\(172\) −8.61080e9 −0.750180
\(173\) 1.55595e10 1.32065 0.660325 0.750980i \(-0.270418\pi\)
0.660325 + 0.750980i \(0.270418\pi\)
\(174\) 0 0
\(175\) −9.37891e8 −0.0755929
\(176\) −3.81391e8 −0.0299615
\(177\) 0 0
\(178\) 4.08372e9 0.304906
\(179\) 1.14811e10 0.835884 0.417942 0.908474i \(-0.362752\pi\)
0.417942 + 0.908474i \(0.362752\pi\)
\(180\) 0 0
\(181\) 1.64859e10 1.14172 0.570860 0.821047i \(-0.306610\pi\)
0.570860 + 0.821047i \(0.306610\pi\)
\(182\) −5.08476e9 −0.343518
\(183\) 0 0
\(184\) 1.21030e10 0.778416
\(185\) −2.70664e9 −0.169886
\(186\) 0 0
\(187\) 1.90850e8 0.0114131
\(188\) 6.31900e9 0.368925
\(189\) 0 0
\(190\) −5.52483e9 −0.307558
\(191\) −1.75186e10 −0.952466 −0.476233 0.879319i \(-0.657998\pi\)
−0.476233 + 0.879319i \(0.657998\pi\)
\(192\) 0 0
\(193\) −2.51278e10 −1.30361 −0.651805 0.758387i \(-0.725988\pi\)
−0.651805 + 0.758387i \(0.725988\pi\)
\(194\) −2.15195e10 −1.09075
\(195\) 0 0
\(196\) −1.57665e9 −0.0763103
\(197\) −3.28481e10 −1.55386 −0.776930 0.629587i \(-0.783224\pi\)
−0.776930 + 0.629587i \(0.783224\pi\)
\(198\) 0 0
\(199\) −3.56924e9 −0.161338 −0.0806691 0.996741i \(-0.525706\pi\)
−0.0806691 + 0.996741i \(0.525706\pi\)
\(200\) 4.73862e9 0.209419
\(201\) 0 0
\(202\) −9.94354e9 −0.420204
\(203\) 4.75224e9 0.196411
\(204\) 0 0
\(205\) 9.28460e9 0.367173
\(206\) 1.48909e10 0.576129
\(207\) 0 0
\(208\) 6.48810e9 0.240344
\(209\) 4.61396e9 0.167269
\(210\) 0 0
\(211\) −8.88255e9 −0.308508 −0.154254 0.988031i \(-0.549297\pi\)
−0.154254 + 0.988031i \(0.549297\pi\)
\(212\) −1.85825e9 −0.0631820
\(213\) 0 0
\(214\) −3.04975e10 −0.994037
\(215\) 1.96776e10 0.628057
\(216\) 0 0
\(217\) 2.03542e10 0.623140
\(218\) −1.60547e10 −0.481447
\(219\) 0 0
\(220\) −1.37789e9 −0.0396563
\(221\) −3.24668e9 −0.0915534
\(222\) 0 0
\(223\) 1.85138e10 0.501330 0.250665 0.968074i \(-0.419351\pi\)
0.250665 + 0.968074i \(0.419351\pi\)
\(224\) 1.31582e10 0.349206
\(225\) 0 0
\(226\) 8.46716e9 0.215899
\(227\) −6.91501e10 −1.72853 −0.864265 0.503037i \(-0.832216\pi\)
−0.864265 + 0.503037i \(0.832216\pi\)
\(228\) 0 0
\(229\) −4.14990e10 −0.997190 −0.498595 0.866835i \(-0.666150\pi\)
−0.498595 + 0.866835i \(0.666150\pi\)
\(230\) −9.63003e9 −0.226909
\(231\) 0 0
\(232\) −2.40103e10 −0.544129
\(233\) −1.06684e10 −0.237136 −0.118568 0.992946i \(-0.537830\pi\)
−0.118568 + 0.992946i \(0.537830\pi\)
\(234\) 0 0
\(235\) −1.44403e10 −0.308867
\(236\) 2.42076e10 0.507982
\(237\) 0 0
\(238\) 8.77908e8 0.0177359
\(239\) −6.89311e9 −0.136655 −0.0683274 0.997663i \(-0.521766\pi\)
−0.0683274 + 0.997663i \(0.521766\pi\)
\(240\) 0 0
\(241\) −2.72593e10 −0.520520 −0.260260 0.965539i \(-0.583808\pi\)
−0.260260 + 0.965539i \(0.583808\pi\)
\(242\) 3.54116e10 0.663708
\(243\) 0 0
\(244\) −3.41386e10 −0.616582
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −7.84913e10 −1.34179
\(248\) −1.02838e11 −1.72632
\(249\) 0 0
\(250\) −3.77040e9 −0.0610461
\(251\) −1.11185e11 −1.76812 −0.884062 0.467370i \(-0.845202\pi\)
−0.884062 + 0.467370i \(0.845202\pi\)
\(252\) 0 0
\(253\) 8.04235e9 0.123407
\(254\) 8.34825e10 1.25847
\(255\) 0 0
\(256\) −7.31062e10 −1.06384
\(257\) 3.84555e10 0.549869 0.274935 0.961463i \(-0.411344\pi\)
0.274935 + 0.961463i \(0.411344\pi\)
\(258\) 0 0
\(259\) 1.03978e10 0.143580
\(260\) 2.34402e10 0.318113
\(261\) 0 0
\(262\) −2.79972e10 −0.367079
\(263\) −1.50225e11 −1.93616 −0.968082 0.250634i \(-0.919361\pi\)
−0.968082 + 0.250634i \(0.919361\pi\)
\(264\) 0 0
\(265\) 4.24653e9 0.0528965
\(266\) 2.12242e10 0.259934
\(267\) 0 0
\(268\) −2.62204e10 −0.310479
\(269\) −9.22583e10 −1.07429 −0.537143 0.843491i \(-0.680497\pi\)
−0.537143 + 0.843491i \(0.680497\pi\)
\(270\) 0 0
