Properties

Label 315.10.a.d
Level $315$
Weight $10$
Character orbit 315.a
Self dual yes
Analytic conductor $162.236$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,10,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1495x^{2} + 193x + 99862 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{2} + (\beta_{3} + 3 \beta_1 + 237) q^{4} + 625 q^{5} - 2401 q^{7} + ( - 5 \beta_{3} - 4 \beta_{2} + \cdots - 1859) q^{8} + ( - 625 \beta_1 - 625) q^{10} + (22 \beta_{3} + 17 \beta_{2} + \cdots - 15897) q^{11}+ \cdots + ( - 5764801 \beta_1 - 5764801) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} + 949 q^{4} + 2500 q^{5} - 9604 q^{7} - 7767 q^{8} - 3125 q^{10} - 64546 q^{11} - 29390 q^{13} + 12005 q^{14} + 554577 q^{16} - 278788 q^{17} - 929142 q^{19} + 593125 q^{20} + 2767732 q^{22}+ \cdots - 28824005 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1495x^{2} + 193x + 99862 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 1361\nu + 858 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 748 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 748 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 4\beta_{2} + 1363\beta _1 + 638 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
38.2066
8.41677
−8.32605
−37.2973
−39.2066 0 1025.16 625.000 0 −2401.00 −20119.2 0 −24504.1
1.2 −9.41677 0 −423.324 625.000 0 −2401.00 8807.73 0 −5885.48
1.3 7.32605 0 −458.329 625.000 0 −2401.00 −7108.68 0 4578.78
1.4 36.2973 0 805.496 625.000 0 −2401.00 10653.1 0 22685.8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.10.a.d 4
3.b odd 2 1 105.10.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.e 4 3.b odd 2 1
315.10.a.d 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 5T_{2}^{3} - 1486T_{2}^{2} - 3176T_{2} + 98176 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 5 T^{3} + \cdots + 98176 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 625)^{4} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 11\!\cdots\!40 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 20\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 23\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 14\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 59\!\cdots\!88 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 37\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 53\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 50\!\cdots\!92 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 13\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 58\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 59\!\cdots\!20 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 16\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 92\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 48\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 44\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 51\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 68\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 12\!\cdots\!52 \) Copy content Toggle raw display
show more
show less