Defining parameters
Level: | \( N \) | \(=\) | \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3120.be (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 195 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 12 | 52 |
Cusp forms | 40 | 8 | 32 |
Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
3120.1.be.a | $1$ | $1.557$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-195}) \) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | \(q-q^{3}-q^{5}-q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) |
3120.1.be.b | $1$ | $1.557$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-195}) \) | None | \(0\) | \(-1\) | \(1\) | \(1\) | \(q-q^{3}+q^{5}+q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) |
3120.1.be.c | $1$ | $1.557$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-195}) \) | None | \(0\) | \(1\) | \(-1\) | \(1\) | \(q+q^{3}-q^{5}+q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) |
3120.1.be.d | $1$ | $1.557$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-195}) \) | None | \(0\) | \(1\) | \(1\) | \(-1\) | \(q+q^{3}+q^{5}-q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) |
3120.1.be.e | $4$ | $1.557$ | \(\Q(\zeta_{8})\) | $D_{4}$ | \(\Q(\sqrt{-39}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{2}q^{3}+\zeta_{8}^{3}q^{5}-q^{9}+(-\zeta_{8}+\zeta_{8}^{3}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3120, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3120, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 3}\)