\(271\) −1.10392e11 −1.24330 −0.621649 0.783296i \(-0.713537\pi\)
−0.621649 + 0.783296i \(0.713537\pi\)
\(272\) −1.12020e9 −0.0124090
\(273\) 0 0
\(274\) −1.15856e10 −0.124177
\(275\) 3.14878e9 0.0332006
\(276\) 0 0
\(277\) 1.06151e11 1.08334 0.541672 0.840590i \(-0.317792\pi\)
0.541672 + 0.840590i \(0.317792\pi\)
\(278\) −1.01787e11 −1.02209
\(279\) 0 0
\(280\) −1.82039e10 −0.176992
\(281\) −1.69943e11 −1.62602 −0.813008 0.582252i \(-0.802172\pi\)
−0.813008 + 0.582252i \(0.802172\pi\)
\(282\) 0 0
\(283\) −6.63477e10 −0.614875 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(284\) −5.92927e10 −0.540840
\(285\) 0 0
\(286\) 1.70711e10 0.150874
\(287\) −3.56677e10 −0.310318
\(288\) 0 0
\(289\) −1.18027e11 −0.995273
\(290\) 1.91044e10 0.158614
\(291\) 0 0
\(292\) 4.12161e10 0.331775
\(293\) −7.54377e9 −0.0597976 −0.0298988 0.999553i \(-0.509519\pi\)
−0.0298988 + 0.999553i \(0.509519\pi\)
\(294\) 0 0
\(295\) −5.53198e10 −0.425286
\(296\) −5.25342e10 −0.397768
\(297\) 0 0
\(298\) −5.08769e10 −0.373721
\(299\) −1.36814e11 −0.989943
\(300\) 0 0
\(301\) −7.55935e10 −0.530805
\(302\) 1.61232e11 1.11537
\(303\) 0 0
\(304\) −2.70818e10 −0.181864
\(305\) 7.80142e10 0.516208
\(306\) 0 0
\(307\) −9.90848e10 −0.636626 −0.318313 0.947986i \(-0.603116\pi\)
−0.318313 + 0.947986i \(0.603116\pi\)
\(308\) 5.29330e9 0.0335157
\(309\) 0 0
\(310\) 8.18258e10 0.503225
\(311\) 2.78000e10 0.168509 0.0842545 0.996444i \(-0.473149\pi\)
0.0842545 + 0.996444i \(0.473149\pi\)
\(312\) 0 0
\(313\) 7.09223e10 0.417670 0.208835 0.977951i \(-0.433033\pi\)
0.208835 + 0.977951i \(0.433033\pi\)
\(314\) 7.54027e10 0.437727
\(315\) 0 0
\(316\) 1.06523e11 0.600969
\(317\) 3.11422e11 1.73214 0.866068 0.499926i \(-0.166640\pi\)
0.866068 + 0.499926i \(0.166640\pi\)
\(318\) 0 0
\(319\) −1.59547e10 −0.0862643
\(320\) 6.80376e10 0.362722
\(321\) 0 0
\(322\) 3.69947e10 0.191773
\(323\) 1.35519e10 0.0692770
\(324\) 0 0
\(325\) −5.35662e10 −0.266327
\(326\) 1.55493e11 0.762485
\(327\) 0 0
\(328\) 1.80208e11 0.859692
\(329\) 5.54739e10 0.261040
\(330\) 0 0
\(331\) 2.94782e11 1.34982 0.674908 0.737902i \(-0.264183\pi\)
0.674908 + 0.737902i \(0.264183\pi\)
\(332\) −2.03336e11 −0.918527
\(333\) 0 0
\(334\) 1.72699e11 0.759330
\(335\) 5.99195e10 0.259936
\(336\) 0 0
\(337\) −2.02609e11 −0.855705 −0.427852 0.903849i \(-0.640730\pi\)
−0.427852 + 0.903849i \(0.640730\pi\)
\(338\) −1.26637e11 −0.527758
\(339\) 0 0
\(340\) −4.04707e9 −0.0164243
\(341\) −6.83353e10 −0.273685
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) 3.81930e11 1.47052
\(345\) 0 0
\(346\) −2.40294e11 −0.901365
\(347\) 1.52000e11 0.562810 0.281405 0.959589i \(-0.409200\pi\)
0.281405 + 0.959589i \(0.409200\pi\)
\(348\) 0 0
\(349\) −2.82049e11 −1.01768 −0.508840 0.860861i \(-0.669925\pi\)
−0.508840 + 0.860861i \(0.669925\pi\)
\(350\) 1.44844e10 0.0515933
\(351\) 0 0
\(352\) −4.41762e10 −0.153372
\(353\) 4.32937e11 1.48402 0.742008 0.670391i \(-0.233874\pi\)
0.742008 + 0.670391i \(0.233874\pi\)
\(354\) 0 0
\(355\) 1.35497e11 0.452796
\(356\) 7.23203e10 0.238636
\(357\) 0 0
\(358\) −1.77310e11 −0.570504
\(359\) −1.35500e10 −0.0430542 −0.0215271 0.999768i \(-0.506853\pi\)
−0.0215271 + 0.999768i \(0.506853\pi\)
\(360\) 0 0
\(361\) 4.94112e9 0.0153124
\(362\) −2.54601e11 −0.779242
\(363\) 0 0
\(364\) −9.00480e10 −0.268855
\(365\) −9.41879e10 −0.277765
\(366\) 0 0
\(367\) −1.26149e11 −0.362984 −0.181492 0.983392i \(-0.558093\pi\)
−0.181492 + 0.983392i \(0.558093\pi\)
\(368\) −4.72049e10 −0.134175
\(369\) 0 0
\(370\) 4.18002e10 0.115950
\(371\) −1.63135e10 −0.0447057
\(372\) 0 0
\(373\) −2.45212e11 −0.655923 −0.327961 0.944691i \(-0.606362\pi\)
−0.327961 + 0.944691i \(0.606362\pi\)
\(374\) −2.94741e9 −0.00778964
