Properties

Label 3120.2.l.m.1249.6
Level $3120$
Weight $2$
Character 3120.1249
Analytic conductor $24.913$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3120,2,Mod(1249,3120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3120.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5161984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1560)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.6
Root \(1.32001 + 1.32001i\) of defining polynomial
Character \(\chi\) \(=\) 3120.1249
Dual form 3120.2.l.m.1249.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(1.32001 + 1.80487i) q^{5} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +(1.32001 + 1.80487i) q^{5} -1.00000 q^{9} +4.64002 q^{11} -1.00000i q^{13} +(-1.80487 + 1.32001i) q^{15} +4.24977i q^{17} -6.24977 q^{19} +2.24977i q^{23} +(-1.51514 + 4.76491i) q^{25} -1.00000i q^{27} +9.21949 q^{29} -9.28005 q^{31} +4.64002i q^{33} +7.28005i q^{37} +1.00000 q^{39} -5.67030 q^{41} -4.24977i q^{43} +(-1.32001 - 1.80487i) q^{45} -2.88979i q^{47} +7.00000 q^{49} -4.24977 q^{51} +9.21949i q^{53} +(6.12489 + 8.37466i) q^{55} -6.24977i q^{57} +5.92007 q^{59} +0.969724 q^{61} +(1.80487 - 1.32001i) q^{65} +1.93945i q^{67} -2.24977 q^{69} -5.60975 q^{71} +12.5601i q^{73} +(-4.76491 - 1.51514i) q^{75} +12.2498 q^{79} +1.00000 q^{81} -3.67030i q^{83} +(-7.67030 + 5.60975i) q^{85} +9.21949i q^{87} +9.67030 q^{89} -9.28005i q^{93} +(-8.24977 - 11.2800i) q^{95} -6.00000i q^{97} -4.64002 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{9} + 12 q^{11} - 2 q^{15} - 4 q^{19} - 10 q^{25} + 20 q^{29} - 24 q^{31} + 6 q^{39} - 20 q^{41} + 42 q^{49} + 8 q^{51} + 20 q^{55} - 12 q^{59} + 4 q^{61} + 2 q^{65} + 20 q^{69} - 16 q^{71} + 4 q^{75} + 40 q^{79} + 6 q^{81} - 32 q^{85} + 44 q^{89} - 16 q^{95} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.32001 + 1.80487i 0.590327 + 0.807164i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.64002 1.39902 0.699510 0.714623i \(-0.253402\pi\)
0.699510 + 0.714623i \(0.253402\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −1.80487 + 1.32001i −0.466016 + 0.340826i
\(16\) 0 0
\(17\) 4.24977i 1.03072i 0.856974 + 0.515360i \(0.172342\pi\)
−0.856974 + 0.515360i \(0.827658\pi\)
\(18\) 0 0
\(19\) −6.24977 −1.43380 −0.716898 0.697178i \(-0.754439\pi\)
−0.716898 + 0.697178i \(0.754439\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.24977i 0.469110i 0.972103 + 0.234555i \(0.0753632\pi\)
−0.972103 + 0.234555i \(0.924637\pi\)
\(24\) 0 0
\(25\) −1.51514 + 4.76491i −0.303028 + 0.952982i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 9.21949 1.71202 0.856009 0.516962i \(-0.172937\pi\)
0.856009 + 0.516962i \(0.172937\pi\)
\(30\) 0 0
\(31\) −9.28005 −1.66675 −0.833373 0.552711i \(-0.813593\pi\)
−0.833373 + 0.552711i \(0.813593\pi\)
\(32\) 0 0
\(33\) 4.64002i 0.807724i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.28005i 1.19683i 0.801185 + 0.598416i \(0.204203\pi\)
−0.801185 + 0.598416i \(0.795797\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −5.67030 −0.885552 −0.442776 0.896632i \(-0.646006\pi\)
−0.442776 + 0.896632i \(0.646006\pi\)
\(42\) 0 0
\(43\) 4.24977i 0.648084i −0.946043 0.324042i \(-0.894958\pi\)
0.946043 0.324042i \(-0.105042\pi\)
\(44\) 0 0
\(45\) −1.32001 1.80487i −0.196776 0.269055i
\(46\) 0 0
\(47\) 2.88979i 0.421520i −0.977538 0.210760i \(-0.932406\pi\)
0.977538 0.210760i \(-0.0675938\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −4.24977 −0.595087
