Properties

Label 312.4.m.a.181.80
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.80
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.79

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.80130 + 0.390824i) q^{2} -3.00000i q^{3} +(7.69451 + 2.18963i) q^{4} -14.7907 q^{5} +(1.17247 - 8.40389i) q^{6} +0.217747i q^{7} +(20.6988 + 9.14099i) q^{8} -9.00000 q^{9} +(-41.4331 - 5.78056i) q^{10} -43.4416 q^{11} +(6.56888 - 23.0835i) q^{12} +(-23.9363 - 40.2995i) q^{13} +(-0.0851006 + 0.609973i) q^{14} +44.3721i q^{15} +(54.4111 + 33.6962i) q^{16} -16.1502 q^{17} +(-25.2117 - 3.51742i) q^{18} -72.7567 q^{19} +(-113.807 - 32.3861i) q^{20} +0.653240 q^{21} +(-121.693 - 16.9780i) q^{22} -83.4483 q^{23} +(27.4230 - 62.0965i) q^{24} +93.7650 q^{25} +(-51.3028 - 122.246i) q^{26} +27.0000i q^{27} +(-0.476784 + 1.67545i) q^{28} +128.661i q^{29} +(-17.3417 + 124.299i) q^{30} -306.050i q^{31} +(139.252 + 115.658i) q^{32} +130.325i q^{33} +(-45.2414 - 6.31187i) q^{34} -3.22063i q^{35} +(-69.2506 - 19.7066i) q^{36} -340.290 q^{37} +(-203.813 - 28.4351i) q^{38} +(-120.899 + 71.8090i) q^{39} +(-306.151 - 135.202i) q^{40} +401.502i q^{41} +(1.82992 + 0.255302i) q^{42} -32.3051i q^{43} +(-334.262 - 95.1210i) q^{44} +133.116 q^{45} +(-233.763 - 32.6136i) q^{46} +118.996i q^{47} +(101.089 - 163.233i) q^{48} +342.953 q^{49} +(262.664 + 36.6456i) q^{50} +48.4505i q^{51} +(-95.9376 - 362.497i) q^{52} -486.003i q^{53} +(-10.5522 + 75.6350i) q^{54} +642.533 q^{55} +(-1.99042 + 4.50711i) q^{56} +218.270i q^{57} +(-50.2839 + 360.418i) q^{58} +241.321 q^{59} +(-97.1584 + 341.422i) q^{60} -457.486i q^{61} +(119.612 - 857.338i) q^{62} -1.95972i q^{63} +(344.885 + 378.416i) q^{64} +(354.036 + 596.058i) q^{65} +(-50.9341 + 365.079i) q^{66} +121.806 q^{67} +(-124.268 - 35.3628i) q^{68} +250.345i q^{69} +(1.25870 - 9.02193i) q^{70} +251.950i q^{71} +(-186.290 - 82.2689i) q^{72} +66.4276i q^{73} +(-953.252 - 132.993i) q^{74} -281.295i q^{75} +(-559.828 - 159.310i) q^{76} -9.45927i q^{77} +(-366.737 + 153.908i) q^{78} -164.272 q^{79} +(-804.778 - 498.391i) q^{80} +81.0000 q^{81} +(-156.917 + 1124.73i) q^{82} +311.484 q^{83} +(5.02636 + 1.43035i) q^{84} +238.872 q^{85} +(12.6256 - 90.4962i) q^{86} +385.984 q^{87} +(-899.192 - 397.100i) q^{88} -1009.04i q^{89} +(372.898 + 52.0251i) q^{90} +(8.77509 - 5.21206i) q^{91} +(-642.094 - 182.721i) q^{92} -918.151 q^{93} +(-46.5064 + 333.342i) q^{94} +1076.12 q^{95} +(346.975 - 417.757i) q^{96} +433.098i q^{97} +(960.712 + 134.034i) q^{98} +390.975 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.80130 + 0.390824i 0.990408 + 0.138177i
\(3\) 3.00000i 0.577350i
\(4\) 7.69451 + 2.18963i 0.961814 + 0.273703i
\(5\) −14.7907 −1.32292 −0.661461 0.749980i \(-0.730063\pi\)
−0.661461 + 0.749980i \(0.730063\pi\)
\(6\) 1.17247 8.40389i 0.0797766 0.571812i
\(7\) 0.217747i 0.0117572i 0.999983 + 0.00587861i \(0.00187123\pi\)