\(375\) 0 0
\(376\) −2.80278e11 −0.723175
\(377\) 2.71417e11 0.691991
\(378\) 0 0
\(379\) 3.62591e11 0.902694 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(380\) −9.78413e10 −0.240711
\(381\) 0 0
\(382\) 2.70550e11 0.650073
\(383\) −7.23039e10 −0.171699 −0.0858494 0.996308i \(-0.527360\pi\)
−0.0858494 + 0.996308i \(0.527360\pi\)
\(384\) 0 0
\(385\) −1.20964e10 −0.0280596
\(386\) 3.88064e11 0.889734
\(387\) 0 0
\(388\) −3.81097e11 −0.853674
\(389\) −3.00609e11 −0.665624 −0.332812 0.942993i \(-0.607998\pi\)
−0.332812 + 0.942993i \(0.607998\pi\)
\(390\) 0 0
\(391\) 2.36216e10 0.0511110
\(392\) 6.99320e10 0.149585
\(393\) 0 0
\(394\) 5.07291e11 1.06053
\(395\) −2.43429e11 −0.503136
\(396\) 0 0
\(397\) −2.86335e11 −0.578518 −0.289259 0.957251i \(-0.593409\pi\)
−0.289259 + 0.957251i \(0.593409\pi\)
\(398\) 5.51219e10 0.110116
\(399\) 0 0
\(400\) −1.84819e10 −0.0360975
\(401\) −8.19964e11 −1.58360 −0.791800 0.610781i \(-0.790856\pi\)
−0.791800 + 0.610781i \(0.790856\pi\)
\(402\) 0 0
\(403\) 1.16250e12 2.19543
\(404\) −1.76094e11 −0.328873
\(405\) 0 0
\(406\) −7.33915e10 −0.134054
\(407\) −3.49087e10 −0.0630607
\(408\) 0 0
\(409\) 9.67528e11 1.70966 0.854828 0.518911i \(-0.173663\pi\)
0.854828 + 0.518911i \(0.173663\pi\)
\(410\) −1.43387e11 −0.250601
\(411\) 0 0
\(412\) 2.63710e11 0.450908
\(413\) 2.12517e11 0.359433
\(414\) 0 0
\(415\) 4.64667e11 0.768998
\(416\) 7.51511e11 1.23031
\(417\) 0 0
\(418\) −7.12560e10 −0.114164
\(419\) 8.51357e10 0.134942 0.0674712 0.997721i \(-0.478507\pi\)
0.0674712 + 0.997721i \(0.478507\pi\)
\(420\) 0 0
\(421\) 5.61043e10 0.0870415 0.0435207 0.999053i \(-0.486143\pi\)
0.0435207 + 0.999053i \(0.486143\pi\)
\(422\) 1.37178e11 0.210562
\(423\) 0 0
\(424\) 8.24224e10 0.123851
\(425\) 9.24846e9 0.0137505
\(426\) 0 0
\(427\) −2.99700e11 −0.436275
\(428\) −5.40093e11 −0.777985
\(429\) 0 0
\(430\) −3.03892e11 −0.428659
\(431\) 1.36440e11 0.190456 0.0952278 0.995456i \(-0.469642\pi\)
0.0952278 + 0.995456i \(0.469642\pi\)
\(432\) 0 0
\(433\) 3.25710e11 0.445282 0.222641 0.974900i \(-0.428532\pi\)
0.222641 + 0.974900i \(0.428532\pi\)
\(434\) −3.14342e11 −0.425303
\(435\) 0 0
\(436\) −2.84320e11 −0.376806
\(437\) 5.71072e11 0.749074
\(438\) 0 0
\(439\) 1.44336e11 0.185474 0.0927372 0.995691i \(-0.470438\pi\)
0.0927372 + 0.995691i \(0.470438\pi\)
\(440\) 6.11160e10 0.0777352
\(441\) 0 0
\(442\) 5.01404e10 0.0624867
\(443\) 9.59823e11 1.18406 0.592031 0.805915i \(-0.298326\pi\)
0.592031 + 0.805915i \(0.298326\pi\)
\(444\) 0 0
\(445\) −1.65268e11 −0.199788
\(446\) −2.85919e11 −0.342166
\(447\) 0 0
\(448\) −2.61373e11 −0.306556
\(449\) 1.02004e12 1.18443 0.592215 0.805780i \(-0.298253\pi\)
0.592215 + 0.805780i \(0.298253\pi\)
\(450\) 0 0
\(451\) 1.19747e11 0.136292
\(452\) 1.49948e11 0.168974
\(453\) 0 0
\(454\) 1.06792e12 1.17975
\(455\) 2.05780e11 0.225088
\(456\) 0 0
\(457\) −6.45199e11 −0.691944 −0.345972 0.938245i \(-0.612451\pi\)
−0.345972 + 0.938245i \(0.612451\pi\)
\(458\) 6.40892e11 0.680598
\(459\) 0 0
\(460\) −1.70542e11 −0.177591
\(461\) −1.04575e12 −1.07838 −0.539192 0.842183i \(-0.681270\pi\)
−0.539192 + 0.842183i \(0.681270\pi\)
\(462\) 0 0
\(463\) 6.01465e11 0.608269 0.304134 0.952629i \(-0.401633\pi\)
0.304134 + 0.952629i \(0.401633\pi\)
\(464\) 9.36469e10 0.0937913
\(465\) 0 0
\(466\) 1.64758e11 0.161849
\(467\) −9.53000e11 −0.927186 −0.463593 0.886048i \(-0.653440\pi\)
−0.463593 + 0.886048i \(0.653440\pi\)
\(468\) 0 0
\(469\) −2.30187e11 −0.219686
\(470\) 2.23010e11 0.210806
\(471\) 0 0
\(472\) −1.07372e12 −0.995757
\(473\) 2.53790e11 0.233131
\(474\) 0 0
\(475\) 2.23589e11 0.201525
\(476\) 1.55472e10 0.0138810
\(477\) 0 0
\(478\) 1.06454e11 0.0932690
