Properties

Label 3136.2.a.b.1.1
Level $3136$
Weight $2$
Character 3136.1
Self dual yes
Analytic conductor $25.041$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3136 = 2^{6} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3136.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.0410860739\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3136.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.00000 q^{3} +1.00000 q^{5} +6.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +1.00000 q^{5} +6.00000 q^{9} +1.00000 q^{11} -2.00000 q^{13} -3.00000 q^{15} +3.00000 q^{17} -5.00000 q^{19} -3.00000 q^{23} -4.00000 q^{25} -9.00000 q^{27} +6.00000 q^{29} -1.00000 q^{31} -3.00000 q^{33} +5.00000 q^{37} +6.00000 q^{39} -10.0000 q^{41} +4.00000 q^{43} +6.00000 q^{45} +1.00000 q^{47} -9.00000 q^{51} +9.00000 q^{53} +1.00000 q^{55} +15.0000 q^{57} -3.00000 q^{59} -3.00000 q^{61} -2.00000 q^{65} -11.0000 q^{67} +9.00000 q^{69} +16.0000 q^{71} +7.00000 q^{73} +12.0000 q^{75} -11.0000 q^{79} +9.00000 q^{81} +4.00000 q^{83} +3.00000 q^{85} -18.0000 q^{87} -9.00000 q^{89} +3.00000 q^{93} -5.00000 q^{95} +6.00000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 6.00000 0.894427
\(46\) 0 0
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −9.00000 −1.26025
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 15.0000 1.98680
\(58\) 0 0
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) −3.00000 −0.384111 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −11.0000 −1.34386 −0.671932 0.740613i \(-0.734535\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 0 0
\(69\) 9.00000 1.08347
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) 12.0000 1.38564
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) −18.0000 −1.92980
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.00000 0.311086
\(94\) 0 0
\(95\) −5.00000 −0.512989
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 13.0000 1.29355 0.646774 0.762682i \(-0.276118\pi\)
0.646774 + 0.762682i \(0.276118\pi\)
\(102\) 0 0
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) −15.0000 −1.42374
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 0 0
\(117\) −12.0000 −1.10940
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 30.0000 2.70501
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −12.0000 −1.05654
\(130\) 0 0
\(131\) −17.0000 −1.48530 −0.742648 0.669681i \(-0.766431\pi\)
−0.742648 + 0.669681i \(0.766431\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −9.00000 −0.774597
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) 15.0000 1.22068 0.610341 0.792139i \(-0.291032\pi\)
0.610341 + 0.792139i \(0.291032\pi\)
\(152\) 0 0
\(153\) 18.0000 1.45521
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −15.0000 −1.19713 −0.598565 0.801074i \(-0.704262\pi\)
−0.598565 + 0.801074i \(0.704262\pi\)
\(158\) 0 0
\(159\) −27.0000 −2.14124
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.00000 −0.704934 −0.352467 0.935824i \(-0.614657\pi\)
−0.352467 + 0.935824i \(0.614657\pi\)
\(164\) 0 0
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) −20.0000 −1.54765 −0.773823 0.633402i \(-0.781658\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −30.0000 −2.29416
\(172\) 0 0
\(173\) 21.0000 1.59660 0.798300 0.602260i \(-0.205733\pi\)
0.798300 + 0.602260i \(0.205733\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.00000 0.676481
\(178\) 0 0
\(179\) 1.00000 0.0747435 0.0373718 0.999301i \(-0.488101\pi\)