−0.999983 + 0.00587861i \(0.998129\pi\)
\(8\) 20.6988 + 9.14099i 0.914768 + 0.403979i
\(9\) −9.00000 −0.333333
\(10\) −41.4331 5.78056i −1.31023 0.182797i
\(11\) −43.4416 −1.19074 −0.595370 0.803451i \(-0.702995\pi\)
−0.595370 + 0.803451i \(0.702995\pi\)
\(12\) 6.56888 23.0835i 0.158023 0.555304i
\(13\) −23.9363 40.2995i −0.510673 0.859775i
\(14\) −0.0851006 + 0.609973i −0.00162458 + 0.0116444i
\(15\) 44.3721i 0.763789i
\(16\) 54.4111 + 33.6962i 0.850173 + 0.526504i
\(17\) −16.1502 −0.230411 −0.115206 0.993342i \(-0.536753\pi\)
−0.115206 + 0.993342i \(0.536753\pi\)
\(18\) −25.2117 3.51742i −0.330136 0.0460590i
\(19\) −72.7567 −0.878502 −0.439251 0.898364i \(-0.644756\pi\)
−0.439251 + 0.898364i \(0.644756\pi\)
\(20\) −113.807 32.3861i −1.27240 0.362088i
\(21\) 0.653240 0.00678803
\(22\) −121.693 16.9780i −1.17932 0.164533i
\(23\) −83.4483 −0.756529 −0.378265 0.925698i \(-0.623479\pi\)
−0.378265 + 0.925698i \(0.623479\pi\)
\(24\) 27.4230 62.0965i 0.233237 0.528142i
\(25\) 93.7650 0.750120
\(26\) −51.3028 122.246i −0.386973 0.922091i
\(27\) 27.0000i 0.192450i
\(28\) −0.476784 + 1.67545i −0.00321799 + 0.0113083i
\(29\) 128.661i 0.823855i 0.911217 + 0.411928i \(0.135144\pi\)
−0.911217 + 0.411928i \(0.864856\pi\)
\(30\) −17.3417 + 124.299i −0.105538 + 0.756462i
\(31\) 306.050i 1.77317i −0.462566 0.886585i \(-0.653071\pi\)
0.462566 0.886585i \(-0.346929\pi\)
\(32\) 139.252 + 115.658i 0.769267 + 0.638928i
\(33\) 130.325i 0.687474i
\(34\) −45.2414 6.31187i −0.228201 0.0318376i
\(35\) 3.22063i 0.0155539i
\(36\) −69.2506 19.7066i −0.320605 0.0912345i
\(37\) −340.290 −1.51198 −0.755990 0.654583i \(-0.772844\pi\)
−0.755990 + 0.654583i \(0.772844\pi\)
\(38\) −203.813 28.4351i −0.870075 0.121389i
\(39\) −120.899 + 71.8090i −0.496391 + 0.294837i
\(40\) −306.151 135.202i −1.21017 0.534432i
\(41\) 401.502i 1.52937i 0.644405 + 0.764685i \(0.277105\pi\)
−0.644405 + 0.764685i \(0.722895\pi\)
\(42\) 1.82992 + 0.255302i 0.00672292 + 0.000937951i
\(43\) 32.3051i 0.114569i −0.998358 0.0572847i \(-0.981756\pi\)
0.998358 0.0572847i \(-0.0182443\pi\)
\(44\) −334.262 95.1210i −1.14527 0.325910i
\(45\) 133.116 0.440974
\(46\) −233.763 32.6136i −0.749272 0.104535i
\(47\) 118.996i 0.369305i 0.982804 + 0.184652i \(0.0591159\pi\)
−0.982804 + 0.184652i \(0.940884\pi\)
\(48\) 101.089 163.233i 0.303977 0.490848i
\(49\) 342.953 0.999862
\(50\) 262.664 + 36.6456i 0.742925 + 0.103649i
\(51\) 48.4505i 0.133028i
\(52\) −95.9376 362.497i −0.255849 0.966717i
\(53\) 486.003i 1.25958i −0.776766 0.629789i \(-0.783141\pi\)
0.776766 0.629789i \(-0.216859\pi\)
\(54\) −10.5522 + 75.6350i −0.0265922 + 0.190604i
\(55\) 642.533 1.57526
\(56\) −1.99042 + 4.50711i −0.00474966 + 0.0107551i
\(57\) 218.270i 0.507203i
\(58\) −50.2839 + 360.418i −0.113838 + 0.815952i
\(59\) 241.321 0.532498 0.266249 0.963904i \(-0.414216\pi\)
0.266249 + 0.963904i \(0.414216\pi\)