\(479\) −1.99157e12 −1.72857 −0.864283 0.503005i \(-0.832228\pi\)
−0.864283 + 0.503005i \(0.832228\pi\)
\(480\) 0 0
\(481\) 5.93856e11 0.505857
\(482\) 4.20981e11 0.355263
\(483\) 0 0
\(484\) 6.27119e11 0.519452
\(485\) 8.70891e11 0.714703
\(486\) 0 0
\(487\) −2.40847e12 −1.94027 −0.970134 0.242570i \(-0.922010\pi\)
−0.970134 + 0.242570i \(0.922010\pi\)
\(488\) 1.51421e12 1.20864
\(489\) 0 0
\(490\) −5.56432e10 −0.0436043
\(491\) −2.85374e11 −0.221589 −0.110794 0.993843i \(-0.535339\pi\)
−0.110794 + 0.993843i \(0.535339\pi\)
\(492\) 0 0
\(493\) −4.68614e10 −0.0357276
\(494\) 1.21219e12 0.915794
\(495\) 0 0
\(496\) 4.01097e11 0.297565
\(497\) −5.20526e11 −0.382682
\(498\) 0 0
\(499\) 2.11594e12 1.52775 0.763873 0.645367i \(-0.223296\pi\)
0.763873 + 0.645367i \(0.223296\pi\)
\(500\) −6.67715e10 −0.0477778
\(501\) 0 0
\(502\) 1.71709e12 1.20677
\(503\) −7.41865e11 −0.516736 −0.258368 0.966047i \(-0.583185\pi\)
−0.258368 + 0.966047i \(0.583185\pi\)
\(504\) 0 0
\(505\) 4.02414e11 0.275335
\(506\) −1.24203e11 −0.0842274
\(507\) 0 0
\(508\) 1.47842e12 0.984946
\(509\) −1.62377e12 −1.07225 −0.536124 0.844140i \(-0.680112\pi\)
−0.536124 + 0.844140i \(0.680112\pi\)
\(510\) 0 0
\(511\) 3.61832e11 0.234754
\(512\) 5.53160e11 0.355742
\(513\) 0 0
\(514\) −5.93890e11 −0.375294
\(515\) −6.02635e11 −0.377504
\(516\) 0 0
\(517\) −1.86243e11 −0.114649
\(518\) −1.60580e11 −0.0979955
\(519\) 0 0
\(520\) −1.03969e12 −0.623573
\(521\) −1.48817e12 −0.884877 −0.442439 0.896799i \(-0.645887\pi\)
−0.442439 + 0.896799i \(0.645887\pi\)
\(522\) 0 0
\(523\) 2.41360e12 1.41061 0.705306 0.708903i \(-0.250810\pi\)
0.705306 + 0.708903i \(0.250810\pi\)
\(524\) −4.95814e11 −0.287295
\(525\) 0 0
\(526\) 2.32001e12 1.32146
\(527\) −2.00711e11 −0.113351
\(528\) 0 0
\(529\) −8.05747e11 −0.447351
\(530\) −6.55815e10 −0.0361027
\(531\) 0 0
\(532\) 3.75867e11 0.203438
\(533\) −2.03711e12 −1.09331
\(534\) 0 0
\(535\) 1.23423e12 0.651336
\(536\) 1.16300e12 0.608609
\(537\) 0 0
\(538\) 1.42480e12 0.733218
\(539\) 4.64694e10 0.0237147
\(540\) 0 0
\(541\) −2.14334e12 −1.07573 −0.537864 0.843032i \(-0.680769\pi\)
−0.537864 + 0.843032i \(0.680769\pi\)
\(542\) 1.70484e12 0.848570
\(543\) 0 0
\(544\) −1.29752e11 −0.0635213
\(545\) 6.49734e11 0.315465
\(546\) 0 0
\(547\) 1.02462e12 0.489349 0.244675 0.969605i \(-0.421319\pi\)
0.244675 + 0.969605i \(0.421319\pi\)
\(548\) −2.05174e11 −0.0971875
\(549\) 0 0
\(550\) −4.86285e10 −0.0226599
\(551\) −1.13291e12 −0.523618
\(552\) 0 0
\(553\) 9.35157e11 0.425228
\(554\) −1.63935e12 −0.739399
\(555\) 0 0
\(556\) −1.80259e12 −0.799944
\(557\) 3.18977e12 1.40414 0.702070 0.712108i \(-0.252259\pi\)
0.702070 + 0.712108i \(0.252259\pi\)
\(558\) 0 0
\(559\) −4.31740e12 −1.87012
\(560\) 7.10002e10 0.0305080
\(561\) 0 0
\(562\) 2.62453e12 1.10978
\(563\) −1.08826e12 −0.456503 −0.228252 0.973602i \(-0.573301\pi\)
−0.228252 + 0.973602i \(0.573301\pi\)
\(564\) 0 0
\(565\) −3.42666e11 −0.141466
\(566\) 1.02465e12 0.419662
\(567\) 0 0
\(568\) 2.62992e12 1.06017
\(569\) 3.28834e12 1.31514 0.657569 0.753394i \(-0.271585\pi\)
0.657569 + 0.753394i \(0.271585\pi\)
\(570\) 0 0
\(571\) −1.88806e12 −0.743283 −0.371641 0.928376i \(-0.621205\pi\)
−0.371641 + 0.928376i \(0.621205\pi\)
\(572\) 3.02319e11 0.118082
\(573\) 0 0
\(574\) 5.50837e11 0.211797
\(575\) 3.89727e11 0.148681
\(576\) 0 0
\(577\) 1.12881e12 0.423963 0.211982 0.977274i \(-0.432008\pi\)
0.211982 + 0.977274i \(0.432008\pi\)
\(578\) 1.82276e12 0.679289
\(579\) 0 0
\(580\) 3.38328e11 0.124140
\(581\) −1.78506e12 −0.649922
\(582\) 0 0
\(583\) 5.47692e10 0.0196349
\(584\) −1.82813e12 −0.650353
\(585\) 0 0
\(586\) 1.16503e11 0.0408128
\(587\) −6.31776e11 −0.219630 −0.109815 0.993952i \(-0.535026\pi\)