0.0373718 + 0.999301i \(0.488101\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 9.00000 0.665299
\(184\) 0 0
\(185\) 5.00000 0.367607
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.0000 1.23008 0.615038 0.788497i \(-0.289140\pi\)
0.615038 + 0.788497i \(0.289140\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) 6.00000 0.429669
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −9.00000 −0.637993 −0.318997 0.947756i \(-0.603346\pi\)
−0.318997 + 0.947756i \(0.603346\pi\)
\(200\) 0 0
\(201\) 33.0000 2.32764
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 0 0
\(207\) −18.0000 −1.25109
\(208\) 0 0
\(209\) −5.00000 −0.345857
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −48.0000 −3.28891
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −21.0000 −1.41905
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) −24.0000 −1.60000
\(226\) 0 0
\(227\) −7.00000 −0.464606 −0.232303 0.972643i \(-0.574626\pi\)
−0.232303 + 0.972643i \(0.574626\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.0000 −0.851658 −0.425829 0.904804i \(-0.640018\pi\)
−0.425829 + 0.904804i \(0.640018\pi\)
\(234\) 0 0
\(235\) 1.00000 0.0652328
\(236\) 0 0
\(237\) 33.0000 2.14358
\(238\) 0 0
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) 0 0
\(241\) −17.0000 −1.09507 −0.547533 0.836784i \(-0.684433\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.0000 0.636285
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) −3.00000 −0.188608
\(254\) 0 0
\(255\) −9.00000 −0.563602
\(256\) 0 0
\(257\) −13.0000 −0.810918 −0.405459 0.914113i \(-0.632888\pi\)
−0.405459 + 0.914113i \(0.632888\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 36.0000 2.22834
\(262\) 0 0
\(263\) 3.00000 0.184988 0.0924940 0.995713i \(-0.470516\pi\)
0.0924940 + 0.995713i \(0.470516\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 27.0000 1.65237
\(268\) 0 0
\(269\) 17.0000 1.03651 0.518254 0.855227i \(-0.326582\pi\)
0.518254 + 0.855227i \(0.326582\pi\)
\(270\) 0 0
\(271\) −3.00000 −0.182237 −0.0911185 0.995840i \(-0.529044\pi\)
−0.0911185 + 0.995840i \(0.529044\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 17.0000 1.01055 0.505273 0.862960i \(-0.331392\pi\)
0.505273 + 0.862960i \(0.331392\pi\)
\(284\) 0 0
\(285\) 15.0000 0.888523
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −18.0000 −1.05518
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −3.00000 −0.174667
\(296\) 0 0
\(297\) −9.00000 −0.522233
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −39.0000 −2.24049
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) −15.0000 −0.853320
\(310\) 0 0
\(311\) 11.0000 0.623753 0.311876 0.950123i \(-0.399043\pi\)
0.311876 + 0.950123i \(0.399043\pi\)
\(312\) 0 0
\(313\) 31.0000 1.75222 0.876112 0.482108i \(-0.160129\pi\)
0.876112 + 0.482108i \(0.160129\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.0000 −1.51647 −0.758236 0.651981i \(-0.773938\pi\)
−0.758236 + 0.651981i \(0.773938\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 0 0
\(327\) 33.0000 1.82490
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.00000 0.384755 0.192377 0.981321i \(-0.438380\pi\)
0.192377 + 0.981321i \(0.438380\pi\)
\(332\) 0 0
\(333\) 30.0000 1.64399
\(334\) 0 0
\(335\) −11.0000 −0.600994
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 30.0000 1.62938
\(340\) 0 0
\(341\) −1.00000 −0.0541530
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 9.00000 0.484544
\(346\) 0 0
\(347\) −3.00000 −0.161048 −0.0805242 0.996753i \(-0.525659\pi\)