\(52\) 0 0
\(53\) 9.21949i 1.26639i 0.773990 + 0.633197i \(0.218258\pi\)
−0.773990 + 0.633197i \(0.781742\pi\)
\(54\) 0 0
\(55\) 6.12489 + 8.37466i 0.825879 + 1.12924i
\(56\) 0 0
\(57\) 6.24977i 0.827802i
\(58\) 0 0
\(59\) 5.92007 0.770728 0.385364 0.922765i \(-0.374076\pi\)
0.385364 + 0.922765i \(0.374076\pi\)
\(60\) 0 0
\(61\) 0.969724 0.124160 0.0620802 0.998071i \(-0.480227\pi\)
0.0620802 + 0.998071i \(0.480227\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.80487 1.32001i 0.223867 0.163727i
\(66\) 0 0
\(67\) 1.93945i 0.236941i 0.992958 + 0.118471i \(0.0377991\pi\)
−0.992958 + 0.118471i \(0.962201\pi\)
\(68\) 0 0
\(69\) −2.24977 −0.270841
\(70\) 0 0
\(71\) −5.60975 −0.665755 −0.332877 0.942970i \(-0.608019\pi\)
−0.332877 + 0.942970i \(0.608019\pi\)
\(72\) 0 0
\(73\) 12.5601i 1.47005i 0.678041 + 0.735024i \(0.262829\pi\)
−0.678041 + 0.735024i \(0.737171\pi\)
\(74\) 0 0
\(75\) −4.76491 1.51514i −0.550204 0.174953i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.2498 1.37821 0.689103 0.724663i \(-0.258005\pi\)
0.689103 + 0.724663i \(0.258005\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.67030i 0.402868i −0.979502 0.201434i \(-0.935440\pi\)
0.979502 0.201434i \(-0.0645601\pi\)
\(84\) 0 0
\(85\) −7.67030 + 5.60975i −0.831961 + 0.608463i
\(86\) 0 0
\(87\) 9.21949i 0.988434i
\(88\) 0 0
\(89\) 9.67030 1.02505 0.512525 0.858672i \(-0.328710\pi\)
0.512525 + 0.858672i \(0.328710\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 9.28005i 0.962296i
\(94\) 0 0
\(95\) −8.24977 11.2800i −0.846409 1.15731i
\(96\) 0 0
\(97\) 6.00000i 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) 0 0
\(99\) −4.64002 −0.466340
\(100\) 0 0
\(101\) −15.2800 −1.52042 −0.760211 0.649677i \(-0.774904\pi\)
−0.760211 + 0.649677i \(0.774904\pi\)
\(102\) 0 0
\(103\) 1.21949i 0.120160i 0.998194 + 0.0600802i \(0.0191356\pi\)
−0.998194 + 0.0600802i \(0.980864\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.28005i 0.510441i 0.966883 + 0.255221i \(0.0821481\pi\)
−0.966883 + 0.255221i \(0.917852\pi\)
\(108\) 0 0
\(109\) 10.1892 0.975950 0.487975 0.872858i \(-0.337736\pi\)
0.487975 + 0.872858i \(0.337736\pi\)
\(110\) 0 0
\(111\) −7.28005 −0.690991
\(112\) 0 0
\(113\) 1.03028i 0.0969202i −0.998825 0.0484601i \(-0.984569\pi\)
0.998825 0.0484601i \(-0.0154314\pi\)
\(114\) 0 0
\(115\) −4.06055 + 2.96972i −0.378648 + 0.276928i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5298 0.957256
\(122\) 0 0
\(123\) 5.67030i 0.511274i
\(124\) 0 0
\(125\) −10.6001 + 3.55510i −0.948098 + 0.317978i
\(126\) 0 0
\(127\) 11.0303i 0.978779i 0.872065 + 0.489389i \(0.162780\pi\)
−0.872065 + 0.489389i \(0.837220\pi\)
\(128\) 0 0
\(129\) 4.24977 0.374171
\(130\) 0 0
\(131\) −7.21949 −0.630770 −0.315385 0.948964i \(-0.602134\pi\)
−0.315385 + 0.948964i \(0.602134\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.80487 1.32001i 0.155339 0.113609i
\(136\) 0 0
\(137\) 8.10929i 0.692823i 0.938083 + 0.346412i \(0.112600\pi\)
−0.938083 + 0.346412i \(0.887400\pi\)
\(138\) 0 0
\(139\) −19.0596 −1.61662 −0.808309 0.588759i \(-0.799617\pi\)
−0.808309 + 0.588759i \(0.799617\pi\)
\(140\) 0 0
\(141\) 2.88979 0.243365
\(142\) 0 0
\(143\) 4.64002i 0.388018i
\(144\) 0 0
\(145\) 12.1698 + 16.6400i 1.01065 + 1.38188i
\(146\) 0 0
\(147\) 7.00000i 0.577350i
\(148\) 0 0
\(149\) −3.92007 −0.321145 −0.160572 0.987024i \(-0.551334\pi\)
−0.160572 + 0.987024i \(0.551334\pi\)
\(150\) 0 0
\(151\) −21.7796 −1.77240 −0.886199 0.463305i \(-0.846663\pi\)