−0.109815 + 0.993952i \(0.535026\pi\)
\(588\) 0 0
\(589\) −4.85237e12 −1.66125
\(590\) 8.54335e11 0.290265
\(591\) 0 0
\(592\) 2.04898e11 0.0685630
\(593\) 4.97504e12 1.65215 0.826077 0.563557i \(-0.190568\pi\)
0.826077 + 0.563557i \(0.190568\pi\)
\(594\) 0 0
\(595\) −3.55289e10 −0.0116213
\(596\) −9.00999e11 −0.292493
\(597\) 0 0
\(598\) 2.11290e12 0.675652
\(599\) 4.55686e12 1.44626 0.723128 0.690714i \(-0.242704\pi\)
0.723128 + 0.690714i \(0.242704\pi\)
\(600\) 0 0
\(601\) −5.78188e12 −1.80773 −0.903866 0.427815i \(-0.859283\pi\)
−0.903866 + 0.427815i \(0.859283\pi\)
\(602\) 1.16743e12 0.362283
\(603\) 0 0
\(604\) 2.85532e12 0.872948
\(605\) −1.43311e12 −0.434890
\(606\) 0 0
\(607\) −7.37332e11 −0.220452 −0.110226 0.993907i \(-0.535157\pi\)
−0.110226 + 0.993907i \(0.535157\pi\)
\(608\) −3.13687e12 −0.930958
\(609\) 0 0
\(610\) −1.20482e12 −0.352320
\(611\) 3.16831e12 0.919691
\(612\) 0 0
\(613\) −3.50587e12 −1.00282 −0.501410 0.865210i \(-0.667185\pi\)
−0.501410 + 0.865210i \(0.667185\pi\)
\(614\) 1.53022e12 0.434507
\(615\) 0 0
\(616\) −2.34783e11 −0.0656982
\(617\) −2.47222e12 −0.686759 −0.343380 0.939197i \(-0.611572\pi\)
−0.343380 + 0.939197i \(0.611572\pi\)
\(618\) 0 0
\(619\) −1.57589e12 −0.431436 −0.215718 0.976456i \(-0.569209\pi\)
−0.215718 + 0.976456i \(0.569209\pi\)
\(620\) 1.44908e12 0.393850
\(621\) 0 0
\(622\) −4.29331e11 −0.115010
\(623\) 6.34894e11 0.168851
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −1.09529e12 −0.285066
\(627\) 0 0
\(628\) 1.33534e12 0.342588
\(629\) −1.02532e11 −0.0261175
\(630\) 0 0
\(631\) 4.95895e11 0.124525 0.0622627 0.998060i \(-0.480168\pi\)
0.0622627 + 0.998060i \(0.480168\pi\)
\(632\) −4.72481e12 −1.17803
\(633\) 0 0
\(634\) −4.80946e12 −1.18221
\(635\) −3.37853e12 −0.824605
\(636\) 0 0
\(637\) −7.90524e11 −0.190234
\(638\) 2.46398e11 0.0588767
\(639\) 0 0
\(640\) 7.02956e11 0.165622
\(641\) −1.72054e12 −0.402535 −0.201268 0.979536i \(-0.564506\pi\)
−0.201268 + 0.979536i \(0.564506\pi\)
\(642\) 0 0
\(643\) 8.19457e12 1.89050 0.945250 0.326346i \(-0.105818\pi\)
0.945250 + 0.326346i \(0.105818\pi\)
\(644\) 6.55154e11 0.150092
\(645\) 0 0
\(646\) −2.09290e11 −0.0472826
\(647\) 2.56336e12 0.575097 0.287549 0.957766i \(-0.407160\pi\)
0.287549 + 0.957766i \(0.407160\pi\)
\(648\) 0 0
\(649\) −7.13483e11 −0.157864
\(650\) 8.27253e11 0.181772
\(651\) 0 0
\(652\) 2.75368e12 0.596760
\(653\) 2.23256e12 0.480499 0.240250 0.970711i \(-0.422771\pi\)
0.240250 + 0.970711i \(0.422771\pi\)
\(654\) 0 0
\(655\) 1.13305e12 0.240526
\(656\) −7.02863e11 −0.148185
\(657\) 0 0
\(658\) −8.56715e11 −0.178164
\(659\) −6.47077e12 −1.33651 −0.668254 0.743933i \(-0.732958\pi\)
−0.668254 + 0.743933i \(0.732958\pi\)
\(660\) 0 0
\(661\) −2.35514e12 −0.479856 −0.239928 0.970791i \(-0.577124\pi\)
−0.239928 + 0.970791i \(0.577124\pi\)
\(662\) −4.55248e12 −0.921270
\(663\) 0 0
\(664\) 9.01890e12 1.80052
\(665\) −8.58941e11 −0.170320
\(666\) 0 0
\(667\) −1.97472e12 −0.386314
\(668\) 3.05839e12 0.594291
\(669\) 0 0
\(670\) −9.25371e11 −0.177410
\(671\) 1.00618e12 0.191613
\(672\) 0 0
\(673\) −1.00068e13 −1.88030 −0.940149 0.340764i \(-0.889314\pi\)
−0.940149 + 0.340764i \(0.889314\pi\)
\(674\) 3.12900e12 0.584032
\(675\) 0 0
\(676\) −2.24266e12 −0.413051
\(677\) 4.75925e12 0.870742 0.435371 0.900251i \(-0.356617\pi\)
0.435371 + 0.900251i \(0.356617\pi\)
\(678\) 0 0
\(679\) −3.34561e12 −0.604035
\(680\) 1.79507e11 0.0321952
\(681\) 0 0
\(682\) 1.05534e12 0.186794
\(683\) −5.44016e11 −0.0956575 −0.0478287 0.998856i \(-0.515230\pi\)
−0.0478287 + 0.998856i \(0.515230\pi\)
\(684\) 0 0
\(685\) 4.68869e11 0.0813662
\(686\) 2.13759e11 0.0368524
\(687\) 0 0