−0.0805242 + 0.996753i \(0.525659\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 18.0000 0.960769
\(352\) 0 0
\(353\) −5.00000 −0.266123 −0.133062 0.991108i \(-0.542481\pi\)
−0.133062 + 0.991108i \(0.542481\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 −0.791670 −0.395835 0.918322i \(-0.629545\pi\)
−0.395835 + 0.918322i \(0.629545\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 30.0000 1.57459
\(364\) 0 0
\(365\) 7.00000 0.366397
\(366\) 0 0
\(367\) 19.0000 0.991792 0.495896 0.868382i \(-0.334840\pi\)
0.495896 + 0.868382i \(0.334840\pi\)
\(368\) 0 0
\(369\) −60.0000 −3.12348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −19.0000 −0.983783 −0.491891 0.870657i \(-0.663694\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(374\) 0 0
\(375\) 27.0000 1.39427
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 24.0000 1.22956
\(382\) 0 0
\(383\) 9.00000 0.459879 0.229939 0.973205i \(-0.426147\pi\)
0.229939 + 0.973205i \(0.426147\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 24.0000 1.21999
\(388\) 0 0
\(389\) −19.0000 −0.963338 −0.481669 0.876353i \(-0.659969\pi\)
−0.481669 + 0.876353i \(0.659969\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 51.0000 2.57261
\(394\) 0 0
\(395\) −11.0000 −0.553470
\(396\) 0 0
\(397\) 17.0000 0.853206 0.426603 0.904439i \(-0.359710\pi\)
0.426603 + 0.904439i \(0.359710\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 0 0
\(405\) 9.00000 0.447214
\(406\) 0 0
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) 0 0
\(411\) −9.00000 −0.443937
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) −41.0000 −1.97490 −0.987450 0.157930i \(-0.949518\pi\)
−0.987450 + 0.157930i \(0.949518\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) −18.0000 −0.863034
\(436\) 0 0
\(437\) 15.0000 0.717547
\(438\) 0 0
\(439\) −15.0000 −0.715911 −0.357955 0.933739i \(-0.616526\pi\)
−0.357955 + 0.933739i \(0.616526\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.0000 1.28281 0.641404 0.767203i \(-0.278352\pi\)
0.641404 + 0.767203i \(0.278352\pi\)
\(444\) 0 0
\(445\) −9.00000 −0.426641
\(446\) 0 0
\(447\) 45.0000 2.12843
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) −10.0000 −0.470882
\(452\) 0 0
\(453\) −45.0000 −2.11428
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 −0.795226 −0.397613 0.917553i \(-0.630161\pi\)
−0.397613 + 0.917553i \(0.630161\pi\)
\(458\) 0 0
\(459\) −27.0000 −1.26025
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 3.00000 0.139122
\(466\) 0 0
\(467\) −25.0000 −1.15686 −0.578431 0.815731i \(-0.696335\pi\)
−0.578431 + 0.815731i \(0.696335\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 45.0000 2.07349
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 20.0000 0.917663
\(476\) 0 0
\(477\) 54.0000 2.47249
\(478\) 0 0
\(479\) −21.0000 −0.959514 −0.479757 0.877401i \(-0.659275\pi\)
−0.479757 + 0.877401i \(0.659275\pi\)
\(480\) 0 0
\(481\) −10.0000 −0.455961
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) −13.0000 −0.589086 −0.294543 0.955638i \(-0.595167\pi\)
−0.294543 + 0.955638i \(0.595167\pi\)
\(488\) 0 0
\(489\) 27.0000 1.22098
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.00000 0.313363 0.156682 0.987649i \(-0.449920\pi\)
0.156682 + 0.987649i \(0.449920\pi\)
\(500\) 0 0
\(501\) 60.0000 2.68060
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 13.0000 0.578492
\(506\) 0 0
\(507\) 27.0000 1.19911
\(508\) 0 0
\(509\) −7.00000 −0.310270 −0.155135 0.987893i \(-0.549581\pi\)