\(60\) −97.1584 + 341.422i −0.209052 + 0.734623i
\(61\) 457.486i 0.960247i −0.877201 0.480124i \(-0.840592\pi\)
0.877201 0.480124i \(-0.159408\pi\)
\(62\) 119.612 857.338i 0.245012 1.75616i
\(63\) 1.95972i 0.00391907i
\(64\) 344.885 + 378.416i 0.673603 + 0.739094i
\(65\) 354.036 + 596.058i 0.675580 + 1.13741i
\(66\) −50.9341 + 365.079i −0.0949932 + 0.680880i
\(67\) 121.806 0.222104 0.111052 0.993815i \(-0.464578\pi\)
0.111052 + 0.993815i \(0.464578\pi\)
\(68\) −124.268 35.3628i −0.221613 0.0630643i
\(69\) 250.345i 0.436782i
\(70\) 1.25870 9.02193i 0.00214919 0.0154047i
\(71\) 251.950i 0.421140i 0.977579 + 0.210570i \(0.0675319\pi\)
−0.977579 + 0.210570i \(0.932468\pi\)
\(72\) −186.290 82.2689i −0.304923 0.134660i
\(73\) 66.4276i 0.106504i 0.998581 + 0.0532518i \(0.0169586\pi\)
−0.998581 + 0.0532518i \(0.983041\pi\)
\(74\) −953.252 132.993i −1.49748 0.208921i
\(75\) 281.295i 0.433082i
\(76\) −559.828 159.310i −0.844956 0.240449i
\(77\) 9.45927i 0.0139998i
\(78\) −366.737 + 153.908i −0.532369 + 0.223419i
\(79\) −164.272 −0.233950 −0.116975 0.993135i \(-0.537320\pi\)
−0.116975 + 0.993135i \(0.537320\pi\)
\(80\) −804.778 498.391i −1.12471 0.696523i
\(81\) 81.0000 0.111111
\(82\) −156.917 + 1124.73i −0.211324 + 1.51470i
\(83\) 311.484 0.411925 0.205962 0.978560i \(-0.433968\pi\)
0.205962 + 0.978560i \(0.433968\pi\)
\(84\) 5.02636 + 1.43035i 0.00652883 + 0.00185791i
\(85\) 238.872 0.304816
\(86\) 12.6256 90.4962i 0.0158309 0.113470i
\(87\) 385.984 0.475653
\(88\) −899.192 397.100i −1.08925 0.481034i
\(89\) 1009.04i 1.20178i −0.799333 0.600889i \(-0.794813\pi\)
0.799333 0.600889i \(-0.205187\pi\)
\(90\) 372.898 + 52.0251i 0.436744 + 0.0609325i
\(91\) 8.77509 5.21206i 0.0101086 0.00600409i
\(92\) −642.094 182.721i −0.727640 0.207065i
\(93\) −918.151 −1.02374
\(94\) −46.5064 + 333.342i −0.0510295 + 0.365762i
\(95\) 1076.12 1.16219
\(96\) 346.975 417.757i 0.368885 0.444136i
\(97\) 433.098i 0.453345i 0.973971 + 0.226673i \(0.0727847\pi\)
−0.973971 + 0.226673i \(0.927215\pi\)
\(98\) 960.712 + 134.034i 0.990271 + 0.138158i
\(99\) 390.975 0.396913
\(100\) 721.476 + 205.310i 0.721476 + 0.205310i
\(101\) 1615.63i 1.59169i −0.605499 0.795846i \(-0.707026\pi\)
0.605499 0.795846i \(-0.292974\pi\)
\(102\) −18.9356 + 135.724i −0.0183814 + 0.131752i
\(103\) 1484.34 1.41996 0.709981 0.704221i \(-0.248703\pi\)
0.709981 + 0.704221i \(0.248703\pi\)
\(104\) −127.077 1052.96i −0.119817 0.992796i
\(105\) −9.66188 −0.00898003
\(106\) 189.942 1361.44i 0.174045 1.24750i
\(107\) 88.6747i 0.0801169i −0.999197 0.0400585i \(-0.987246\pi\)
0.999197 0.0400585i \(-0.0127544\pi\)
\(108\) −59.1199 + 207.752i −0.0526742 + 0.185101i
\(109\) −1348.39 −1.18489 −0.592444 0.805612i \(-0.701837\pi\)
−0.592444 + 0.805612i \(0.701837\pi\)
\(110\) 1799.92 + 251.117i 1.56015 + 0.217664i
\(111\) 1020.87i 0.872942i
\(112\) −7.33724 + 11.8478i −0.00619022 + 0.00999567i
\(113\) −1348.96 −1.12300 −0.561501 0.827476i \(-0.689776\pi\)