−0.886199 + 0.463305i \(0.846663\pi\)
\(152\) 0 0
\(153\) 4.24977i 0.343574i
\(154\) 0 0
\(155\) −12.2498 16.7493i −0.983925 1.34534i
\(156\) 0 0
\(157\) 21.5904i 1.72310i −0.507673 0.861550i \(-0.669494\pi\)
0.507673 0.861550i \(-0.330506\pi\)
\(158\) 0 0
\(159\) −9.21949 −0.731153
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.28005i 0.100261i 0.998743 + 0.0501305i \(0.0159637\pi\)
−0.998743 + 0.0501305i \(0.984036\pi\)
\(164\) 0 0
\(165\) −8.37466 + 6.12489i −0.651966 + 0.476822i
\(166\) 0 0
\(167\) 18.8898i 1.46174i 0.682519 + 0.730868i \(0.260885\pi\)
−0.682519 + 0.730868i \(0.739115\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 6.24977 0.477932
\(172\) 0 0
\(173\) 22.9991i 1.74859i 0.485397 + 0.874294i \(0.338675\pi\)
−0.485397 + 0.874294i \(0.661325\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.92007i 0.444980i
\(178\) 0 0
\(179\) −4.49954 −0.336312 −0.168156 0.985760i \(-0.553781\pi\)
−0.168156 + 0.985760i \(0.553781\pi\)
\(180\) 0 0
\(181\) −21.0596 −1.56535 −0.782675 0.622430i \(-0.786145\pi\)
−0.782675 + 0.622430i \(0.786145\pi\)
\(182\) 0 0
\(183\) 0.969724i 0.0716841i
\(184\) 0 0
\(185\) −13.1396 + 9.60975i −0.966040 + 0.706523i
\(186\) 0 0
\(187\) 19.7190i 1.44200i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.4390 1.04477 0.522384 0.852710i \(-0.325043\pi\)
0.522384 + 0.852710i \(0.325043\pi\)
\(192\) 0 0
\(193\) 21.7190i 1.56337i −0.623673 0.781685i \(-0.714360\pi\)
0.623673 0.781685i \(-0.285640\pi\)
\(194\) 0 0
\(195\) 1.32001 + 1.80487i 0.0945280 + 0.129250i
\(196\) 0 0
\(197\) 13.0109i 0.926988i −0.886100 0.463494i \(-0.846596\pi\)
0.886100 0.463494i \(-0.153404\pi\)
\(198\) 0 0
\(199\) 18.6888 1.32481 0.662406 0.749145i \(-0.269536\pi\)
0.662406 + 0.749145i \(0.269536\pi\)
\(200\) 0 0
\(201\) −1.93945 −0.136798
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.48486 10.2342i −0.522765 0.714786i
\(206\) 0 0
\(207\) 2.24977i 0.156370i
\(208\) 0 0
\(209\) −28.9991 −2.00591
\(210\) 0 0
\(211\) 8.24977 0.567938 0.283969 0.958834i \(-0.408349\pi\)
0.283969 + 0.958834i \(0.408349\pi\)
\(212\) 0 0
\(213\) 5.60975i 0.384374i
\(214\) 0 0
\(215\) 7.67030 5.60975i 0.523110 0.382582i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −12.5601 −0.848732
\(220\) 0 0
\(221\) 4.24977 0.285871
\(222\) 0 0
\(223\) 9.77959i 0.654890i 0.944870 + 0.327445i \(0.106188\pi\)
−0.944870 + 0.327445i \(0.893812\pi\)
\(224\) 0 0
\(225\) 1.51514 4.76491i 0.101009 0.317661i
\(226\) 0 0
\(227\) 25.4499i 1.68917i −0.535423 0.844584i \(-0.679848\pi\)
0.535423 0.844584i \(-0.320152\pi\)
\(228\) 0 0
\(229\) 8.24977 0.545160 0.272580 0.962133i \(-0.412123\pi\)
0.272580 + 0.962133i \(0.412123\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.5904i 0.759310i −0.925128 0.379655i \(-0.876043\pi\)
0.925128 0.379655i \(-0.123957\pi\)
\(234\) 0 0
\(235\) 5.21571 3.81456i 0.340236 0.248835i
\(236\) 0 0
\(237\) 12.2498i 0.795708i
\(238\) 0 0
\(239\) −6.88979 −0.445664 −0.222832 0.974857i \(-0.571530\pi\)
−0.222832 + 0.974857i \(0.571530\pi\)
\(240\) 0 0
\(241\) 21.2195 1.36687 0.683434 0.730012i \(-0.260486\pi\)
0.683434 + 0.730012i \(0.260486\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 9.24008 + 12.6341i 0.590327 + 0.807164i
\(246\) 0 0
\(247\) 6.24977i 0.397663i
\(248\) 0 0
\(249\) 3.67030 0.232596
\(250\) 0 0
\(251\) 24.3397 1.53631 0.768154 0.640266i \(-0.221176\pi\)
0.768154 + 0.640266i \(0.221176\pi\)
\(252\) 0 0
\(253\) 10.4390i 0.656294i
