Properties

Label 315.10.a.e
Level $315$
Weight $10$
Character orbit 315.a
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1253x^{2} - 1039x + 42996 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 3) q^{2} + (\beta_{2} + 8 \beta_1 + 123) q^{4} + 625 q^{5} + 2401 q^{7} + (4 \beta_{3} + 9 \beta_{2} + \cdots + 4013) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 3) q^{2} + (\beta_{2} + 8 \beta_1 + 123) q^{4} + 625 q^{5} + 2401 q^{7} + (4 \beta_{3} + 9 \beta_{2} + \cdots + 4013) q^{8}+ \cdots + (5764801 \beta_1 + 17294403) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 13 q^{2} + 501 q^{4} + 2500 q^{5} + 9604 q^{7} + 16263 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 13 q^{2} + 501 q^{4} + 2500 q^{5} + 9604 q^{7} + 16263 q^{8} + 8125 q^{10} + 87062 q^{11} + 39494 q^{13} + 31213 q^{14} + 328849 q^{16} + 291756 q^{17} + 50482 q^{19} + 313125 q^{20} - 1003016 q^{22} + 1048656 q^{23} + 1562500 q^{25} + 7622594 q^{26} + 1202901 q^{28} + 8018996 q^{29} - 1148130 q^{31} + 9765119 q^{32} + 1255358 q^{34} + 6002500 q^{35} - 23416328 q^{37} - 11334892 q^{38} + 10164375 q^{40} + 8000860 q^{41} + 27520044 q^{43} - 42192 q^{44} + 90166880 q^{46} + 78277092 q^{47} + 23059204 q^{49} + 5078125 q^{50} - 62776870 q^{52} - 36168514 q^{53} + 54413750 q^{55} + 39047463 q^{56} - 32819954 q^{58} + 132924868 q^{59} - 119014876 q^{61} + 76291172 q^{62} - 400777983 q^{64} + 24683750 q^{65} - 170018492 q^{67} + 345488158 q^{68} + 19508125 q^{70} + 743169022 q^{71} - 360015502 q^{73} + 547147386 q^{74} - 472117316 q^{76} + 209035862 q^{77} - 613400256 q^{79} + 205530625 q^{80} - 714522510 q^{82} + 1222551024 q^{83} + 182347500 q^{85} + 593721752 q^{86} - 855674336 q^{88} - 835315808 q^{89} + 94825094 q^{91} + 1276931776 q^{92} + 950602540 q^{94} + 31551250 q^{95} - 704297762 q^{97} + 74942413 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1253x^{2} - 1039x + 42996 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 626 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 1185\nu - 1424 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 626 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} + 1185\beta _1 + 1424 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−33.9278
−6.41896
5.50890
35.8379
−30.9278 0 444.529 625.000 0 2401.00 2086.72 0 −19329.9
1.2 −3.41896 0 −500.311 625.000 0 2401.00 3461.05 0 −2136.85
1.3 8.50890 0 −439.599 625.000 0 2401.00 −8097.06 0 5318.06
1.4 38.8379 0 996.380 625.000 0 2401.00 18812.3 0 24273.7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.10.a.e 4
3.b odd 2 1 105.10.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.d 4 3.b odd 2 1
315.10.a.e 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 13T_{2}^{3} - 1190T_{2}^{2} + 6344T_{2} + 34944 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 13 T^{3} + \cdots + 34944 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 625)^{4} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 73\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 34\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 59\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 11\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 34\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 24\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 90\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 14\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 79\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 13\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 14\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 43\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 69\!\cdots\!36 \) Copy content Toggle raw display
show more
show less