Properties

Label 3120.2.l.a.1249.1
Level $3120$
Weight $2$
Character 3120.1249
Analytic conductor $24.913$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3120.1249
Dual form 3120.2.l.a.1249.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-2.00000 - 1.00000i) q^{5} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +(-2.00000 - 1.00000i) q^{5} -1.00000 q^{9} +6.00000 q^{11} -1.00000i q^{13} +(-1.00000 + 2.00000i) q^{15} +6.00000 q^{19} +6.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +1.00000i q^{27} -2.00000 q^{29} -4.00000 q^{31} -6.00000i q^{33} +10.0000i q^{37} -1.00000 q^{39} -6.00000 q^{41} +8.00000i q^{43} +(2.00000 + 1.00000i) q^{45} -8.00000i q^{47} +7.00000 q^{49} +6.00000i q^{53} +(-12.0000 - 6.00000i) q^{55} -6.00000i q^{57} +10.0000 q^{59} -6.00000 q^{61} +(-1.00000 + 2.00000i) q^{65} -4.00000i q^{67} +6.00000 q^{69} +8.00000 q^{71} -6.00000i q^{73} +(4.00000 - 3.00000i) q^{75} +16.0000 q^{79} +1.00000 q^{81} +4.00000i q^{83} +2.00000i q^{87} +10.0000 q^{89} +4.00000i q^{93} +(-12.0000 - 6.00000i) q^{95} +2.00000i q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 2q - 4q^{5} - 2q^{9} + 12q^{11} - 2q^{15} + 12q^{19} + 6q^{25} - 4q^{29} - 8q^{31} - 2q^{39} - 12q^{41} + 4q^{45} + 14q^{49} - 24q^{55} + 20q^{59} - 12q^{61} - 2q^{65} + 12q^{69} + 16q^{71} + 8q^{75} + 32q^{79} + 2q^{81} + 20q^{89} - 24q^{95} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −1.00000 + 2.00000i −0.258199 + 0.516398i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 6.00000i 1.04447i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) 2.00000 + 1.00000i 0.298142 + 0.149071i
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) −12.0000 6.00000i −1.61808 0.809040i
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 + 2.00000i −0.124035 + 0.248069i
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 4.00000 3.00000i 0.461880 0.346410i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000i 0.214423i
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) −12.0000 6.00000i −1.23117 0.615587i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i −0.870219 0.492665i \(-0.836023\pi\)
0.870219 0.492665i \(-0.163977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000i 1.54678i −0.633932 0.773389i \(-0.718560\pi\)
0.633932 0.773389i \(-0.281440\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) 8.00000i 0.752577i −0.926503 0.376288i \(-0.877200\pi\)
0.926503 0.376288i \(-0.122800\pi\)
\(114\) 0 0
\(115\) 6.00000 12.0000i 0.559503 1.11901i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) 6.00000i 0.541002i
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 2.00000i 0.0860663 0.172133i
\(136\) 0 0
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 6.00000i 0.501745i
\(144\) 0 0
\(145\) 4.00000 + 2.00000i 0.332182 + 0.166091i
\(146\) 0 0
\(147\) 7.00000i 0.577350i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.00000 + 4.00000i 0.642575 + 0.321288i
\(156\) 0 0
\(157\) 2.00000i 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) 0 0
\(165\) −6.00000 + 12.0000i −0.467099 + 0.934199i
\(166\) 0 0
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 18.0000i 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.0000i 0.751646i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) 10.0000 20.0000i 0.735215 1.47043i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 0 0
\(195\) 2.00000 + 1.00000i 0.143223 + 0.0716115i
\(196\) 0 0
\(197\) 22.0000i 1.56744i −0.621117 0.783718i \(-0.713321\pi\)
0.621117 0.783718i \(-0.286679\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 12.0000 + 6.00000i 0.838116 + 0.419058i
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 36.0000 2.49017
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 8.00000i 0.548151i
\(214\) 0 0
\(215\) 8.00000 16.0000i 0.545595 1.09119i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000i 0.267860i 0.990991 + 0.133930i \(0.0427597\pi\)
−0.990991 + 0.133930i \(0.957240\pi\)