\(254\) 0 0
\(255\) −5.60975 7.67030i −0.351296 0.480333i
\(256\) 0 0
\(257\) 23.4693i 1.46397i −0.681319 0.731986i \(-0.738593\pi\)
0.681319 0.731986i \(-0.261407\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −9.21949 −0.570672
\(262\) 0 0
\(263\) 22.6282i 1.39532i −0.716431 0.697658i \(-0.754226\pi\)
0.716431 0.697658i \(-0.245774\pi\)
\(264\) 0 0
\(265\) −16.6400 + 12.1698i −1.02219 + 0.747587i
\(266\) 0 0
\(267\) 9.67030i 0.591813i
\(268\) 0 0
\(269\) −12.2791 −0.748672 −0.374336 0.927293i \(-0.622129\pi\)
−0.374336 + 0.927293i \(0.622129\pi\)
\(270\) 0 0
\(271\) 22.9385 1.39342 0.696708 0.717355i \(-0.254647\pi\)
0.696708 + 0.717355i \(0.254647\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.03028 + 22.1093i −0.423942 + 1.33324i
\(276\) 0 0
\(277\) 11.5298i 0.692760i 0.938094 + 0.346380i \(0.112589\pi\)
−0.938094 + 0.346380i \(0.887411\pi\)
\(278\) 0 0
\(279\) 9.28005 0.555582
\(280\) 0 0
\(281\) −11.3288 −0.675819 −0.337909 0.941179i \(-0.609720\pi\)
−0.337909 + 0.941179i \(0.609720\pi\)
\(282\) 0 0
\(283\) 20.9991i 1.24827i 0.781318 + 0.624133i \(0.214548\pi\)
−0.781318 + 0.624133i \(0.785452\pi\)
\(284\) 0 0
\(285\) 11.2800 8.24977i 0.668172 0.488674i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.06055 −0.0623854
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) 4.26915i 0.249406i 0.992194 + 0.124703i \(0.0397979\pi\)
−0.992194 + 0.124703i \(0.960202\pi\)
\(294\) 0 0
\(295\) 7.81456 + 10.6850i 0.454981 + 0.622104i
\(296\) 0 0
\(297\) 4.64002i 0.269241i
\(298\) 0 0
\(299\) 2.24977 0.130108
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 15.2800i 0.877816i
\(304\) 0 0
\(305\) 1.28005 + 1.75023i 0.0732953 + 0.100218i
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) −1.21949 −0.0693746
\(310\) 0 0
\(311\) −3.71904 −0.210887 −0.105444 0.994425i \(-0.533626\pi\)
−0.105444 + 0.994425i \(0.533626\pi\)
\(312\) 0 0
\(313\) 1.52982i 0.0864704i −0.999065 0.0432352i \(-0.986234\pi\)
0.999065 0.0432352i \(-0.0137665\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.1093i 0.904788i 0.891818 + 0.452394i \(0.149430\pi\)
−0.891818 + 0.452394i \(0.850570\pi\)
\(318\) 0 0
\(319\) 42.7787 2.39515
\(320\) 0 0
\(321\) −5.28005 −0.294703
\(322\) 0 0
\(323\) 26.5601i 1.47784i
\(324\) 0 0
\(325\) 4.76491 + 1.51514i 0.264310 + 0.0840447i
\(326\) 0 0
\(327\) 10.1892i 0.563465i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.5298 −0.853596 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(332\) 0 0
\(333\) 7.28005i 0.398944i
\(334\) 0 0
\(335\) −3.50046 + 2.56009i −0.191250 + 0.139873i
\(336\) 0 0
\(337\) 21.4087i 1.16621i −0.812398 0.583103i \(-0.801838\pi\)
0.812398 0.583103i \(-0.198162\pi\)
\(338\) 0 0
\(339\) 1.03028 0.0559569
\(340\) 0 0
\(341\) −43.0596 −2.33181
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.96972 4.06055i −0.159885 0.218613i
\(346\) 0 0
\(347\) 4.62065i 0.248049i 0.992279 + 0.124025i \(0.0395802\pi\)
−0.992279 + 0.124025i \(0.960420\pi\)
\(348\) 0 0
\(349\) −23.9688 −1.28302 −0.641510 0.767114i \(-0.721692\pi\)
−0.641510 + 0.767114i \(0.721692\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 0.511357i 0.0272168i 0.999907 + 0.0136084i \(0.00433182\pi\)
−0.999907 + 0.0136084i \(0.995668\pi\)
\(354\) 0 0
\(355\) −7.40493 10.1249i −0.393013 0.537373i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.6694 −0.668664 −0.334332 0.942455i \(-0.608511\pi\)
−0.334332 + 0.942455i \(0.608511\pi\)
\(360\) 0 0
