# Properties

 Label 3120.2.l.g Level $3120$ Weight $2$ Character orbit 3120.l Analytic conductor $24.913$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3120.l (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.9133254306$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - i q^{3} + ( - i + 2) q^{5} + 2 i q^{7} - q^{9} +O(q^{10})$$ q - i * q^3 + (-i + 2) * q^5 + 2*i * q^7 - q^9 $$q - i q^{3} + ( - i + 2) q^{5} + 2 i q^{7} - q^{9} - 2 q^{11} - i q^{13} + ( - 2 i - 1) q^{15} - 2 i q^{17} - 4 q^{19} + 2 q^{21} + ( - 4 i + 3) q^{25} + i q^{27} - 4 q^{29} - 8 q^{31} + 2 i q^{33} + (4 i + 2) q^{35} - 6 i q^{37} - q^{39} - 6 q^{41} - 4 i q^{43} + (i - 2) q^{45} - 8 i q^{47} + 3 q^{49} - 2 q^{51} + 2 i q^{53} + (2 i - 4) q^{55} + 4 i q^{57} + 10 q^{59} - 14 q^{61} - 2 i q^{63} + ( - 2 i - 1) q^{65} - 16 i q^{67} + 4 q^{71} + 8 i q^{73} + ( - 3 i - 4) q^{75} - 4 i q^{77} - 8 q^{79} + q^{81} - 12 i q^{83} + ( - 4 i - 2) q^{85} + 4 i q^{87} - 6 q^{89} + 2 q^{91} + 8 i q^{93} + (4 i - 8) q^{95} - 12 i q^{97} + 2 q^{99} +O(q^{100})$$ q - i * q^3 + (-i + 2) * q^5 + 2*i * q^7 - q^9 - 2 * q^11 - i * q^13 + (-2*i - 1) * q^15 - 2*i * q^17 - 4 * q^19 + 2 * q^21 + (-4*i + 3) * q^25 + i * q^27 - 4 * q^29 - 8 * q^31 + 2*i * q^33 + (4*i + 2) * q^35 - 6*i * q^37 - q^39 - 6 * q^41 - 4*i * q^43 + (i - 2) * q^45 - 8*i * q^47 + 3 * q^49 - 2 * q^51 + 2*i * q^53 + (2*i - 4) * q^55 + 4*i * q^57 + 10 * q^59 - 14 * q^61 - 2*i * q^63 + (-2*i - 1) * q^65 - 16*i * q^67 + 4 * q^71 + 8*i * q^73 + (-3*i - 4) * q^75 - 4*i * q^77 - 8 * q^79 + q^81 - 12*i * q^83 + (-4*i - 2) * q^85 + 4*i * q^87 - 6 * q^89 + 2 * q^91 + 8*i * q^93 + (4*i - 8) * q^95 - 12*i * q^97 + 2 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 4 q^{5} - 2 q^{9}+O(q^{10})$$ 2 * q + 4 * q^5 - 2 * q^9 $$2 q + 4 q^{5} - 2 q^{9} - 4 q^{11} - 2 q^{15} - 8 q^{19} + 4 q^{21} + 6 q^{25} - 8 q^{29} - 16 q^{31} + 4 q^{35} - 2 q^{39} - 12 q^{41} - 4 q^{45} + 6 q^{49} - 4 q^{51} - 8 q^{55} + 20 q^{59} - 28 q^{61} - 2 q^{65} + 8 q^{71} - 8 q^{75} - 16 q^{79} + 2 q^{81} - 4 q^{85} - 12 q^{89} + 4 q^{91} - 16 q^{95} + 4 q^{99}+O(q^{100})$$ 2 * q + 4 * q^5 - 2 * q^9 - 4 * q^11 - 2 * q^15 - 8 * q^19 + 4 * q^21 + 6 * q^25 - 8 * q^29 - 16 * q^31 + 4 * q^35 - 2 * q^39 - 12 * q^41 - 4 * q^45 + 6 * q^49 - 4 * q^51 - 8 * q^55 + 20 * q^59 - 28 * q^61 - 2 * q^65 + 8 * q^71 - 8 * q^75 - 16 * q^79 + 2 * q^81 - 4 * q^85 - 12 * q^89 + 4 * q^91 - 16 * q^95 + 4 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times$$.

 $$n$$ $$1951$$ $$2081$$ $$2341$$ $$2497$$ $$2641$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1249.1
 1.00000i − 1.00000i
0 1.00000i 0 2.00000 1.00000i 0 2.00000i 0 −1.00000 0
1249.2 0 1.00000i 0 2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3120.2.l.g 2
4.b odd 2 1 390.2.e.c 2
5.b even 2 1 inner 3120.2.l.g 2
12.b even 2 1 1170.2.e.a 2
20.d odd 2 1 390.2.e.c 2
20.e even 4 1 1950.2.a.c 1
20.e even 4 1 1950.2.a.z 1
60.h even 2 1 1170.2.e.a 2
60.l odd 4 1 5850.2.a.t 1
60.l odd 4 1 5850.2.a.bj 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.e.c 2 4.b odd 2 1
390.2.e.c 2 20.d odd 2 1
1170.2.e.a 2 12.b even 2 1
1170.2.e.a 2 60.h even 2 1
1950.2.a.c 1 20.e even 4 1
1950.2.a.z 1 20.e even 4 1
3120.2.l.g 2 1.a even 1 1 trivial
3120.2.l.g 2 5.b even 2 1 inner
5850.2.a.t 1 60.l odd 4 1
5850.2.a.bj 1 60.l odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3120, [\chi])$$:

 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{11} + 2$$ T11 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2} - 4T + 5$$
$7$ $$T^{2} + 4$$
$11$ $$(T + 2)^{2}$$
$13$ $$T^{2} + 1$$
$17$ $$T^{2} + 4$$
$19$ $$(T + 4)^{2}$$
$23$ $$T^{2}$$
$29$ $$(T + 4)^{2}$$
$31$ $$(T + 8)^{2}$$
$37$ $$T^{2} + 36$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2} + 64$$
$53$ $$T^{2} + 4$$
$59$ $$(T - 10)^{2}$$
$61$ $$(T + 14)^{2}$$
$67$ $$T^{2} + 256$$
$71$ $$(T - 4)^{2}$$
$73$ $$T^{2} + 64$$
$79$ $$(T + 8)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T + 6)^{2}$$
$97$ $$T^{2} + 144$$