\(688\) −1.48963e12 −0.253473
\(689\) −9.31717e11 −0.157506
\(690\) 0 0
\(691\) 8.57339e12 1.43054 0.715272 0.698846i \(-0.246303\pi\)
0.715272 + 0.698846i \(0.246303\pi\)
\(692\) −4.25546e12 −0.705455
\(693\) 0 0
\(694\) −2.34743e12 −0.384127
\(695\) 4.11931e12 0.669720
\(696\) 0 0
\(697\) 3.51716e11 0.0564476
\(698\) 4.35585e12 0.694582
\(699\) 0 0
\(700\) 2.56510e11 0.0403796
\(701\) −1.25396e13 −1.96133 −0.980666 0.195687i \(-0.937306\pi\)
−0.980666 + 0.195687i \(0.937306\pi\)
\(702\) 0 0
\(703\) −2.47880e12 −0.382774
\(704\) 8.77510e11 0.134640
\(705\) 0 0
\(706\) −6.68609e12 −1.01286
\(707\) −1.54591e12 −0.232701
\(708\) 0 0
\(709\) 4.37869e12 0.650782 0.325391 0.945580i \(-0.394504\pi\)
0.325391 + 0.945580i \(0.394504\pi\)
\(710\) −2.09256e12 −0.309040
\(711\) 0 0
\(712\) −3.20775e12 −0.467779
\(713\) −8.45790e12 −1.22563
\(714\) 0 0
\(715\) −6.90865e11 −0.0988590
\(716\) −3.14004e12 −0.446506
\(717\) 0 0
\(718\) 2.09261e11 0.0293852
\(719\) −7.76448e12 −1.08351 −0.541754 0.840537i \(-0.682240\pi\)
−0.541754 + 0.840537i \(0.682240\pi\)
\(720\) 0 0
\(721\) 2.31508e12 0.319049
\(722\) −7.63086e10 −0.0104510
\(723\) 0 0
\(724\) −4.50884e12 −0.609875
\(725\) −7.73154e11 −0.103931
\(726\) 0 0
\(727\) 7.08318e11 0.0940423 0.0470211 0.998894i \(-0.485027\pi\)
0.0470211 + 0.998894i \(0.485027\pi\)
\(728\) 3.99406e12 0.527015
\(729\) 0 0
\(730\) 1.45460e12 0.189579
\(731\) 7.45421e11 0.0965547
\(732\) 0 0
\(733\) 6.81304e12 0.871712 0.435856 0.900017i \(-0.356446\pi\)
0.435856 + 0.900017i \(0.356446\pi\)
\(734\) 1.94820e12 0.247743
\(735\) 0 0
\(736\) −5.46771e12 −0.686839
\(737\) 7.72807e11 0.0964866
\(738\) 0 0
\(739\) 9.20369e12 1.13517 0.567586 0.823314i \(-0.307877\pi\)
0.567586 + 0.823314i \(0.307877\pi\)
\(740\) 7.40256e11 0.0907484
\(741\) 0 0
\(742\) 2.51938e11 0.0305124
\(743\) 8.72196e12 1.04994 0.524970 0.851121i \(-0.324077\pi\)
0.524970 + 0.851121i \(0.324077\pi\)
\(744\) 0 0
\(745\) 2.05898e12 0.244878
\(746\) 3.78695e12 0.447678
\(747\) 0 0
\(748\) −5.21968e10 −0.00609658
\(749\) −4.74143e12 −0.550479
\(750\) 0 0
\(751\) −1.63201e13 −1.87216 −0.936078 0.351793i \(-0.885572\pi\)
−0.936078 + 0.351793i \(0.885572\pi\)
\(752\) 1.09316e12 0.124653
\(753\) 0 0
\(754\) −4.19164e12 −0.472295
\(755\) −6.52504e12 −0.730839
\(756\) 0 0
\(757\) −3.23287e12 −0.357813 −0.178907 0.983866i \(-0.557256\pi\)
−0.178907 + 0.983866i \(0.557256\pi\)
\(758\) −5.59970e12 −0.616103
\(759\) 0 0
\(760\) 4.33973e12 0.471847
\(761\) 6.46766e11 0.0699063 0.0349531 0.999389i \(-0.488872\pi\)
0.0349531 + 0.999389i \(0.488872\pi\)
\(762\) 0 0
\(763\) −2.49602e12 −0.266617
\(764\) 4.79127e12 0.508781
\(765\) 0 0
\(766\) 1.11663e12 0.117187
\(767\) 1.21376e13 1.26634
\(768\) 0 0
\(769\) −2.42101e12 −0.249648 −0.124824 0.992179i \(-0.539837\pi\)
−0.124824 + 0.992179i \(0.539837\pi\)
\(770\) 1.86811e11 0.0191511
\(771\) 0 0
\(772\) 6.87237e12 0.696352
\(773\) 4.43910e12 0.447185 0.223592 0.974683i \(-0.428222\pi\)
0.223592 + 0.974683i \(0.428222\pi\)
\(774\) 0 0
\(775\) −3.31148e12 −0.329735
\(776\) 1.69035e13 1.67339
\(777\) 0 0
\(778\) 4.64248e12 0.454299
\(779\) 8.50304e12 0.827286
\(780\) 0 0
\(781\) 1.74756e12 0.168075
\(782\) −3.64802e11 −0.0348840
\(783\) 0 0
\(784\) −2.72754e11 −0.0257839
\(785\) −3.05154e12 −0.286818
\(786\) 0 0
\(787\) −1.72989e13 −1.60744 −0.803718 0.595011i \(-0.797148\pi\)
−0.803718 + 0.595011i \(0.797148\pi\)
\(788\) 8.98382e12 0.830029
\(789\) 0 0
\(790\) 3.75941e12 0.343398
\(791\) 1.31638e12 0.119561
\(792\) 0 0
\(793\) −1.71169e13 −1.53708
\(794\) 4.42203e12 0.394848
\(795\) 0 0
\(796\) 9.76175e11 0.0861825
\(797\) 1.37776e13 1.20951 0.604756 0.796410i \(-0.293270\pi\)