\(361\) 20.0596 1.05577
\(362\) 0 0
\(363\) 10.5298i 0.552672i
\(364\) 0 0
\(365\) −22.6694 + 16.5795i −1.18657 + 0.867809i
\(366\) 0 0
\(367\) 0.841057i 0.0439028i 0.999759 + 0.0219514i \(0.00698792\pi\)
−0.999759 + 0.0219514i \(0.993012\pi\)
\(368\) 0 0
\(369\) 5.67030 0.295184
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 29.0596i 1.50465i 0.658792 + 0.752325i \(0.271068\pi\)
−0.658792 + 0.752325i \(0.728932\pi\)
\(374\) 0 0
\(375\) −3.55510 10.6001i −0.183585 0.547385i
\(376\) 0 0
\(377\) 9.21949i 0.474828i
\(378\) 0 0
\(379\) 9.75023 0.500836 0.250418 0.968138i \(-0.419432\pi\)
0.250418 + 0.968138i \(0.419432\pi\)
\(380\) 0 0
\(381\) −11.0303 −0.565098
\(382\) 0 0
\(383\) 7.38934i 0.377577i −0.982018 0.188789i \(-0.939544\pi\)
0.982018 0.188789i \(-0.0604561\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.24977i 0.216028i
\(388\) 0 0
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) −9.56101 −0.483521
\(392\) 0 0
\(393\) 7.21949i 0.364175i
\(394\) 0 0
\(395\) 16.1698 + 22.1093i 0.813593 + 1.11244i
\(396\) 0 0
\(397\) 26.2186i 1.31587i 0.753074 + 0.657936i \(0.228570\pi\)
−0.753074 + 0.657936i \(0.771430\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.2909 0.513905 0.256953 0.966424i \(-0.417282\pi\)
0.256953 + 0.966424i \(0.417282\pi\)
\(402\) 0 0
\(403\) 9.28005i 0.462272i
\(404\) 0 0
\(405\) 1.32001 + 1.80487i 0.0655919 + 0.0896849i
\(406\) 0 0
\(407\) 33.7796i 1.67439i
\(408\) 0 0
\(409\) 11.9007 0.588451 0.294226 0.955736i \(-0.404938\pi\)
0.294226 + 0.955736i \(0.404938\pi\)
\(410\) 0 0
\(411\) −8.10929 −0.400002
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.62443 4.84484i 0.325180 0.237824i
\(416\) 0 0
\(417\) 19.0596i 0.933354i
\(418\) 0 0
\(419\) 26.2791 1.28382 0.641910 0.766780i \(-0.278142\pi\)
0.641910 + 0.766780i \(0.278142\pi\)
\(420\) 0 0
\(421\) 22.3103 1.08734 0.543669 0.839300i \(-0.317035\pi\)
0.543669 + 0.839300i \(0.317035\pi\)
\(422\) 0 0
\(423\) 2.88979i 0.140507i
\(424\) 0 0
\(425\) −20.2498 6.43899i −0.982258 0.312337i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.64002 0.224022
\(430\) 0 0
\(431\) −12.0487 −0.580367 −0.290184 0.956971i \(-0.593716\pi\)
−0.290184 + 0.956971i \(0.593716\pi\)
\(432\) 0 0
\(433\) 27.5904i 1.32591i −0.748660 0.662954i \(-0.769302\pi\)
0.748660 0.662954i \(-0.230698\pi\)
\(434\) 0 0
\(435\) −16.6400 + 12.1698i −0.797828 + 0.583499i
\(436\) 0 0
\(437\) 14.0606i 0.672607i
\(438\) 0 0
\(439\) 19.8789 0.948768 0.474384 0.880318i \(-0.342671\pi\)
0.474384 + 0.880318i \(0.342671\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 17.9007i 0.850488i 0.905079 + 0.425244i \(0.139812\pi\)
−0.905079 + 0.425244i \(0.860188\pi\)
\(444\) 0 0
\(445\) 12.7649 + 17.4537i 0.605115 + 0.827383i
\(446\) 0 0
\(447\) 3.92007i 0.185413i
\(448\) 0 0
\(449\) 17.2682 0.814938 0.407469 0.913219i \(-0.366411\pi\)
0.407469 + 0.913219i \(0.366411\pi\)
\(450\) 0 0
\(451\) −26.3103 −1.23890
\(452\) 0 0
\(453\) 21.7796i 1.02329i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.4995i 1.42671i −0.700804 0.713354i \(-0.747175\pi\)
0.700804 0.713354i \(-0.252825\pi\)
\(458\) 0 0
\(459\) 4.24977 0.198362
\(460\) 0 0
\(461\) −2.64002 −0.122958 −0.0614791 0.998108i \(-0.519582\pi\)
−0.0614791 + 0.998108i \(0.519582\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 0 0
\(465\) 16.7493 12.2498i 0.776731 0.568070i
\(466\) 0 0
\(467\) 4.78051i 0.221215i 0.993864 + 0.110608i \(0.0352797\pi\)