−0.561501 + 0.827476i \(0.689776\pi\)
\(114\) −85.3052 + 611.439i −0.0700839 + 0.502338i
\(115\) 1234.26 1.00083
\(116\) −281.720 + 989.986i −0.225492 + 0.792396i
\(117\) 215.427 + 362.696i 0.170224 + 0.286592i
\(118\) 676.012 + 94.3142i 0.527390 + 0.0735790i
\(119\) 3.51665i 0.00270900i
\(120\) −405.605 + 918.452i −0.308554 + 0.698690i
\(121\) 556.175 0.417863
\(122\) 178.797 1281.55i 0.132684 0.951036i
\(123\) 1204.51 0.882982
\(124\) 670.136 2354.91i 0.485323 1.70546i
\(125\) 461.987 0.330571
\(126\) 0.765906 5.48976i 0.000541526 0.00388148i
\(127\) 221.289 0.154616 0.0773080 0.997007i \(-0.475368\pi\)
0.0773080 + 0.997007i \(0.475368\pi\)
\(128\) 818.229 + 1194.84i 0.565015 + 0.825080i
\(129\) −96.9153 −0.0661467
\(130\) 758.804 + 1808.10i 0.511935 + 1.21985i
\(131\) 2109.42i 1.40688i 0.710756 + 0.703439i \(0.248353\pi\)
−0.710756 + 0.703439i \(0.751647\pi\)
\(132\) −285.363 + 1002.79i −0.188164 + 0.661223i
\(133\) 15.8425i 0.0103287i
\(134\) 341.215 + 47.6047i 0.219974 + 0.0306897i
\(135\) 399.349i 0.254596i
\(136\) −334.290 147.629i −0.210773 0.0930812i
\(137\) 795.708i 0.496219i 0.968732 + 0.248109i \(0.0798092\pi\)
−0.968732 + 0.248109i \(0.920191\pi\)
\(138\) −97.8408 + 701.290i −0.0603533 + 0.432592i
\(139\) 2231.81i 1.36187i −0.732344 0.680935i \(-0.761574\pi\)
0.732344 0.680935i \(-0.238426\pi\)
\(140\) 7.05197 24.7812i 0.00425715 0.0149599i
\(141\) 356.987 0.213218
\(142\) −98.4679 + 705.785i −0.0581919 + 0.417100i
\(143\) 1039.83 + 1750.68i 0.608079 + 1.02377i
\(144\) −489.700 303.266i −0.283391 0.175501i
\(145\) 1902.99i 1.08990i
\(146\) −25.9615 + 186.083i −0.0147164 + 0.105482i
\(147\) 1028.86i 0.577270i
\(148\) −2618.36 745.107i −1.45424 0.413834i
\(149\) −1185.70 −0.651924 −0.325962 0.945383i \(-0.605688\pi\)
−0.325962 + 0.945383i \(0.605688\pi\)
\(150\) 109.937 787.991i 0.0598421 0.428928i
\(151\) 2242.51i 1.20856i −0.796772 0.604280i \(-0.793461\pi\)
0.796772 0.604280i \(-0.206539\pi\)
\(152\) −1505.98 665.069i −0.803626 0.354896i
\(153\) 145.352 0.0768038
\(154\) 3.69691 26.4982i 0.00193445 0.0138655i
\(155\) 4526.70i 2.34576i
\(156\) −1087.49 + 287.813i −0.558134 + 0.147715i
\(157\) 2516.38i 1.27917i 0.768721 + 0.639584i \(0.220893\pi\)
−0.768721 + 0.639584i \(0.779107\pi\)
\(158\) −460.175 64.2015i −0.231706 0.0323265i
\(159\) −1458.01 −0.727218
\(160\) −2059.64 1710.67i −1.01768 0.845251i
\(161\) 18.1706i 0.00889468i
\(162\) 226.905 + 31.6567i 0.110045 + 0.0153530i
\(163\) 3173.77 1.52509 0.762543 0.646937i \(-0.223951\pi\)
0.762543 + 0.646937i \(0.223951\pi\)
\(164\) −879.141 + 3089.37i −0.418594 + 1.47097i
\(165\) 1927.60i 0.909474i
\(166\) 872.558 + 121.735i 0.407974 + 0.0569186i
\(167\) 353.974i 0.164020i −0.996632 0.0820101i \(-0.973866\pi\)
0.996632 0.0820101i \(-0.0261340\pi\)
\(168\) 13.5213 + 5.97126i 0.00620948 + 0.00274222i
\(169\) −1051.10 + 1929.25i −0.478426 + 0.878128i