0.604756 + 0.796410i \(0.293270\pi\)
\(798\) 0 0
\(799\) −5.47024e11 −0.0474838
\(800\) −2.14075e12 −0.184782
\(801\) 0 0
\(802\) 1.26632e13 1.08083
\(803\) −1.21478e12 −0.103105
\(804\) 0 0
\(805\) −1.49717e12 −0.125658
\(806\) −1.79531e13 −1.49842
\(807\) 0 0
\(808\) 7.81061e12 0.644665
\(809\) −1.38369e13 −1.13572 −0.567860 0.823125i \(-0.692228\pi\)
−0.567860 + 0.823125i \(0.692228\pi\)
\(810\) 0 0
\(811\) −1.96078e13 −1.59161 −0.795804 0.605555i \(-0.792951\pi\)
−0.795804 + 0.605555i \(0.792951\pi\)
\(812\) −1.29972e12 −0.104917
\(813\) 0 0
\(814\) 5.39114e11 0.0430399
\(815\) −6.29278e12 −0.499613
\(816\) 0 0
\(817\) 1.80212e13 1.41509
\(818\) −1.49421e13 −1.16687
\(819\) 0 0
\(820\) −2.53930e12 −0.196134
\(821\) −2.41017e13 −1.85142 −0.925708 0.378239i \(-0.876530\pi\)
−0.925708 + 0.378239i \(0.876530\pi\)
\(822\) 0 0
\(823\) 8.20762e12 0.623617 0.311809 0.950145i \(-0.399065\pi\)
0.311809 + 0.950145i \(0.399065\pi\)
\(824\) −1.16968e13 −0.883881
\(825\) 0 0
\(826\) −3.28201e12 −0.245318
\(827\) −2.84612e12 −0.211582 −0.105791 0.994388i \(-0.533737\pi\)
−0.105791 + 0.994388i \(0.533737\pi\)
\(828\) 0 0
\(829\) −5.88562e12 −0.432809 −0.216405 0.976304i \(-0.569433\pi\)
−0.216405 + 0.976304i \(0.569433\pi\)
\(830\) −7.17612e12 −0.524853
\(831\) 0 0
\(832\) −1.49279e13 −1.08005
\(833\) 1.36488e11 0.00982180
\(834\) 0 0
\(835\) −6.98911e12 −0.497546
\(836\) −1.26190e12 −0.0893505
\(837\) 0 0
\(838\) −1.31480e12 −0.0921003
\(839\) 8.44799e12 0.588606 0.294303 0.955712i \(-0.404913\pi\)
0.294303 + 0.955712i \(0.404913\pi\)
\(840\) 0 0
\(841\) −1.05896e13 −0.729959
\(842\) −8.66450e11 −0.0594072
\(843\) 0 0
\(844\) 2.42934e12 0.164796
\(845\) 5.12498e12 0.345810
\(846\) 0 0
\(847\) 5.50542e12 0.367549
\(848\) −3.21470e11 −0.0213481
\(849\) 0 0
\(850\) −1.42829e11 −0.00938495
\(851\) −4.32066e12 −0.282402
\(852\) 0 0
\(853\) −7.17311e12 −0.463913 −0.231957 0.972726i \(-0.574513\pi\)
−0.231957 + 0.972726i \(0.574513\pi\)
\(854\) 4.62843e12 0.297765
\(855\) 0 0
\(856\) 2.39557e13 1.52502
\(857\) −2.17636e13 −1.37821 −0.689107 0.724660i \(-0.741997\pi\)
−0.689107 + 0.724660i \(0.741997\pi\)
\(858\) 0 0
\(859\) −9.02945e12 −0.565838 −0.282919 0.959144i \(-0.591303\pi\)
−0.282919 + 0.959144i \(0.591303\pi\)
\(860\) −5.38175e12 −0.335491
\(861\) 0 0
\(862\) −2.10712e12 −0.129989
\(863\) 1.84428e13 1.13182 0.565910 0.824467i \(-0.308525\pi\)
0.565910 + 0.824467i \(0.308525\pi\)
\(864\) 0 0
\(865\) 9.72468e12 0.590613
\(866\) −5.03012e12 −0.303912
\(867\) 0 0
\(868\) −5.56680e12 −0.332864
\(869\) −3.13961e12 −0.186761
\(870\) 0 0
\(871\) −1.31468e13 −0.773993
\(872\) 1.26109e13 0.738623
\(873\) 0 0
\(874\) −8.81940e12 −0.511255
\(875\) −5.86182e11 −0.0338062
\(876\) 0 0
\(877\) −1.12140e13 −0.640120 −0.320060 0.947397i \(-0.603703\pi\)
−0.320060 + 0.947397i \(0.603703\pi\)
\(878\) −2.22906e12 −0.126589
\(879\) 0 0
\(880\) −2.38369e11 −0.0133992
\(881\) −3.00664e13 −1.68147 −0.840735 0.541446i \(-0.817877\pi\)
−0.840735 + 0.541446i \(0.817877\pi\)
\(882\) 0 0
\(883\) −1.58968e13 −0.880007 −0.440004 0.897996i \(-0.645023\pi\)
−0.440004 + 0.897996i \(0.645023\pi\)
\(884\) 8.87956e11 0.0489053
\(885\) 0 0
\(886\) −1.48231e13 −0.808141
\(887\) −1.46131e13 −0.792658 −0.396329 0.918109i \(-0.629716\pi\)
−0.396329 + 0.918109i \(0.629716\pi\)
\(888\) 0 0
\(889\) 1.29790e13 0.696918
\(890\) 2.55233e12 0.136358
\(891\) 0 0
\(892\) −5.06346e12 −0.267797
\(893\) −1.32248e13 −0.695915
\(894\) 0 0
\(895\) 7.17570e12 0.373819
\(896\) −2.70047e12 −0.139976
\(897\) 0 0
\(898\) −1.57531e13 −0.808393
\(899\) 1.67791e13 0.856742
\(900\) 0 0
\(901\) 1.60866e11 0.00813208
\(902\) −1.84933e12 −0.0930217
\(903\) 0 0
\(904\) −6.65093e12 −0.331226