−0.155135 + 0.987893i \(0.549581\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 45.0000 1.98680
\(514\) 0 0
\(515\) 5.00000 0.220326
\(516\) 0 0
\(517\) 1.00000 0.0439799
\(518\) 0 0
\(519\) −63.0000 −2.76539
\(520\) 0 0
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) −13.0000 −0.568450 −0.284225 0.958758i \(-0.591736\pi\)
−0.284225 + 0.958758i \(0.591736\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.00000 −0.130682
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −18.0000 −0.781133
\(532\) 0 0
\(533\) 20.0000 0.866296
\(534\) 0 0
\(535\) 3.00000 0.129701
\(536\) 0 0
\(537\) −3.00000 −0.129460
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 25.0000 1.07483 0.537417 0.843317i \(-0.319400\pi\)
0.537417 + 0.843317i \(0.319400\pi\)
\(542\) 0 0
\(543\) 66.0000 2.83233
\(544\) 0 0
\(545\) −11.0000 −0.471188
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −18.0000 −0.768221
\(550\) 0 0
\(551\) −30.0000 −1.27804
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −15.0000 −0.636715
\(556\) 0 0
\(557\) −11.0000 −0.466085 −0.233042 0.972467i \(-0.574868\pi\)
−0.233042 + 0.972467i \(0.574868\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −9.00000 −0.379980
\(562\) 0 0
\(563\) −11.0000 −0.463595 −0.231797 0.972764i \(-0.574461\pi\)
−0.231797 + 0.972764i \(0.574461\pi\)
\(564\) 0 0
\(565\) −10.0000 −0.420703
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.00000 −0.0419222 −0.0209611 0.999780i \(-0.506673\pi\)
−0.0209611 + 0.999780i \(0.506673\pi\)
\(570\) 0 0
\(571\) 17.0000 0.711428 0.355714 0.934595i \(-0.384238\pi\)
0.355714 + 0.934595i \(0.384238\pi\)
\(572\) 0 0
\(573\) −51.0000 −2.13056
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 31.0000 1.29055 0.645273 0.763952i \(-0.276743\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(578\) 0 0
\(579\) 15.0000 0.623379
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.00000 0.372742
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 5.00000 0.206021
\(590\) 0 0
\(591\) 54.0000 2.22126
\(592\) 0 0
\(593\) 43.0000 1.76580 0.882899 0.469563i \(-0.155588\pi\)
0.882899 + 0.469563i \(0.155588\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 27.0000 1.10504
\(598\) 0 0
\(599\) −21.0000 −0.858037 −0.429018 0.903296i \(-0.641140\pi\)
−0.429018 + 0.903296i \(0.641140\pi\)
\(600\) 0 0
\(601\) −34.0000 −1.38689 −0.693444 0.720510i \(-0.743908\pi\)
−0.693444 + 0.720510i \(0.743908\pi\)
\(602\) 0 0
\(603\) −66.0000 −2.68773
\(604\) 0 0
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) −7.00000 −0.284121 −0.142061 0.989858i \(-0.545373\pi\)
−0.142061 + 0.989858i \(0.545373\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.00000 −0.0809113
\(612\) 0 0
\(613\) 21.0000 0.848182 0.424091 0.905620i \(-0.360594\pi\)
0.424091 + 0.905620i \(0.360594\pi\)
\(614\) 0 0
\(615\) 30.0000 1.20972
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 5.00000 0.200967 0.100483 0.994939i \(-0.467961\pi\)
0.100483 + 0.994939i \(0.467961\pi\)
\(620\) 0 0
\(621\) 27.0000 1.08347
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 15.0000 0.599042
\(628\) 0 0
\(629\) 15.0000 0.598089
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 36.0000 1.43087
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 96.0000 3.79770
\(640\) 0 0
\(641\) 15.0000 0.592464 0.296232 0.955116i \(-0.404270\pi\)
0.296232 + 0.955116i \(0.404270\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) 0 0
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) 43.0000 1.69050 0.845252 0.534368i \(-0.179450\pi\)