\(224\) 0 0
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 0 0
\(227\) 20.0000i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(228\) 0 0
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.00000i 0.524097i 0.965055 + 0.262049i \(0.0843981\pi\)
−0.965055 + 0.262049i \(0.915602\pi\)
\(234\) 0 0
\(235\) −8.00000 + 16.0000i −0.521862 + 1.04372i
\(236\) 0 0
\(237\) 16.0000i 1.03931i
\(238\) 0 0
\(239\) −28.0000 −1.81117 −0.905585 0.424165i \(-0.860568\pi\)
−0.905585 + 0.424165i \(0.860568\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −14.0000 7.00000i −0.894427 0.447214i
\(246\) 0 0
\(247\) 6.00000i 0.381771i
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 36.0000i 2.26330i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.0000i 1.49708i −0.663090 0.748539i \(-0.730755\pi\)
0.663090 0.748539i \(-0.269245\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 6.00000i 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) 6.00000 12.0000i 0.368577 0.737154i
\(266\) 0 0
\(267\) 10.0000i 0.611990i
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.0000 + 24.0000i 1.08544 + 1.44725i
\(276\) 0 0
\(277\) 26.0000i 1.56219i 0.624413 + 0.781094i \(0.285338\pi\)
−0.624413 + 0.781094i \(0.714662\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 0 0
\(285\) −6.00000 + 12.0000i −0.355409 + 0.710819i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) −20.0000 10.0000i −1.16445 0.582223i
\(296\) 0 0
\(297\) 6.00000i 0.348155i
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.00000i 0.114897i
\(304\) 0 0
\(305\) 12.0000 + 6.00000i 0.687118 + 0.343559i
\(306\) 0 0
\(307\) 28.0000i 1.59804i 0.601302 + 0.799022i \(0.294649\pi\)
−0.601302 + 0.799022i \(0.705351\pi\)
\(308\) 0 0
\(309\) −10.0000 −0.568880
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i 0.891923 + 0.452187i \(0.149356\pi\)
−0.891923 + 0.452187i \(0.850644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) −16.0000 −0.893033
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.00000 3.00000i 0.221880 0.166410i
\(326\) 0 0
\(327\) 16.0000i 0.884802i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) 0 0
\(333\) 10.0000i 0.547997i
\(334\) 0 0
\(335\) −4.00000 + 8.00000i −0.218543 + 0.437087i
\(336\) 0 0
\(337\) 8.00000i 0.435788i 0.975972 + 0.217894i \(0.0699187\pi\)
−0.975972 + 0.217894i \(0.930081\pi\)
\(338\) 0 0
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −12.0000 6.00000i −0.646058 0.323029i
\(346\) 0 0
\(347\) 32.0000i 1.71785i −0.512101 0.858925i \(-0.671133\pi\)
0.512101 0.858925i \(-0.328867\pi\)
\(348\) 0 0
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) 10.0000i 0.532246i 0.963939 + 0.266123i \(0.0857428\pi\)
−0.963939 + 0.266123i \(0.914257\pi\)
\(354\) 0 0
\(355\) −16.0000 8.00000i −0.849192 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 25.0000i 1.31216i
\(364\) 0 0
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 0 0
\(367\) 6.00000i 0.313197i −0.987662 0.156599i \(-0.949947\pi\)
0.987662 0.156599i \(-0.0500529\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0000i 0.517780i 0.965907 + 0.258890i \(0.0833568\pi\)
−0.965907 + 0.258890i \(0.916643\pi\)
\(374\) 0 0
\(375\) −11.0000 + 2.00000i −0.568038 + 0.103280i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 22.0000 1.13006 0.565032 0.825069i \(-0.308864\pi\)
0.565032 + 0.825069i \(0.308864\pi\)
\(380\) 0 0
\(381\) 18.0000 0.922168
\(382\) 0 0
\(383\) 20.0000i 1.02195i −0.859595 0.510976i \(-0.829284\pi\)
0.859595 0.510976i \(-0.170716\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000i 0.406663i
\(388\) 0 0
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) −32.0000 16.0000i −1.61009 0.805047i
\(396\) 0 0
\(397\) 18.0000i 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.0000 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) 0 0
\(405\) −2.00000 1.00000i −0.0993808 0.0496904i
\(406\) 0 0
\(407\) 60.0000i 2.97409i