−0.993864 + 0.110608i \(0.964720\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 21.5904 0.994832
\(472\) 0 0
\(473\) 19.7190i 0.906682i
\(474\) 0 0
\(475\) 9.46927 29.7796i 0.434480 1.36638i
\(476\) 0 0
\(477\) 9.21949i 0.422132i
\(478\) 0 0
\(479\) 9.11021 0.416256 0.208128 0.978102i \(-0.433263\pi\)
0.208128 + 0.978102i \(0.433263\pi\)
\(480\) 0 0
\(481\) 7.28005 0.331942
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.8292 7.92007i 0.491731 0.359632i
\(486\) 0 0
\(487\) 26.2791i 1.19082i 0.803422 + 0.595411i \(0.203011\pi\)
−0.803422 + 0.595411i \(0.796989\pi\)
\(488\) 0 0
\(489\) −1.28005 −0.0578857
\(490\) 0 0
\(491\) −5.40115 −0.243751 −0.121875 0.992545i \(-0.538891\pi\)
−0.121875 + 0.992545i \(0.538891\pi\)
\(492\) 0 0
\(493\) 39.1807i 1.76461i
\(494\) 0 0
\(495\) −6.12489 8.37466i −0.275293 0.376413i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 22.9092 1.02556 0.512778 0.858521i \(-0.328617\pi\)
0.512778 + 0.858521i \(0.328617\pi\)
\(500\) 0 0
\(501\) −18.8898 −0.843934
\(502\) 0 0
\(503\) 37.3094i 1.66354i 0.555117 + 0.831772i \(0.312673\pi\)
−0.555117 + 0.831772i \(0.687327\pi\)
\(504\) 0 0
\(505\) −20.1698 27.5786i −0.897546 1.22723i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) 0.700576 0.0310525 0.0155262 0.999879i \(-0.495058\pi\)
0.0155262 + 0.999879i \(0.495058\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.24977i 0.275934i
\(514\) 0 0
\(515\) −2.20103 + 1.60975i −0.0969891 + 0.0709339i
\(516\) 0 0
\(517\) 13.4087i 0.589715i
\(518\) 0 0
\(519\) −22.9991 −1.00955
\(520\) 0 0
\(521\) 13.8401 0.606348 0.303174 0.952935i \(-0.401954\pi\)
0.303174 + 0.952935i \(0.401954\pi\)
\(522\) 0 0
\(523\) 43.6878i 1.91034i −0.296064 0.955168i \(-0.595674\pi\)
0.296064 0.955168i \(-0.404326\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 39.4381i 1.71795i
\(528\) 0 0
\(529\) 17.9385 0.779936
\(530\) 0 0
\(531\) −5.92007 −0.256909
\(532\) 0 0
\(533\) 5.67030i 0.245608i
\(534\) 0 0
\(535\) −9.52982 + 6.96972i −0.412010 + 0.301327i
\(536\) 0 0
\(537\) 4.49954i 0.194170i
\(538\) 0 0
\(539\) 32.4802 1.39902
\(540\) 0 0
\(541\) 14.1892 0.610042 0.305021 0.952346i \(-0.401336\pi\)
0.305021 + 0.952346i \(0.401336\pi\)
\(542\) 0 0
\(543\) 21.0596i 0.903755i
\(544\) 0 0
\(545\) 13.4499 + 18.3903i 0.576130 + 0.787752i
\(546\) 0 0
\(547\) 44.3085i 1.89449i −0.320504 0.947247i \(-0.603852\pi\)
0.320504 0.947247i \(-0.396148\pi\)
\(548\) 0 0
\(549\) −0.969724 −0.0413868
\(550\) 0 0
\(551\) −57.6197 −2.45468
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.60975 13.1396i −0.407911 0.557743i
\(556\) 0 0
\(557\) 39.2077i 1.66128i −0.556808 0.830641i \(-0.687974\pi\)
0.556808 0.830641i \(-0.312026\pi\)
\(558\) 0 0
\(559\) −4.24977 −0.179746
\(560\) 0 0
\(561\) −19.7190 −0.832538
\(562\) 0 0
\(563\) 18.0606i 0.761162i −0.924748 0.380581i \(-0.875724\pi\)
0.924748 0.380581i \(-0.124276\pi\)
\(564\) 0 0
\(565\) 1.85952 1.35998i 0.0782305 0.0572146i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.3397 1.77497 0.887486 0.460835i \(-0.152450\pi\)
0.887486 + 0.460835i \(0.152450\pi\)
\(570\) 0 0
\(571\) 39.9301 1.67102 0.835510 0.549475i \(-0.185172\pi\)
0.835510 + 0.549475i \(0.185172\pi\)
\(572\) 0 0
\(573\) 14.4390i 0.603197i
\(574\) 0 0
\(575\) −10.7200 3.40871i −0.447053 0.142153i
\(576\) 0 0
\(577\) 21.3406i 0.888421i 0.895923 + 0.444210i \(0.146516\pi\)
−0.895923 + 0.444210i \(0.853484\pi\)
\(578\) 0 0
\(579\) 21.7190 0.902612
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 42.7787i 1.77171i