0.845252 + 0.534368i \(0.179450\pi\)
\(648\) 0 0
\(649\) −3.00000 −0.117760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.00000 0.195665 0.0978326 0.995203i \(-0.468809\pi\)
0.0978326 + 0.995203i \(0.468809\pi\)
\(654\) 0 0
\(655\) −17.0000 −0.664245
\(656\) 0 0
\(657\) 42.0000 1.63858
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 1.00000 0.0388955 0.0194477 0.999811i \(-0.493809\pi\)
0.0194477 + 0.999811i \(0.493809\pi\)
\(662\) 0 0
\(663\) 18.0000 0.699062
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) 0 0
\(669\) −72.0000 −2.78368
\(670\) 0 0
\(671\) −3.00000 −0.115814
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 0 0
\(675\) 36.0000 1.38564
\(676\) 0 0
\(677\) 9.00000 0.345898 0.172949 0.984931i \(-0.444670\pi\)
0.172949 + 0.984931i \(0.444670\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 21.0000 0.804722
\(682\) 0 0
\(683\) −39.0000 −1.49229 −0.746147 0.665782i \(-0.768098\pi\)
−0.746147 + 0.665782i \(0.768098\pi\)
\(684\) 0 0
\(685\) 3.00000 0.114624
\(686\) 0 0
\(687\) 21.0000 0.801200
\(688\) 0 0
\(689\) −18.0000 −0.685745
\(690\) 0 0
\(691\) 47.0000 1.78796 0.893982 0.448103i \(-0.147900\pi\)
0.893982 + 0.448103i \(0.147900\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −30.0000 −1.13633
\(698\) 0 0
\(699\) 39.0000 1.47512
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −25.0000 −0.942893
\(704\) 0 0
\(705\) −3.00000 −0.112987
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −27.0000 −1.01401 −0.507003 0.861944i \(-0.669247\pi\)
−0.507003 + 0.861944i \(0.669247\pi\)
\(710\) 0 0
\(711\) −66.0000 −2.47519
\(712\) 0 0
\(713\) 3.00000 0.112351
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) 29.0000 1.08152 0.540759 0.841178i \(-0.318137\pi\)
0.540759 + 0.841178i \(0.318137\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 51.0000 1.89671
\(724\) 0 0
\(725\) −24.0000 −0.891338
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) −11.0000 −0.406294 −0.203147 0.979148i \(-0.565117\pi\)
−0.203147 + 0.979148i \(0.565117\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.0000 −0.405190
\(738\) 0 0
\(739\) 41.0000 1.50821 0.754105 0.656754i \(-0.228071\pi\)
0.754105 + 0.656754i \(0.228071\pi\)
\(740\) 0 0
\(741\) −30.0000 −1.10208
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) −15.0000 −0.549557
\(746\) 0 0
\(747\) 24.0000 0.878114
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −47.0000 −1.71505 −0.857527 0.514439i \(-0.828000\pi\)
−0.857527 + 0.514439i \(0.828000\pi\)
\(752\) 0 0
\(753\) 72.0000 2.62383
\(754\) 0 0
\(755\) 15.0000 0.545906
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 18.0000 0.650791
\(766\) 0 0
\(767\) 6.00000 0.216647
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 39.0000 1.40455
\(772\) 0 0
\(773\) −35.0000 −1.25886 −0.629431 0.777056i \(-0.716712\pi\)
−0.629431 + 0.777056i \(0.716712\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 50.0000 1.79144
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) −54.0000 −1.92980
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) 13.0000 0.463400 0.231700 0.972787i \(-0.425571\pi\)
0.231700 + 0.972787i \(0.425571\pi\)
\(788\) 0 0
\(789\) −9.00000 −0.320408
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 0 0
\(795\) −27.0000 −0.957591
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 3.00000 0.106132
\(800\) 0 0
\(801\) −54.0000 −1.90800
\(802\) 0 0
\(803\) 7.00000 0.247025
