Properties

Label 312.4.t
Level $312$
Weight $4$
Character orbit 312.t
Rep. character $\chi_{312}(187,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $168$
Sturm bound $224$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.t (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(i)\)
Sturm bound: \(224\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).

Total New Old
Modular forms 344 168 176
Cusp forms 328 168 160
Eisenstein series 16 0 16

Trace form

\( 168 q + 1512 q^{9} - 416 q^{14} - 72 q^{16} + 300 q^{20} - 736 q^{22} - 180 q^{24} - 500 q^{26} + 416 q^{28} - 820 q^{32} + 1072 q^{34} + 912 q^{40} - 472 q^{41} - 936 q^{42} - 1332 q^{44} + 1840 q^{46}+ \cdots - 4240 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)