\(584\) 0 0
\(585\) −1.80487 + 1.32001i −0.0746223 + 0.0545758i
\(586\) 0 0
\(587\) 32.7905i 1.35341i −0.736255 0.676704i \(-0.763408\pi\)
0.736255 0.676704i \(-0.236592\pi\)
\(588\) 0 0
\(589\) 57.9982 2.38977
\(590\) 0 0
\(591\) 13.0109 0.535197
\(592\) 0 0
\(593\) 6.66938i 0.273879i −0.990579 0.136939i \(-0.956273\pi\)
0.990579 0.136939i \(-0.0437265\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.6888i 0.764880i
\(598\) 0 0
\(599\) 1.40115 0.0572495 0.0286247 0.999590i \(-0.490887\pi\)
0.0286247 + 0.999590i \(0.490887\pi\)
\(600\) 0 0
\(601\) 0.349078 0.0142392 0.00711959 0.999975i \(-0.497734\pi\)
0.00711959 + 0.999975i \(0.497734\pi\)
\(602\) 0 0
\(603\) 1.93945i 0.0789804i
\(604\) 0 0
\(605\) 13.8995 + 19.0050i 0.565094 + 0.772663i
\(606\) 0 0
\(607\) 27.2800i 1.10726i 0.832762 + 0.553631i \(0.186758\pi\)
−0.832762 + 0.553631i \(0.813242\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.88979 −0.116909
\(612\) 0 0
\(613\) 9.34060i 0.377263i −0.982048 0.188632i \(-0.939595\pi\)
0.982048 0.188632i \(-0.0604052\pi\)
\(614\) 0 0
\(615\) 10.2342 7.48486i 0.412682 0.301819i
\(616\) 0 0
\(617\) 34.6694i 1.39574i −0.716226 0.697868i \(-0.754132\pi\)
0.716226 0.697868i \(-0.245868\pi\)
\(618\) 0 0
\(619\) 19.6509 0.789837 0.394919 0.918716i \(-0.370773\pi\)
0.394919 + 0.918716i \(0.370773\pi\)
\(620\) 0 0
\(621\) 2.24977 0.0902802
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.4087 14.4390i −0.816349 0.577560i
\(626\) 0 0
\(627\) 28.9991i 1.15811i
\(628\) 0 0
\(629\) −30.9385 −1.23360
\(630\) 0 0
\(631\) 43.3993 1.72770 0.863850 0.503749i \(-0.168047\pi\)
0.863850 + 0.503749i \(0.168047\pi\)
\(632\) 0 0
\(633\) 8.24977i 0.327899i
\(634\) 0 0
\(635\) −19.9083 + 14.5601i −0.790035 + 0.577800i
\(636\) 0 0
\(637\) 7.00000i 0.277350i
\(638\) 0 0
\(639\) 5.60975 0.221918
\(640\) 0 0
\(641\) −4.56009 −0.180113 −0.0900564 0.995937i \(-0.528705\pi\)
−0.0900564 + 0.995937i \(0.528705\pi\)
\(642\) 0 0
\(643\) 8.62065i 0.339965i −0.985447 0.169983i \(-0.945629\pi\)
0.985447 0.169983i \(-0.0543711\pi\)
\(644\) 0 0
\(645\) 5.60975 + 7.67030i 0.220884 + 0.302018i
\(646\) 0 0
\(647\) 7.40871i 0.291267i 0.989339 + 0.145633i \(0.0465220\pi\)
−0.989339 + 0.145633i \(0.953478\pi\)
\(648\) 0 0
\(649\) 27.4693 1.07826
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.00000i 0.0782660i 0.999234 + 0.0391330i \(0.0124596\pi\)
−0.999234 + 0.0391330i \(0.987540\pi\)
\(654\) 0 0
\(655\) −9.52982 13.0303i −0.372361 0.509135i
\(656\) 0 0
\(657\) 12.5601i 0.490016i
\(658\) 0 0
\(659\) 40.3784 1.57292 0.786460 0.617641i \(-0.211911\pi\)
0.786460 + 0.617641i \(0.211911\pi\)
\(660\) 0 0
\(661\) 39.0284 1.51803 0.759015 0.651073i \(-0.225681\pi\)
0.759015 + 0.651073i \(0.225681\pi\)
\(662\) 0 0
\(663\) 4.24977i 0.165047i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.7418i 0.803124i
\(668\) 0 0
\(669\) −9.77959 −0.378101
\(670\) 0 0
\(671\) 4.49954 0.173703
\(672\) 0 0
\(673\) 11.1807i 0.430986i 0.976505 + 0.215493i \(0.0691358\pi\)
−0.976505 + 0.215493i \(0.930864\pi\)
\(674\) 0 0
\(675\) 4.76491 + 1.51514i 0.183401 + 0.0583177i
\(676\) 0 0
\(677\) 33.3406i 1.28138i −0.767798 0.640692i \(-0.778648\pi\)
0.767798 0.640692i \(-0.221352\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 25.4499 0.975242
\(682\) 0 0
\(683\) 31.8889i 1.22019i −0.792327 0.610097i \(-0.791130\pi\)
0.792327 0.610097i \(-0.208870\pi\)
\(684\) 0 0
\(685\) −14.6362 + 10.7044i −0.559222 + 0.408992i