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −51.0000 −1.79529
\(808\) 0 0
\(809\) −25.0000 −0.878953 −0.439477 0.898254i \(-0.644836\pi\)
−0.439477 + 0.898254i \(0.644836\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 9.00000 0.315644
\(814\) 0 0
\(815\) −9.00000 −0.315256
\(816\) 0 0
\(817\) −20.0000 −0.699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(822\) 0 0
\(823\) −21.0000 −0.732014 −0.366007 0.930612i \(-0.619275\pi\)
−0.366007 + 0.930612i \(0.619275\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) 0 0
\(829\) 37.0000 1.28506 0.642532 0.766259i \(-0.277884\pi\)
0.642532 + 0.766259i \(0.277884\pi\)
\(830\) 0 0
\(831\) 21.0000 0.728482
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −20.0000 −0.692129
\(836\) 0 0
\(837\) 9.00000 0.311086
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 54.0000 1.85986
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −51.0000 −1.75032
\(850\) 0 0
\(851\) −15.0000 −0.514193
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) −30.0000 −1.02598
\(856\) 0 0
\(857\) −57.0000 −1.94708 −0.973541 0.228510i \(-0.926614\pi\)
−0.973541 + 0.228510i \(0.926614\pi\)
\(858\) 0 0
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 37.0000 1.25949 0.629747 0.776800i \(-0.283158\pi\)
0.629747 + 0.776800i \(0.283158\pi\)
\(864\) 0 0
\(865\) 21.0000 0.714021
\(866\) 0 0
\(867\) 24.0000 0.815083
\(868\) 0 0
\(869\) −11.0000 −0.373149
\(870\) 0 0
\(871\) 22.0000 0.745442
\(872\) 0 0
\(873\) 36.0000 1.21842
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −39.0000 −1.31694 −0.658468 0.752609i \(-0.728795\pi\)
−0.658468 + 0.752609i \(0.728795\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 0 0
\(885\) 9.00000 0.302532
\(886\) 0 0
\(887\) −55.0000 −1.84672 −0.923360 0.383936i \(-0.874568\pi\)
−0.923360 + 0.383936i \(0.874568\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.00000 0.301511
\(892\) 0 0
\(893\) −5.00000 −0.167319
\(894\) 0 0
\(895\) 1.00000 0.0334263
\(896\) 0 0
\(897\) −18.0000 −0.601003
\(898\) 0 0
\(899\) −6.00000 −0.200111
\(900\) 0 0
\(901\) 27.0000 0.899500
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.0000 −0.731305
\(906\) 0 0
\(907\) 13.0000 0.431658 0.215829 0.976431i \(-0.430755\pi\)
0.215829 + 0.976431i \(0.430755\pi\)
\(908\) 0 0
\(909\) 78.0000 2.58710
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 4.00000 0.132381
\(914\) 0 0
\(915\) 9.00000 0.297531
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17.0000 0.560778 0.280389 0.959886i \(-0.409536\pi\)
0.280389 + 0.959886i \(0.409536\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) 0 0
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) −20.0000 −0.657596
\(926\) 0 0
\(927\) 30.0000 0.985329
\(928\) 0 0
\(929\) −41.0000 −1.34517 −0.672583 0.740022i \(-0.734815\pi\)
−0.672583 + 0.740022i \(0.734815\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −33.0000 −1.08037
\(934\) 0 0
\(935\) 3.00000 0.0981105
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) −93.0000 −3.03494
\(940\) 0 0
\(941\) −39.0000 −1.27136 −0.635682 0.771951i \(-0.719281\pi\)
−0.635682 + 0.771951i \(0.719281\pi\)
\(942\) 0 0
\(943\) 30.0000 0.976934
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −49.0000 −1.59229 −0.796143 0.605108i \(-0.793130\pi\)
−0.796143 + 0.605108i \(0.793130\pi\)
\(948\) 0 0
\(949\) −14.0000 −0.454459
\(950\) 0 0
\(951\) 81.0000 2.62660
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) 17.0000 0.550107
\(956\) 0 0
\(957\) −18.0000 −0.581857