\(170\) 669.152 + 93.3571i 0.301892 + 0.0421186i
\(171\) 654.811 0.292834
\(172\) 70.7361 248.572i 0.0313580 0.110194i
\(173\) 1515.74i 0.666126i 0.942905 + 0.333063i \(0.108082\pi\)
−0.942905 + 0.333063i \(0.891918\pi\)
\(174\) 1081.25 + 150.852i 0.471090 + 0.0657244i
\(175\) 20.4170i 0.00881933i
\(176\) −2363.71 1463.82i −1.01234 0.626929i
\(177\) 723.964i 0.307438i
\(178\) 394.358 2826.62i 0.166058 1.19025i
\(179\) 4704.22i 1.96430i 0.188094 + 0.982151i \(0.439769\pi\)
−0.188094 + 0.982151i \(0.560231\pi\)
\(180\) 1024.27 + 291.475i 0.424135 + 0.120696i
\(181\) 1503.98i 0.617623i −0.951123 0.308812i \(-0.900069\pi\)
0.951123 0.308812i \(-0.0999313\pi\)
\(182\) 26.6186 11.1710i 0.0108412 0.00454973i
\(183\) −1372.46 −0.554399
\(184\) −1727.28 762.800i −0.692049 0.305622i
\(185\) 5033.12 2.00023
\(186\) −2572.01 358.835i −1.01392 0.141457i
\(187\) 701.590 0.274360
\(188\) −260.556 + 915.615i −0.101080 + 0.355202i
\(189\) −5.87916 −0.00226268
\(190\) 3014.54 + 420.575i 1.15104 + 0.160588i
\(191\) −1874.17 −0.710002 −0.355001 0.934866i \(-0.615519\pi\)
−0.355001 + 0.934866i \(0.615519\pi\)
\(192\) 1135.25 1034.65i 0.426716 0.388905i
\(193\) 533.681i 0.199043i −0.995035 0.0995213i \(-0.968269\pi\)
0.995035 0.0995213i \(-0.0317311\pi\)
\(194\) −169.265 + 1213.24i −0.0626419 + 0.448997i
\(195\) 1788.18 1062.11i 0.656687 0.390046i
\(196\) 2638.85 + 750.938i 0.961681 + 0.273666i
\(197\) −3695.72 −1.33659 −0.668297 0.743894i \(-0.732977\pi\)
−0.668297 + 0.743894i \(0.732977\pi\)
\(198\) 1095.24 + 152.802i 0.393106 + 0.0548444i
\(199\) −2806.99 −0.999909 −0.499955 0.866052i \(-0.666650\pi\)
−0.499955 + 0.866052i \(0.666650\pi\)
\(200\) 1940.83 + 857.106i 0.686186 + 0.303033i
\(201\) 365.418i 0.128232i
\(202\) 631.426 4525.85i 0.219935 1.57642i
\(203\) −28.0156 −0.00968624
\(204\) −106.089 + 372.803i −0.0364102 + 0.127948i
\(205\) 5938.51i 2.02324i
\(206\) 4158.07 + 580.115i 1.40634 + 0.196206i
\(207\) 751.035 0.252176
\(208\) 55.5393 2999.30i 0.0185142 0.999829i
\(209\) 3160.67 1.04607
\(210\) −27.0658 3.77610i −0.00889389 0.00124084i
\(211\) 2762.68i 0.901377i 0.892681 + 0.450688i \(0.148821\pi\)
−0.892681 + 0.450688i \(0.851179\pi\)
\(212\) 1064.17 3739.56i 0.344751 1.21148i
\(213\) 755.849 0.243145
\(214\) 34.6562 248.404i 0.0110703 0.0793484i
\(215\) 477.816i 0.151566i
\(216\) −246.807 + 558.869i −0.0777457 + 0.176047i
\(217\) 66.6415 0.0208475
\(218\) −3777.25 526.985i −1.17352 0.163724i
\(219\) 199.283 0.0614899
\(220\) 4943.97 + 1406.91i 1.51510 + 0.431153i
\(221\) 386.576 + 650.844i 0.117665 + 0.198102i
\(222\) −398.980 + 2859.76i −0.120621 + 0.864569i
\(223\) 3098.36i 0.930409i −0.885203 0.465205i \(-0.845981\pi\)
0.885203 0.465205i \(-0.154019\pi\)
\(224\) −25.1842 + 30.3217i −0.00751201 + 0.00904444i
\(225\) −843.885 −0.250040
\(226\) −3778.83 527.205i −1.11223 0.155173i
\(227\) 1946.86 0.569241 0.284621 0.958640i \(-0.408132\pi\)
