# Properties

 Label 3136.2.a.bp Level 3136 Weight 2 Character orbit 3136.a Self dual yes Analytic conductor 25.041 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3136 = 2^{6} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3136.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$25.0410860739$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 392) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{3} -2 \beta q^{5} - q^{9} +O(q^{10})$$ $$q + \beta q^{3} -2 \beta q^{5} - q^{9} + 6 q^{11} + 4 \beta q^{13} -4 q^{15} + \beta q^{17} -3 \beta q^{19} -4 q^{23} + 3 q^{25} -4 \beta q^{27} + 6 q^{29} -2 \beta q^{31} + 6 \beta q^{33} -2 q^{37} + 8 q^{39} -\beta q^{41} + 10 q^{43} + 2 \beta q^{45} + 2 \beta q^{47} + 2 q^{51} + 2 q^{53} -12 \beta q^{55} -6 q^{57} + \beta q^{59} + 6 \beta q^{61} -16 q^{65} + 4 q^{67} -4 \beta q^{69} + 12 q^{71} -7 \beta q^{73} + 3 \beta q^{75} + 4 q^{79} -5 q^{81} + \beta q^{83} -4 q^{85} + 6 \beta q^{87} -3 \beta q^{89} -4 q^{93} + 12 q^{95} + 9 \beta q^{97} -6 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{9} + O(q^{10})$$ $$2q - 2q^{9} + 12q^{11} - 8q^{15} - 8q^{23} + 6q^{25} + 12q^{29} - 4q^{37} + 16q^{39} + 20q^{43} + 4q^{51} + 4q^{53} - 12q^{57} - 32q^{65} + 8q^{67} + 24q^{71} + 8q^{79} - 10q^{81} - 8q^{85} - 8q^{93} + 24q^{95} - 12q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 −1.41421 0 2.82843 0 0 0 −1.00000 0
1.2 0 1.41421 0 −2.82843 0 0 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$7$$ $$1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3136.2.a.bp 2
4.b odd 2 1 3136.2.a.bk 2
7.b odd 2 1 inner 3136.2.a.bp 2
8.b even 2 1 784.2.a.k 2
8.d odd 2 1 392.2.a.g 2
24.f even 2 1 3528.2.a.be 2
24.h odd 2 1 7056.2.a.ct 2
28.d even 2 1 3136.2.a.bk 2
40.e odd 2 1 9800.2.a.bv 2
56.e even 2 1 392.2.a.g 2
56.h odd 2 1 784.2.a.k 2
56.j odd 6 2 784.2.i.n 4
56.k odd 6 2 392.2.i.h 4
56.m even 6 2 392.2.i.h 4
56.p even 6 2 784.2.i.n 4
168.e odd 2 1 3528.2.a.be 2
168.i even 2 1 7056.2.a.ct 2
168.v even 6 2 3528.2.s.bj 4
168.be odd 6 2 3528.2.s.bj 4
280.n even 2 1 9800.2.a.bv 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
392.2.a.g 2 8.d odd 2 1
392.2.a.g 2 56.e even 2 1
392.2.i.h 4 56.k odd 6 2
392.2.i.h 4 56.m even 6 2
784.2.a.k 2 8.b even 2 1
784.2.a.k 2 56.h odd 2 1
784.2.i.n 4 56.j odd 6 2
784.2.i.n 4 56.p even 6 2
3136.2.a.bk 2 4.b odd 2 1
3136.2.a.bk 2 28.d even 2 1
3136.2.a.bp 2 1.a even 1 1 trivial
3136.2.a.bp 2 7.b odd 2 1 inner
3528.2.a.be 2 24.f even 2 1
3528.2.a.be 2 168.e odd 2 1
3528.2.s.bj 4 168.v even 6 2
3528.2.s.bj 4 168.be odd 6 2
7056.2.a.ct 2 24.h odd 2 1
7056.2.a.ct 2 168.i even 2 1
9800.2.a.bv 2 40.e odd 2 1
9800.2.a.bv 2 280.n even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3136))$$:

 $$T_{3}^{2} - 2$$ $$T_{5}^{2} - 8$$ $$T_{11} - 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 + 4 T^{2} + 9 T^{4}$$
$5$ $$1 + 2 T^{2} + 25 T^{4}$$
$7$ 1
$11$ $$( 1 - 6 T + 11 T^{2} )^{2}$$
$13$ $$1 - 6 T^{2} + 169 T^{4}$$
$17$ $$1 + 32 T^{2} + 289 T^{4}$$
$19$ $$1 + 20 T^{2} + 361 T^{4}$$
$23$ $$( 1 + 4 T + 23 T^{2} )^{2}$$
$29$ $$( 1 - 6 T + 29 T^{2} )^{2}$$
$31$ $$1 + 54 T^{2} + 961 T^{4}$$
$37$ $$( 1 + 2 T + 37 T^{2} )^{2}$$
$41$ $$1 + 80 T^{2} + 1681 T^{4}$$
$43$ $$( 1 - 10 T + 43 T^{2} )^{2}$$
$47$ $$1 + 86 T^{2} + 2209 T^{4}$$
$53$ $$( 1 - 2 T + 53 T^{2} )^{2}$$
$59$ $$1 + 116 T^{2} + 3481 T^{4}$$
$61$ $$1 + 50 T^{2} + 3721 T^{4}$$
$67$ $$( 1 - 4 T + 67 T^{2} )^{2}$$
$71$ $$( 1 - 12 T + 71 T^{2} )^{2}$$
$73$ $$1 + 48 T^{2} + 5329 T^{4}$$
$79$ $$( 1 - 4 T + 79 T^{2} )^{2}$$
$83$ $$1 + 164 T^{2} + 6889 T^{4}$$
$89$ $$1 + 160 T^{2} + 7921 T^{4}$$
$97$ $$1 + 32 T^{2} + 9409 T^{4}$$