# Properties

 Label 3136.2.a.p Level $3136$ Weight $2$ Character orbit 3136.a Self dual yes Analytic conductor $25.041$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3136,2,Mod(1,3136)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3136, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3136.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3136 = 2^{6} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3136.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$25.0410860739$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 56) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 2 q^{5} - 3 q^{9}+O(q^{10})$$ q + 2 * q^5 - 3 * q^9 $$q + 2 q^{5} - 3 q^{9} - 4 q^{11} + 2 q^{13} + 6 q^{17} - 8 q^{19} - q^{25} - 6 q^{29} + 8 q^{31} + 2 q^{37} - 2 q^{41} - 4 q^{43} - 6 q^{45} - 8 q^{47} - 6 q^{53} - 8 q^{55} - 6 q^{61} + 4 q^{65} - 4 q^{67} + 8 q^{71} - 10 q^{73} - 16 q^{79} + 9 q^{81} - 8 q^{83} + 12 q^{85} + 6 q^{89} - 16 q^{95} + 6 q^{97} + 12 q^{99}+O(q^{100})$$ q + 2 * q^5 - 3 * q^9 - 4 * q^11 + 2 * q^13 + 6 * q^17 - 8 * q^19 - q^25 - 6 * q^29 + 8 * q^31 + 2 * q^37 - 2 * q^41 - 4 * q^43 - 6 * q^45 - 8 * q^47 - 6 * q^53 - 8 * q^55 - 6 * q^61 + 4 * q^65 - 4 * q^67 + 8 * q^71 - 10 * q^73 - 16 * q^79 + 9 * q^81 - 8 * q^83 + 12 * q^85 + 6 * q^89 - 16 * q^95 + 6 * q^97 + 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 2.00000 0 0 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3136.2.a.p 1
4.b odd 2 1 3136.2.a.q 1
7.b odd 2 1 448.2.a.e 1
8.b even 2 1 784.2.a.e 1
8.d odd 2 1 392.2.a.d 1
21.c even 2 1 4032.2.a.bk 1
24.f even 2 1 3528.2.a.x 1
24.h odd 2 1 7056.2.a.bo 1
28.d even 2 1 448.2.a.d 1
40.e odd 2 1 9800.2.a.u 1
56.e even 2 1 56.2.a.a 1
56.h odd 2 1 112.2.a.b 1
56.j odd 6 2 784.2.i.e 2
56.k odd 6 2 392.2.i.d 2
56.m even 6 2 392.2.i.c 2
56.p even 6 2 784.2.i.g 2
84.h odd 2 1 4032.2.a.bb 1
112.j even 4 2 1792.2.b.i 2
112.l odd 4 2 1792.2.b.d 2
168.e odd 2 1 504.2.a.c 1
168.i even 2 1 1008.2.a.d 1
168.v even 6 2 3528.2.s.e 2
168.be odd 6 2 3528.2.s.t 2
280.c odd 2 1 2800.2.a.p 1
280.n even 2 1 1400.2.a.g 1
280.s even 4 2 2800.2.g.p 2
280.y odd 4 2 1400.2.g.g 2
616.g odd 2 1 6776.2.a.g 1
728.b even 2 1 9464.2.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.a.a 1 56.e even 2 1
112.2.a.b 1 56.h odd 2 1
392.2.a.d 1 8.d odd 2 1
392.2.i.c 2 56.m even 6 2
392.2.i.d 2 56.k odd 6 2
448.2.a.d 1 28.d even 2 1
448.2.a.e 1 7.b odd 2 1
504.2.a.c 1 168.e odd 2 1
784.2.a.e 1 8.b even 2 1
784.2.i.e 2 56.j odd 6 2
784.2.i.g 2 56.p even 6 2
1008.2.a.d 1 168.i even 2 1
1400.2.a.g 1 280.n even 2 1
1400.2.g.g 2 280.y odd 4 2
1792.2.b.d 2 112.l odd 4 2
1792.2.b.i 2 112.j even 4 2
2800.2.a.p 1 280.c odd 2 1
2800.2.g.p 2 280.s even 4 2
3136.2.a.p 1 1.a even 1 1 trivial
3136.2.a.q 1 4.b odd 2 1
3528.2.a.x 1 24.f even 2 1
3528.2.s.e 2 168.v even 6 2
3528.2.s.t 2 168.be odd 6 2
4032.2.a.bb 1 84.h odd 2 1
4032.2.a.bk 1 21.c even 2 1
6776.2.a.g 1 616.g odd 2 1
7056.2.a.bo 1 24.h odd 2 1
9464.2.a.c 1 728.b even 2 1
9800.2.a.u 1 40.e odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3136))$$:

 $$T_{3}$$ T3 $$T_{5} - 2$$ T5 - 2 $$T_{11} + 4$$ T11 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 2$$
$7$ $$T$$
$11$ $$T + 4$$
$13$ $$T - 2$$
$17$ $$T - 6$$
$19$ $$T + 8$$
$23$ $$T$$
$29$ $$T + 6$$
$31$ $$T - 8$$
$37$ $$T - 2$$
$41$ $$T + 2$$
$43$ $$T + 4$$
$47$ $$T + 8$$
$53$ $$T + 6$$
$59$ $$T$$
$61$ $$T + 6$$
$67$ $$T + 4$$
$71$ $$T - 8$$
$73$ $$T + 10$$
$79$ $$T + 16$$
$83$ $$T + 8$$
$89$ $$T - 6$$
$97$ $$T - 6$$