0.284621 + 0.958640i \(0.408132\pi\)
\(228\) −477.930 + 1679.48i −0.138823 + 0.487835i
\(229\) −6878.01 −1.98477 −0.992384 0.123180i \(-0.960691\pi\)
−0.992384 + 0.123180i \(0.960691\pi\)
\(230\) 3457.52 + 482.378i 0.991228 + 0.138292i
\(231\) −28.3778 −0.00808278
\(232\) −1176.09 + 2663.14i −0.332820 + 0.753637i
\(233\) −1655.20 −0.465388 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(234\) 461.725 + 1100.21i 0.128991 + 0.307364i
\(235\) 1760.03i 0.488561i
\(236\) 1856.85 + 528.404i 0.512164 + 0.145746i
\(237\) 492.816i 0.135071i
\(238\) 1.37439 9.85117i 0.000374321 0.00268301i
\(239\) 1933.18i 0.523208i 0.965175 + 0.261604i \(0.0842515\pi\)
−0.965175 + 0.261604i \(0.915748\pi\)
\(240\) −1495.17 + 2414.33i −0.402138 + 0.649353i
\(241\) 1476.23i 0.394575i −0.980346 0.197288i \(-0.936787\pi\)
0.980346 0.197288i \(-0.0632133\pi\)
\(242\) 1558.01 + 217.367i 0.413855 + 0.0577391i
\(243\) 243.000i 0.0641500i
\(244\) 1001.72 3520.13i 0.262823 0.923580i
\(245\) −5072.51 −1.32274
\(246\) 3374.18 + 470.750i 0.874512 + 0.122008i
\(247\) 1741.53 + 2932.06i 0.448627 + 0.755314i
\(248\) 2797.60 6334.89i 0.716323 1.62204i
\(249\) 934.451i 0.237825i
\(250\) 1294.16 + 180.556i 0.327400 + 0.0456774i
\(251\) 6677.27i 1.67915i −0.543247 0.839573i \(-0.682805\pi\)
0.543247 0.839573i \(-0.317195\pi\)
\(252\) 4.29106 15.0791i 0.00107266 0.00376942i
\(253\) 3625.13 0.900830
\(254\) 619.896 + 86.4850i 0.153133 + 0.0213644i
\(255\) 716.617i 0.175986i
\(256\) 1825.13 + 3666.90i 0.445588 + 0.895238i
\(257\) −6716.94 −1.63032 −0.815158 0.579238i \(-0.803350\pi\)
−0.815158 + 0.579238i \(0.803350\pi\)
\(258\) −271.489 37.8768i −0.0655122 0.00913996i
\(259\) 74.0969i 0.0177767i
\(260\) 1418.99 + 5361.59i 0.338468 + 1.27889i
\(261\) 1157.95i 0.274618i
\(262\) −824.412 + 5909.11i −0.194398 + 1.39338i
\(263\) −1746.72 −0.409534 −0.204767 0.978811i \(-0.565644\pi\)
−0.204767 + 0.978811i \(0.565644\pi\)
\(264\) −1191.30 + 2697.58i −0.277725 + 0.628880i
\(265\) 7188.33i 1.66632i
\(266\) 6.19164 44.3796i 0.00142720 0.0102297i
\(267\) −3027.12 −0.693846
\(268\) 937.238 + 266.710i 0.213623 + 0.0607906i
\(269\) 6634.71i 1.50381i 0.659270 + 0.751906i \(0.270865\pi\)
−0.659270 + 0.751906i \(0.729135\pi\)
\(270\) 156.075 1118.69i 0.0351794 0.252154i
\(271\) 7302.89i 1.63697i −0.574527 0.818486i \(-0.694814\pi\)
0.574527 0.818486i \(-0.305186\pi\)
\(272\) −878.748 544.200i −0.195889 0.121312i
\(273\) −15.6362 26.3253i −0.00346646 0.00583618i
\(274\) −310.982 + 2229.01i −0.0685661 + 0.491459i
\(275\) −4073.31 −0.893199
\(276\) −548.162 + 1926.28i −0.119549 + 0.420103i
\(277\) 6130.45i 1.32976i −0.746951 0.664879i \(-0.768483\pi\)
0.746951 0.664879i \(-0.231517\pi\)
\(278\) 872.246 6251.97i 0.188179 1.34881i
\(279\) 2754.45i 0.591057i
\(280\) 29.4397 66.6633i 0.00628343 0.0142282i
\(281\) 6601.16i 1.40140i −0.713458 0.700698i \(-0.752872\pi\)
