Properties

Label 3120.1.be
Level $3120$
Weight $1$
Character orbit 3120.be
Rep. character $\chi_{3120}(1169,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $5$
Sturm bound $672$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3120.be (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(672\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3120, [\chi])\).

Total New Old
Modular forms 64 12 52
Cusp forms 40 8 32
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 4 q^{25} - 4 q^{39} - 4 q^{49} + 4 q^{51} + 8 q^{55} - 4 q^{61} - 4 q^{69} + 4 q^{75} + 4 q^{79} + 8 q^{81} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3120, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3120.1.be.a 3120.be 195.e $1$ $1.557$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-195}) \) None 780.1.o.a \(0\) \(-1\) \(-1\) \(-1\) \(q-q^{3}-q^{5}-q^{7}+q^{9}-q^{11}-q^{13}+\cdots\)
3120.1.be.b 3120.be 195.e $1$ $1.557$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-195}) \) None 780.1.o.a \(0\) \(-1\) \(1\) \(1\) \(q-q^{3}+q^{5}+q^{7}+q^{9}+q^{11}+q^{13}+\cdots\)
3120.1.be.c 3120.be 195.e $1$ $1.557$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-195}) \) None 780.1.o.a \(0\) \(1\) \(-1\) \(1\) \(q+q^{3}-q^{5}+q^{7}+q^{9}-q^{11}+q^{13}+\cdots\)
3120.1.be.d 3120.be 195.e $1$ $1.557$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-195}) \) None 780.1.o.a \(0\) \(1\) \(1\) \(-1\) \(q+q^{3}+q^{5}-q^{7}+q^{9}+q^{11}-q^{13}+\cdots\)
3120.1.be.e 3120.be 195.e $4$ $1.557$ \(\Q(\zeta_{8})\) $D_{4}$ \(\Q(\sqrt{-39}) \) None 195.1.e.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}^{2}q^{3}+\zeta_{8}^{3}q^{5}-q^{9}+(-\zeta_{8}+\zeta_{8}^{3}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3120, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3120, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 3}\)