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 18.0000 0.580042
\(964\) 0 0
\(965\) −5.00000 −0.160956
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) 45.0000 1.44561
\(970\) 0 0
\(971\) −57.0000 −1.82922 −0.914609 0.404341i \(-0.867501\pi\)
−0.914609 + 0.404341i \(0.867501\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −24.0000 −0.768615
\(976\) 0 0
\(977\) −37.0000 −1.18373 −0.591867 0.806035i \(-0.701609\pi\)
−0.591867 + 0.806035i \(0.701609\pi\)
\(978\) 0 0
\(979\) −9.00000 −0.287641
\(980\) 0 0
\(981\) −66.0000 −2.10722
\(982\) 0 0
\(983\) −33.0000 −1.05254 −0.526268 0.850319i \(-0.676409\pi\)
−0.526268 + 0.850319i \(0.676409\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.0000 −0.381578
\(990\) 0 0
\(991\) 59.0000 1.87420 0.937098 0.349065i \(-0.113501\pi\)
0.937098 + 0.349065i \(0.113501\pi\)
\(992\) 0 0
\(993\) −21.0000 −0.666415
\(994\) 0 0
\(995\) −9.00000 −0.285319
\(996\) 0 0
\(997\) −31.0000 −0.981780 −0.490890 0.871222i \(-0.663328\pi\)
−0.490890 + 0.871222i \(0.663328\pi\)
\(998\) 0 0
\(999\) −45.0000 −1.42374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3136.2.a.b.1.1 1
4.3 odd 2 3136.2.a.bc.1.1 1
7.2 even 3 448.2.i.f.193.1 2
7.4 even 3 448.2.i.f.65.1 2
7.6 odd 2 3136.2.a.bb.1.1 1
8.3 odd 2 784.2.a.a.1.1 1
8.5 even 2 392.2.a.f.1.1 1
24.5 odd 2 3528.2.a.r.1.1 1
24.11 even 2 7056.2.a.bi.1.1 1
28.11 odd 6 448.2.i.a.65.1 2
28.23 odd 6 448.2.i.a.193.1 2
28.27 even 2 3136.2.a.a.1.1 1
40.29 even 2 9800.2.a.b.1.1 1
56.3 even 6 784.2.i.a.177.1 2
56.5 odd 6 392.2.i.f.361.1 2
56.11 odd 6 112.2.i.c.65.1 2
56.13 odd 2 392.2.a.a.1.1 1
56.19 even 6 784.2.i.a.753.1 2
56.27 even 2 784.2.a.j.1.1 1
56.37 even 6 56.2.i.a.25.1 yes 2
56.45 odd 6 392.2.i.f.177.1 2
56.51 odd 6 112.2.i.c.81.1 2
56.53 even 6 56.2.i.a.9.1 2
168.5 even 6 3528.2.s.o.361.1 2
168.11 even 6 1008.2.s.e.289.1 2
168.53 odd 6 504.2.s.e.289.1 2
168.83 odd 2 7056.2.a.s.1.1 1
168.101 even 6 3528.2.s.o.3313.1 2
168.107 even 6 1008.2.s.e.865.1 2
168.125 even 2 3528.2.a.k.1.1 1
168.149 odd 6 504.2.s.e.361.1 2
280.37 odd 12 1400.2.bh.f.249.2 4
280.53 odd 12 1400.2.bh.f.849.2 4
280.69 odd 2 9800.2.a.bp.1.1 1
280.93 odd 12 1400.2.bh.f.249.1 4
280.109 even 6 1400.2.q.g.401.1 2
280.149 even 6 1400.2.q.g.1201.1 2
280.277 odd 12 1400.2.bh.f.849.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.i.a.9.1 2 56.53 even 6
56.2.i.a.25.1 yes 2 56.37 even 6
112.2.i.c.65.1 2 56.11 odd 6
112.2.i.c.81.1 2 56.51 odd 6
392.2.a.a.1.1 1 56.13 odd 2
392.2.a.f.1.1 1 8.5 even 2
392.2.i.f.177.1 2 56.45 odd 6
392.2.i.f.361.1 2 56.5 odd 6
448.2.i.a.65.1 2 28.11 odd 6
448.2.i.a.193.1 2 28.23 odd 6
448.2.i.f.65.1 2 7.4 even 3
448.2.i.f.193.1 2 7.2 even 3
504.2.s.e.289.1 2 168.53 odd 6
504.2.s.e.361.1 2 168.149 odd 6
784.2.a.a.1.1 1 8.3 odd 2
784.2.a.j.1.1 1 56.27 even 2
784.2.i.a.177.1 2 56.3 even 6
784.2.i.a.753.1 2 56.19 even 6
1008.2.s.e.289.1 2 168.11 even 6
1008.2.s.e.865.1 2 168.107 even 6
1400.2.q.g.401.1 2 280.109 even 6
1400.2.q.g.1201.1 2 280.149 even 6
1400.2.bh.f.249.1 4 280.93 odd 12
1400.2.bh.f.249.2 4 280.37 odd 12
1400.2.bh.f.849.1 4 280.277 odd 12
1400.2.bh.f.849.2 4 280.53 odd 12
3136.2.a.a.1.1 1 28.27 even 2
3136.2.a.b.1.1 1 1.1 even 1 trivial
3136.2.a.bb.1.1 1 7.6 odd 2
3136.2.a.bc.1.1 1 4.3 odd 2
3528.2.a.k.1.1 1 168.125 even 2
3528.2.a.r.1.1 1 24.5 odd 2
3528.2.s.o.361.1 2 168.5 even 6
3528.2.s.o.3313.1 2 168.101 even 6
7056.2.a.s.1.1 1 168.83 odd 2
7056.2.a.bi.1.1 1 24.11 even 2
9800.2.a.b.1.1 1 40.29 even 2
9800.2.a.bp.1.1 1 280.69 odd 2