0.713458 0.700698i \(-0.247128\pi\)
\(282\) 1000.03 + 139.519i 0.211173 + 0.0294619i
\(283\) 4058.19i 0.852417i 0.904625 + 0.426209i \(0.140151\pi\)
−0.904625 + 0.426209i \(0.859849\pi\)
\(284\) −551.675 + 1938.63i −0.115267 + 0.405058i
\(285\) 3228.37i 0.670990i
\(286\) 2228.68 + 5310.56i 0.460785 + 1.09797i
\(287\) −87.4258 −0.0179811
\(288\) −1253.27 1040.92i −0.256422 0.212976i
\(289\) −4652.17 −0.946911
\(290\) 743.735 5330.84i 0.150599 1.07944i
\(291\) 1299.30 0.261739
\(292\) −145.452 + 511.128i −0.0291504 + 0.102437i
\(293\) −5382.33 −1.07317 −0.536585 0.843846i \(-0.680286\pi\)
−0.536585 + 0.843846i \(0.680286\pi\)
\(294\) 402.102 2882.13i 0.0797656 0.571733i
\(295\) −3569.31 −0.704452
\(296\) −7043.60 3110.58i −1.38311 0.610808i
\(297\) 1172.92i 0.229158i
\(298\) −3321.51 463.402i −0.645670 0.0900810i
\(299\) 1997.45 + 3362.93i 0.386339 + 0.650445i
\(300\) 615.931 2164.43i 0.118536 0.416545i
\(301\) 7.03433 0.00134702
\(302\) 876.426 6281.93i 0.166995 1.19697i
\(303\) −4846.88 −0.918964
\(304\) −3958.77 2451.63i −0.746879 0.462534i
\(305\) 6766.54i 1.27033i
\(306\) 407.173 + 56.8069i 0.0760670 + 0.0106125i
\(307\) −6340.17 −1.17867 −0.589336 0.807888i \(-0.700611\pi\)
−0.589336 + 0.807888i \(0.700611\pi\)
\(308\) 20.7123 72.7845i 0.00383179 0.0134652i
\(309\) 4453.01i 0.819816i
\(310\) −1769.14 + 12680.6i −0.324131 + 2.32326i
\(311\) −5140.97 −0.937356 −0.468678 0.883369i \(-0.655270\pi\)
−0.468678 + 0.883369i \(0.655270\pi\)
\(312\) −3158.87 + 381.232i −0.573191 + 0.0691763i
\(313\) −10059.6 −1.81662 −0.908309 0.418300i \(-0.862626\pi\)
−0.908309 + 0.418300i \(0.862626\pi\)
\(314\) −983.463 + 7049.14i −0.176752 + 1.26690i
\(315\) 28.9857i 0.00518462i
\(316\) −1263.99 359.695i −0.225016 0.0640329i
\(317\) −3866.52 −0.685064 −0.342532 0.939506i \(-0.611284\pi\)
−0.342532 + 0.939506i \(0.611284\pi\)
\(318\) −4084.31 569.825i −0.720242 0.100485i
\(319\) 5589.26i 0.980998i
\(320\) −5101.09 5597.04i −0.891123 0.977763i
\(321\) −266.024 −0.0462555
\(322\) 7.10150 50.9012i 0.00122904 0.00880936i
\(323\) 1175.03 0.202417
\(324\) 623.256 + 177.360i 0.106868 + 0.0304115i
\(325\) −2244.39 3778.69i −0.383066 0.644935i
\(326\) 8890.67 + 1240.39i 1.51046 + 0.210732i
\(327\) 4045.18i 0.684095i
\(328\) −3670.13 + 8310.64i −0.617833 + 1.39902i
\(329\) −25.9109 −0.00434199
\(330\) 753.351 5399.77i 0.125669 0.900750i
\(331\) 2632.41 0.437132 0.218566 0.975822i \(-0.429862\pi\)
0.218566 + 0.975822i \(0.429862\pi\)
\(332\) 2396.71 + 682.033i 0.396195 + 0.112745i
\(333\) 3062.61 0.503993
\(334\) 138.342 991.587i 0.0226638 0.162447i
\(335\) −1801.60 −0.293826
\(336\) 35.5435 + 22.0117i 0.00577100 + 0.00357392i
\(337\) −2056.36 −0.332394 −0.166197 0.986093i \(-0.553149\pi\)
−0.166197 + 0.986093i \(0.553149\pi\)
\(338\) −3698.44 + 4993.59i −0.595174 + 0.803597i
\(339\) 4046.87i 0.648365i
\(340\) 1838.01 + 523.042i 0.293176 + 0.0834291i