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 2.00000 0.0986527
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) 0 0
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) 24.0000i 1.15337i −0.816968 0.576683i \(-0.804347\pi\)
0.816968 0.576683i \(-0.195653\pi\)
\(434\) 0 0
\(435\) 2.00000 4.00000i 0.0958927 0.191785i
\(436\) 0 0
\(437\) 36.0000i 1.72211i
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 32.0000i 1.52037i −0.649709 0.760183i \(-0.725109\pi\)
0.649709 0.760183i \(-0.274891\pi\)
\(444\) 0 0
\(445\) −20.0000 10.0000i −0.948091 0.474045i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) −36.0000 −1.69517
\(452\) 0 0
\(453\) 8.00000i 0.375873i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.0000 1.67669 0.838344 0.545142i \(-0.183524\pi\)
0.838344 + 0.545142i \(0.183524\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 0 0
\(465\) 4.00000 8.00000i 0.185496 0.370991i
\(466\) 0 0
\(467\) 40.0000i 1.85098i 0.378773 + 0.925490i \(0.376346\pi\)
−0.378773 + 0.925490i \(0.623654\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 48.0000i 2.20704i
\(474\) 0 0
\(475\) 18.0000 + 24.0000i 0.825897 + 1.10120i
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 4.00000i 0.0908153 0.181631i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 12.0000 + 6.00000i 0.539360 + 0.269680i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −6.00000 −0.268597 −0.134298 0.990941i \(-0.542878\pi\)
−0.134298 + 0.990941i \(0.542878\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) 26.0000i 1.15928i −0.814872 0.579641i \(-0.803193\pi\)
0.814872 0.579641i \(-0.196807\pi\)
\(504\) 0 0
\(505\) 4.00000 + 2.00000i 0.177998 + 0.0889988i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.00000i 0.264906i
\(514\) 0 0
\(515\) −10.0000 + 20.0000i −0.440653 + 0.881305i
\(516\) 0 0
\(517\) 48.0000i 2.11104i
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 40.0000i 1.74908i 0.484955 + 0.874539i \(0.338836\pi\)
−0.484955 + 0.874539i \(0.661164\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) −16.0000 + 32.0000i −0.691740 + 1.38348i
\(536\) 0 0
\(537\) 12.0000i 0.517838i
\(538\) 0 0
\(539\) 42.0000 1.80907
\(540\) 0 0
\(541\) 4.00000 0.171973 0.0859867 0.996296i \(-0.472596\pi\)
0.0859867 + 0.996296i \(0.472596\pi\)
\(542\) 0 0
\(543\) 2.00000i 0.0858282i
\(544\) 0 0
\(545\) −32.0000 16.0000i −1.37073 0.685365i
\(546\) 0 0
\(547\) 12.0000i 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −20.0000 10.0000i −0.848953 0.424476i
\(556\) 0 0
\(557\) 2.00000i 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000i 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) −8.00000 + 16.0000i −0.336563 + 0.673125i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 8.00000i 0.334205i
\(574\) 0 0
\(575\) −24.0000 + 18.0000i −1.00087 + 0.750652i
\(576\) 0 0
\(577\) 2.00000i 0.0832611i −0.999133 0.0416305i \(-0.986745\pi\)
0.999133 0.0416305i \(-0.0132552\pi\)
\(578\) 0 0
\(579\) −10.0000 −0.415586
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 0 0
\(585\) 1.00000 2.00000i 0.0413449 0.0826898i
\(586\) 0 0
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) 0 0
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.0000i 0.654836i
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) 0 0
\(605\) −50.0000 25.0000i −2.03279 1.01639i
\(606\) 0 0
\(607\) 2.00000i 0.0811775i −0.999176 0.0405887i \(-0.987077\pi\)
0.999176 0.0405887i \(-0.0129233\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 38.0000i 1.53481i 0.641165 + 0.767403i \(0.278451\pi\)
−0.641165 + 0.767403i \(0.721549\pi\)
\(614\) 0 0
\(615\) 6.00000 12.0000i 0.241943 0.483887i
\(616\) 0 0
\(617\) 18.0000i 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) 0 0
\(619\) 38.0000 1.52735 0.763674 0.645601i \(-0.223393\pi\)
0.763674 + 0.645601i \(0.223393\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 36.0000i 1.43770i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) 4.00000i 0.158986i
\(634\) 0 0
