Properties

Label 3136.2.a.bm
Level $3136$
Weight $2$
Character orbit 3136.a
Self dual yes
Analytic conductor $25.041$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3136 = 2^{6} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3136.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.0410860739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + 2 \beta q^{5} - q^{9} +O(q^{10})\) \( q + \beta q^{3} + 2 \beta q^{5} - q^{9} -2 q^{11} + 4 q^{15} + \beta q^{17} + 5 \beta q^{19} + 4 q^{23} + 3 q^{25} -4 \beta q^{27} -2 q^{29} + 6 \beta q^{31} -2 \beta q^{33} -10 q^{37} + 7 \beta q^{41} + 2 q^{43} -2 \beta q^{45} + 2 \beta q^{47} + 2 q^{51} + 2 q^{53} -4 \beta q^{55} + 10 q^{57} + \beta q^{59} + 2 \beta q^{61} + 12 q^{67} + 4 \beta q^{69} + 12 q^{71} + \beta q^{73} + 3 \beta q^{75} + 4 q^{79} -5 q^{81} -7 \beta q^{83} + 4 q^{85} -2 \beta q^{87} + 5 \beta q^{89} + 12 q^{93} + 20 q^{95} -7 \beta q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} - 4q^{11} + 8q^{15} + 8q^{23} + 6q^{25} - 4q^{29} - 20q^{37} + 4q^{43} + 4q^{51} + 4q^{53} + 20q^{57} + 24q^{67} + 24q^{71} + 8q^{79} - 10q^{81} + 8q^{85} + 24q^{93} + 40q^{95} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.41421 0 −2.82843 0 0 0 −1.00000 0
1.2 0 1.41421 0 2.82843 0 0 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3136.2.a.bm 2
4.b odd 2 1 3136.2.a.bn 2
7.b odd 2 1 inner 3136.2.a.bm 2
8.b even 2 1 784.2.a.l 2
8.d odd 2 1 98.2.a.b 2
24.f even 2 1 882.2.a.n 2
24.h odd 2 1 7056.2.a.cl 2
28.d even 2 1 3136.2.a.bn 2
40.e odd 2 1 2450.2.a.bj 2
40.k even 4 2 2450.2.c.v 4
56.e even 2 1 98.2.a.b 2
56.h odd 2 1 784.2.a.l 2
56.j odd 6 2 784.2.i.m 4
56.k odd 6 2 98.2.c.c 4
56.m even 6 2 98.2.c.c 4
56.p even 6 2 784.2.i.m 4
168.e odd 2 1 882.2.a.n 2
168.i even 2 1 7056.2.a.cl 2
168.v even 6 2 882.2.g.l 4
168.be odd 6 2 882.2.g.l 4
280.n even 2 1 2450.2.a.bj 2
280.y odd 4 2 2450.2.c.v 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.2.a.b 2 8.d odd 2 1
98.2.a.b 2 56.e even 2 1
98.2.c.c 4 56.k odd 6 2
98.2.c.c 4 56.m even 6 2
784.2.a.l 2 8.b even 2 1
784.2.a.l 2 56.h odd 2 1
784.2.i.m 4 56.j odd 6 2
784.2.i.m 4 56.p even 6 2
882.2.a.n 2 24.f even 2 1
882.2.a.n 2 168.e odd 2 1
882.2.g.l 4 168.v even 6 2
882.2.g.l 4 168.be odd 6 2
2450.2.a.bj 2 40.e odd 2 1
2450.2.a.bj 2 280.n even 2 1
2450.2.c.v 4 40.k even 4 2
2450.2.c.v 4 280.y odd 4 2
3136.2.a.bm 2 1.a even 1 1 trivial
3136.2.a.bm 2 7.b odd 2 1 inner
3136.2.a.bn 2 4.b odd 2 1
3136.2.a.bn 2 28.d even 2 1
7056.2.a.cl 2 24.h odd 2 1
7056.2.a.cl 2 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3136))\):

\( T_{3}^{2} - 2 \)
\( T_{5}^{2} - 8 \)
\( T_{11} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( -2 + T^{2} \)
$5$ \( -8 + T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( 2 + T )^{2} \)
$13$ \( T^{2} \)
$17$ \( -2 + T^{2} \)
$19$ \( -50 + T^{2} \)
$23$ \( ( -4 + T )^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( -72 + T^{2} \)
$37$ \( ( 10 + T )^{2} \)
$41$ \( -98 + T^{2} \)
$43$ \( ( -2 + T )^{2} \)
$47$ \( -8 + T^{2} \)
$53$ \( ( -2 + T )^{2} \)
$59$ \( -2 + T^{2} \)
$61$ \( -8 + T^{2} \)
$67$ \( ( -12 + T )^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( -2 + T^{2} \)
$79$ \( ( -4 + T )^{2} \)
$83$ \( -98 + T^{2} \)
$89$ \( -50 + T^{2} \)
$97$ \( -98 + T^{2} \)
show more
show less