\(905\) 1.03037e13 0.510593
\(906\) 0 0
\(907\) 1.41504e12 0.0694281 0.0347141 0.999397i \(-0.488948\pi\)
0.0347141 + 0.999397i \(0.488948\pi\)
\(908\) 1.89123e13 0.923333
\(909\) 0 0
\(910\) −3.17797e12 −0.153626
\(911\) 1.61901e13 0.778784 0.389392 0.921072i \(-0.372685\pi\)
0.389392 + 0.921072i \(0.372685\pi\)
\(912\) 0 0
\(913\) 5.99301e12 0.285447
\(914\) 9.96417e12 0.472262
\(915\) 0 0
\(916\) 1.13498e13 0.532671
\(917\) −4.35271e12 −0.203281
\(918\) 0 0
\(919\) −1.60413e13 −0.741858 −0.370929 0.928661i \(-0.620961\pi\)
−0.370929 + 0.928661i \(0.620961\pi\)
\(920\) 7.56435e12 0.348118
\(921\) 0 0
\(922\) 1.61501e13 0.736014
\(923\) −2.97290e13 −1.34826
\(924\) 0 0
\(925\) −1.69165e12 −0.0759753
\(926\) −9.28876e12 −0.415153
\(927\) 0 0
\(928\) 1.08470e13 0.480115
\(929\) 3.98759e13 1.75647 0.878233 0.478233i \(-0.158723\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(930\) 0 0
\(931\) 3.29971e12 0.143947
\(932\) 2.91777e12 0.126672
\(933\) 0 0
\(934\) 1.47177e13 0.632819
\(935\) 1.19281e11 0.00510411
\(936\) 0 0
\(937\) −5.95427e12 −0.252348 −0.126174 0.992008i \(-0.540270\pi\)
−0.126174 + 0.992008i \(0.540270\pi\)
\(938\) 3.55490e12 0.149939
\(939\) 0 0
\(940\) 3.94937e12 0.164988
\(941\) −9.86055e12 −0.409966 −0.204983 0.978766i \(-0.565714\pi\)
−0.204983 + 0.978766i \(0.565714\pi\)
\(942\) 0 0
\(943\) 1.48212e13 0.610353
\(944\) 4.18782e12 0.171638
\(945\) 0 0
\(946\) −3.91943e12 −0.159115
\(947\) 2.10061e13 0.848732 0.424366 0.905491i \(-0.360497\pi\)
0.424366 + 0.905491i \(0.360497\pi\)
\(948\) 0 0
\(949\) 2.06655e13 0.827080
\(950\) −3.45302e12 −0.137544
\(951\) 0 0
\(952\) −6.89594e11 −0.0272099
\(953\) 4.25218e13 1.66991 0.834955 0.550318i \(-0.185494\pi\)
0.834955 + 0.550318i \(0.185494\pi\)
\(954\) 0 0
\(955\) −1.09491e13 −0.425956
\(956\) 1.88524e12 0.0729972
\(957\) 0 0
\(958\) 3.07570e13 1.17977
\(959\) −1.80121e12 −0.0687670
\(960\) 0 0
\(961\) 4.54266e13 1.71813
\(962\) −9.17125e12 −0.345256
\(963\) 0 0
\(964\) 7.45531e12 0.278048
\(965\) −1.57049e13 −0.582992
\(966\) 0 0
\(967\) −1.21906e13 −0.448338 −0.224169 0.974550i \(-0.571967\pi\)
−0.224169 + 0.974550i \(0.571967\pi\)
\(968\) −2.78157e13 −1.01824
\(969\) 0 0
\(970\) −1.34497e13 −0.487796
\(971\) −5.38639e12 −0.194452 −0.0972258 0.995262i \(-0.530997\pi\)
−0.0972258 + 0.995262i \(0.530997\pi\)
\(972\) 0 0
\(973\) −1.58247e13 −0.566016
\(974\) 3.71954e13 1.32426
\(975\) 0 0
\(976\) −5.90583e12 −0.208332
\(977\) 1.89284e13 0.664643 0.332321 0.943166i \(-0.392168\pi\)
0.332321 + 0.943166i \(0.392168\pi\)
\(978\) 0 0
\(979\) −2.13153e12 −0.0741600
\(980\) −9.85407e11 −0.0341270
\(981\) 0 0
\(982\) 4.40719e12 0.151238
\(983\) −3.98513e13 −1.36129 −0.680647 0.732612i \(-0.738301\pi\)
−0.680647 + 0.732612i \(0.738301\pi\)
\(984\) 0 0
\(985\) −2.05300e13 −0.694907
\(986\) 7.23708e11 0.0243847
\(987\) 0 0
\(988\) 2.14671e13 0.716748
\(989\) 3.14118e13 1.04402
\(990\) 0 0
\(991\) −3.44424e13 −1.13439 −0.567194 0.823584i \(-0.691971\pi\)
−0.567194 + 0.823584i \(0.691971\pi\)
\(992\) 4.64588e13 1.52323
\(993\) 0 0
\(994\) 8.03877e12 0.261187
\(995\) −2.23078e12 −0.0721527
\(996\) 0 0
\(997\) 4.12406e13 1.32189 0.660947 0.750433i \(-0.270155\pi\)
0.660947 + 0.750433i \(0.270155\pi\)
\(998\) −3.26777e13 −1.04271
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.g.1.2 4
3.2 odd 2 35.10.a.c.1.3 4
15.2 even 4 175.10.b.e.99.5 8
15.8 even 4 175.10.b.e.99.4 8
15.14 odd 2 175.10.a.e.1.2 4
21.20 even 2 245.10.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.3 4 3.2 odd 2
175.10.a.e.1.2 4 15.14 odd 2
175.10.b.e.99.4 8 15.8 even 4
175.10.b.e.99.5 8 15.2 even 4
245.10.a.e.1.3 4 21.20 even 2
315.10.a.g.1.2 4 1.1 even 1 trivial