\(635\) 18.0000 36.0000i 0.714308 1.42862i
\(636\) 0 0
\(637\) 7.00000i 0.277350i
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) 44.0000i 1.73519i 0.497271 + 0.867595i \(0.334335\pi\)
−0.497271 + 0.867595i \(0.665665\pi\)
\(644\) 0 0
\(645\) −16.0000 8.00000i −0.629999 0.315000i
\(646\) 0 0
\(647\) 14.0000i 0.550397i −0.961387 0.275198i \(-0.911256\pi\)
0.961387 0.275198i \(-0.0887435\pi\)
\(648\) 0 0
\(649\) 60.0000 2.35521
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000i 0.234798i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(654\) 0 0
\(655\) 24.0000 + 12.0000i 0.937758 + 0.468879i
\(656\) 0 0
\(657\) 6.00000i 0.234082i
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000i 0.464642i
\(668\) 0 0
\(669\) 4.00000 0.154649
\(670\) 0 0
\(671\) −36.0000 −1.38976
\(672\) 0 0
\(673\) 44.0000i 1.69608i −0.529936 0.848038i \(-0.677784\pi\)
0.529936 0.848038i \(-0.322216\pi\)
\(674\) 0 0
\(675\) −4.00000 + 3.00000i −0.153960 + 0.115470i
\(676\) 0 0
\(677\) 38.0000i 1.46046i 0.683202 + 0.730229i \(0.260587\pi\)
−0.683202 + 0.730229i \(0.739413\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 0 0
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 2.00000 4.00000i 0.0764161 0.152832i
\(686\) 0 0
\(687\) 20.0000i 0.763048i
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −22.0000 −0.836919 −0.418460 0.908235i \(-0.637430\pi\)
−0.418460 + 0.908235i \(0.637430\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.0000 8.00000i −0.606915 0.303457i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 8.00000 0.302588
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 60.0000i 2.26294i
\(704\) 0 0
\(705\) 16.0000 + 8.00000i 0.602595 + 0.301297i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 44.0000 1.65245 0.826227 0.563337i \(-0.190483\pi\)
0.826227 + 0.563337i \(0.190483\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) 24.0000i 0.898807i
\(714\) 0 0
\(715\) −6.00000 + 12.0000i −0.224387 + 0.448775i
\(716\) 0 0
\(717\) 28.0000i 1.04568i
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 22.0000i 0.818189i
\(724\) 0 0
\(725\) −6.00000 8.00000i −0.222834 0.297113i
\(726\) 0 0
\(727\) 38.0000i 1.40934i −0.709534 0.704671i \(-0.751095\pi\)
0.709534 0.704671i \(-0.248905\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 26.0000i 0.960332i 0.877178 + 0.480166i \(0.159424\pi\)
−0.877178 + 0.480166i \(0.840576\pi\)
\(734\) 0 0
\(735\) −7.00000 + 14.0000i −0.258199 + 0.516398i
\(736\) 0 0
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) −22.0000 −0.809283 −0.404642 0.914475i \(-0.632604\pi\)
−0.404642 + 0.914475i \(0.632604\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 52.0000i 1.90769i 0.300291 + 0.953847i \(0.402916\pi\)
−0.300291 + 0.953847i \(0.597084\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.00000i 0.146352i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 8.00000i 0.291536i
\(754\) 0 0
\(755\) −16.0000 8.00000i −0.582300 0.291150i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 0 0
\(759\) 36.0000 1.30672
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0000i 0.361079i
\(768\) 0 0
\(769\) 54.0000 1.94729 0.973645 0.228069i \(-0.0732413\pi\)
0.973645 + 0.228069i \(0.0732413\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) 18.0000i 0.647415i 0.946157 + 0.323708i \(0.104929\pi\)
−0.946157 + 0.323708i \(0.895071\pi\)
\(774\) 0 0
\(775\) −12.0000 16.0000i −0.431053 0.574737i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) 48.0000 1.71758
\(782\) 0 0
\(783\) 2.00000i 0.0714742i
\(784\) 0 0
\(785\) −2.00000 + 4.00000i −0.0713831 + 0.142766i
\(786\) 0 0
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 0 0
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000i 0.213066i
\(794\) 0 0
\(795\) −12.0000 6.00000i −0.425596 0.212798i
\(796\) 0 0
\(797\) 42.0000i 1.48772i 0.668338 + 0.743858i \(0.267006\pi\)
−0.668338 + 0.743858i \(0.732994\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\)