\(686\) 0 0
\(687\) 8.24977i 0.314748i
\(688\) 0 0
\(689\) 9.21949 0.351235
\(690\) 0 0
\(691\) −39.0303 −1.48478 −0.742391 0.669967i \(-0.766308\pi\)
−0.742391 + 0.669967i \(0.766308\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.1589 34.4002i −0.954333 1.30488i
\(696\) 0 0
\(697\) 24.0975i 0.912757i
\(698\) 0 0
\(699\) 11.5904 0.438388
\(700\) 0 0
\(701\) −44.5601 −1.68301 −0.841506 0.540248i \(-0.818330\pi\)
−0.841506 + 0.540248i \(0.818330\pi\)
\(702\) 0 0
\(703\) 45.4986i 1.71601i
\(704\) 0 0
\(705\) 3.81456 + 5.21571i 0.143665 + 0.196435i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.4305 −0.879951 −0.439976 0.898010i \(-0.645013\pi\)
−0.439976 + 0.898010i \(0.645013\pi\)
\(710\) 0 0
\(711\) −12.2498 −0.459402
\(712\) 0 0
\(713\) 20.8780i 0.781886i
\(714\) 0 0
\(715\) 8.37466 6.12489i 0.313194 0.229058i
\(716\) 0 0
\(717\) 6.88979i 0.257304i
\(718\) 0 0
\(719\) −15.0984 −0.563075 −0.281537 0.959550i \(-0.590844\pi\)
−0.281537 + 0.959550i \(0.590844\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 21.2195i 0.789162i
\(724\) 0 0
\(725\) −13.9688 + 43.9301i −0.518788 + 1.63152i
\(726\) 0 0
\(727\) 3.40871i 0.126422i −0.998000 0.0632111i \(-0.979866\pi\)
0.998000 0.0632111i \(-0.0201341\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 18.0606 0.667994
\(732\) 0 0
\(733\) 12.4390i 0.459445i −0.973256 0.229722i \(-0.926218\pi\)
0.973256 0.229722i \(-0.0737818\pi\)
\(734\) 0 0
\(735\) −12.6341 + 9.24008i −0.466016 + 0.340826i
\(736\) 0 0
\(737\) 8.99908i 0.331485i
\(738\) 0 0
\(739\) −13.4693 −0.495475 −0.247737 0.968827i \(-0.579687\pi\)
−0.247737 + 0.968827i \(0.579687\pi\)
\(740\) 0 0
\(741\) −6.24977 −0.229591
\(742\) 0 0
\(743\) 45.4111i 1.66597i −0.553293 0.832986i \(-0.686629\pi\)
0.553293 0.832986i \(-0.313371\pi\)
\(744\) 0 0
\(745\) −5.17454 7.07523i −0.189580 0.259216i
\(746\) 0 0
\(747\) 3.67030i 0.134289i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.56101 −0.0569621 −0.0284810 0.999594i \(-0.509067\pi\)
−0.0284810 + 0.999594i \(0.509067\pi\)
\(752\) 0 0
\(753\) 24.3397i 0.886987i
\(754\) 0 0
\(755\) −28.7493 39.3094i −1.04629 1.43062i
\(756\) 0 0
\(757\) 38.8780i 1.41304i 0.707691 + 0.706522i \(0.249737\pi\)
−0.707691 + 0.706522i \(0.750263\pi\)
\(758\) 0 0
\(759\) −10.4390 −0.378911
\(760\) 0 0
\(761\) 5.42809 0.196768 0.0983841 0.995149i \(-0.468633\pi\)
0.0983841 + 0.995149i \(0.468633\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 7.67030 5.60975i 0.277320 0.202821i
\(766\) 0 0
\(767\) 5.92007i 0.213761i
\(768\) 0 0
\(769\) −16.4390 −0.592805 −0.296403 0.955063i \(-0.595787\pi\)
−0.296403 + 0.955063i \(0.595787\pi\)
\(770\) 0 0
\(771\) 23.4693 0.845225
\(772\) 0 0
\(773\) 42.3884i 1.52461i −0.647221 0.762303i \(-0.724069\pi\)
0.647221 0.762303i \(-0.275931\pi\)
\(774\) 0 0
\(775\) 14.0606 44.2186i 0.505070 1.58838i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 35.4381 1.26970
\(780\) 0 0
\(781\) −26.0294 −0.931404
\(782\) 0 0
\(783\) 9.21949i 0.329478i
\(784\) 0 0
\(785\) 38.9679 28.4995i 1.39082 1.01719i
\(786\) 0 0
\(787\) 15.5592i 0.554625i 0.960780 + 0.277312i \(0.0894437\pi\)
−0.960780 + 0.277312i \(0.910556\pi\)
\(788\) 0 0
\(789\) 22.6282 0.805586
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.969724i 0.0344359i
\(794\) 0 0
\(795\) −12.1698 16.6400i −0.431620 0.590161i
\(796\) 0 0
\(797\) 36.4002i 1.28936i 0.764452 + 0.644681i \(0.223010\pi\)
−0.764452 + 0.644681i \(0.776990\pi\)