Properties

Label 3120.2.a.k.1.1
Level $3120$
Weight $2$
Character 3120.1
Self dual yes
Analytic conductor $24.913$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3120.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{5} +1.00000 q^{9} -4.00000 q^{11} +1.00000 q^{13} -1.00000 q^{15} +2.00000 q^{17} +4.00000 q^{19} -8.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} -2.00000 q^{29} +8.00000 q^{31} +4.00000 q^{33} +6.00000 q^{37} -1.00000 q^{39} -6.00000 q^{41} +4.00000 q^{43} +1.00000 q^{45} +8.00000 q^{47} -7.00000 q^{49} -2.00000 q^{51} +6.00000 q^{53} -4.00000 q^{55} -4.00000 q^{57} +12.0000 q^{59} -2.00000 q^{61} +1.00000 q^{65} +4.00000 q^{67} +8.00000 q^{69} -6.00000 q^{73} -1.00000 q^{75} -16.0000 q^{79} +1.00000 q^{81} +4.00000 q^{83} +2.00000 q^{85} +2.00000 q^{87} +10.0000 q^{89} -8.00000 q^{93} +4.00000 q^{95} +18.0000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 7.00000 0.577350
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 4.00000 0.311400
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) −1.00000 −0.0716115
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) −8.00000 −0.556038
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 16.0000 1.03931
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) 32.0000 2.01182
\(254\) 0 0
\(255\) −2.00000 −0.125245
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −18.0000 −1.05518
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 2.00000 0.110600
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) −32.0000 −1.73290
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 8.00000 0.430706
\(346\) 0 0
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 0 0
\(435\) 2.00000 0.0958927
\(436\) 0 0
\(437\) −32.0000 −1.53077
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) 0 0
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) 0 0
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.0000 0.817338
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) −6.00000 −0.259889
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) 28.0000 1.20605
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) −22.0000 −0.944110
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −6.00000 −0.254686
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 1.00000 0.0413449
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 5.00000 0.203279
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 16.0000 0.638978
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 20.0000 0.794929
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −7.00000 −0.277350
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) −48.0000 −1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) −2.00000 −0.0776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) 0 0
\(669\) −24.0000 −0.927894
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −10.0000 −0.384331 −0.192166 0.981363i \(-0.561551\pi\)
−0.192166 + 0.981363i \(0.561551\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) −22.0000 −0.839352
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) −26.0000 −0.983410
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) −64.0000 −2.39682
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 0 0
\(717\) −24.0000 −0.896296
\(718\) 0 0
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 14.0000 0.520666
\(724\) 0 0
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) 0 0
\(735\) 7.00000 0.258199
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) −4.00000 −0.145768
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) −32.0000 −1.16153
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00000 0.0723102
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) 46.0000 1.62940 0.814702 0.579880i \(-0.196901\pi\)
0.814702 + 0.579880i \(0.196901\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) 24.0000 0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −14.0000 −0.492823
\(808\) 0 0
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 22.0000 0.757720
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) −42.0000 −1.43805 −0.719026 0.694983i \(-0.755412\pi\)
−0.719026 + 0.694983i \(0.755412\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.0000 1.36162 0.680808 0.732462i \(-0.261629\pi\)
0.680808 + 0.732462i \(0.261629\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 64.0000 2.17105
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 0 0
\(873\) 18.0000 0.609208
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −50.0000 −1.68838 −0.844190 0.536044i \(-0.819918\pi\)
−0.844190 + 0.536044i \(0.819918\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 0 0
\(885\) −12.0000 −0.403376
\(886\) 0 0
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 8.00000 0.267112
\(898\) 0 0
\(899\) −16.0000 −0.533630
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.0000 0.731305
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) −16.0000 −0.529523
\(914\) 0 0
\(915\) 2.00000 0.0661180
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) −26.0000 −0.848478
\(940\) 0 0
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −12.0000 −0.386695
\(964\) 0 0
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) 16.0000 0.514525 0.257263 0.966342i \(-0.417179\pi\)
0.257263 + 0.966342i \(0.417179\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.00000 −0.0320256
\(976\) 0 0
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 0 0
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3120.2.a.k.1.1 1
3.2 odd 2 9360.2.a.o.1.1 1
4.3 odd 2 195.2.a.a.1.1 1
12.11 even 2 585.2.a.g.1.1 1
20.3 even 4 975.2.c.e.274.2 2
20.7 even 4 975.2.c.e.274.1 2
20.19 odd 2 975.2.a.i.1.1 1
28.27 even 2 9555.2.a.b.1.1 1
52.51 odd 2 2535.2.a.k.1.1 1
60.23 odd 4 2925.2.c.f.2224.1 2
60.47 odd 4 2925.2.c.f.2224.2 2
60.59 even 2 2925.2.a.d.1.1 1
156.155 even 2 7605.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.a.a.1.1 1 4.3 odd 2
585.2.a.g.1.1 1 12.11 even 2
975.2.a.i.1.1 1 20.19 odd 2
975.2.c.e.274.1 2 20.7 even 4
975.2.c.e.274.2 2 20.3 even 4
2535.2.a.k.1.1 1 52.51 odd 2
2925.2.a.d.1.1 1 60.59 even 2
2925.2.c.f.2224.1 2 60.23 odd 4
2925.2.c.f.2224.2 2 60.47 odd 4
3120.2.a.k.1.1 1 1.1 even 1 trivial
7605.2.a.h.1.1 1 156.155 even 2
9360.2.a.o.1.1 1 3.2 odd 2
9555.2.a.b.1.1 1 28.27 even 2