\(341\) 13295.3i 2.11139i
\(342\) 1834.32 + 255.916i 0.290025 + 0.0404630i
\(343\) 149.364i 0.0235128i
\(344\) 295.301 668.679i 0.0462836 0.104804i
\(345\) 3702.78i 0.577829i
\(346\) −592.389 + 4246.04i −0.0920434 + 0.659736i
\(347\) 3256.42i 0.503787i −0.967755 0.251893i \(-0.918947\pi\)
0.967755 0.251893i \(-0.0810532\pi\)
\(348\) 2969.96 + 845.161i 0.457490 + 0.130188i
\(349\) 9918.73 1.52131 0.760655 0.649156i \(-0.224878\pi\)
0.760655 + 0.649156i \(0.224878\pi\)
\(350\) −7.97946 + 57.1941i −0.00121863 + 0.00873473i
\(351\) 1088.09 646.281i 0.165464 0.0982791i
\(352\) −6049.34 5024.38i −0.915997 0.760797i
\(353\) 3799.70i 0.572911i −0.958093 0.286456i \(-0.907523\pi\)
0.958093 0.286456i \(-0.0924771\pi\)
\(354\) 282.943 2028.04i 0.0424809 0.304489i
\(355\) 3726.51i 0.557134i
\(356\) 2209.42 7764.08i 0.328930 1.15589i
\(357\) −10.5499 −0.00156404
\(358\) −1838.52 + 13177.9i −0.271422 + 1.94546i
\(359\) 9293.42i 1.36626i −0.730296 0.683131i \(-0.760618\pi\)
0.730296 0.683131i \(-0.239382\pi\)
\(360\) 2755.36 + 1216.82i 0.403389 + 0.178144i
\(361\) −1565.46 −0.228234
\(362\) 587.791 4213.09i 0.0853414 0.611699i
\(363\) 1668.53i 0.241253i
\(364\) 78.9325 20.8901i 0.0113659 0.00300807i
\(365\) 982.511i 0.140896i
\(366\) −3844.66 536.390i −0.549081 0.0766053i
\(367\) 13669.3 1.94423 0.972116 0.234502i \(-0.0753461\pi\)
0.972116 + 0.234502i \(0.0753461\pi\)
\(368\) −4540.51 2811.89i −0.643181 0.398315i
\(369\) 3613.52i 0.509790i
\(370\) 14099.3 + 1967.07i 1.98104 + 0.276386i
\(371\) 105.826 0.0148091
\(372\) −7064.73 2010.41i −0.984648 0.280201i
\(373\) 9533.65i 1.32341i 0.749762 + 0.661707i \(0.230168\pi\)
−0.749762 + 0.661707i \(0.769832\pi\)
\(374\) 1965.36 + 274.198i 0.271728 + 0.0379103i
\(375\) 1385.96i 0.190855i
\(376\) −1087.74 + 2463.08i −0.149191 + 0.337828i
\(377\) 5184.99 3079.68i 0.708330 0.420721i
\(378\) −16.4693 2.29772i −0.00224097 0.000312650i
\(379\) 12047.2 1.63278 0.816390 0.577501i \(-0.195972\pi\)
0.816390 + 0.577501i \(0.195972\pi\)
\(380\) 8280.25 + 2356.31i 1.11781 + 0.318095i
\(381\) 663.867i 0.0892675i
\(382\) −5250.11 732.471i −0.703191 0.0981060i
\(383\) 6788.79i 0.905721i 0.891581 + 0.452860i \(0.149596\pi\)
−0.891581 + 0.452860i \(0.850404\pi\)
\(384\) 3584.53 2454.69i 0.476360 0.326212i
\(385\) 139.909i 0.0185206i
\(386\) 208.575 1495.00i 0.0275031 0.197133i
\(387\) 290.746i 0.0381898i
\(388\) −948.324 + 3332.48i −0.124082 + 0.436034i
\(389\) 626.526i 0.0816610i −0.999166 0.0408305i \(-0.987000\pi\)
0.999166 0.0408305i \(-0.0130004\pi\)
\(390\) 5424.30 2276.41i 0.704283 0.295566i
\(391\) 1347.70 0.174313
\(392\) 7098.72 + 3134.93i 0.914642 + 0.403923i
\(393\) 6328.26 0.812261
\(394\) −10352.8 1444.38i −1.32377 0.184687i
\(395\) 2429.70 0.309497
\(396\) 3008.36 + 856.089i 0.381757 + 0.108637i
\(397\) 6987.59 0.883368 0.441684 0.897171i \(-0.354381\pi\)
0.441684 + 0.897171i \(0.354381\pi\)
\(398\) −7863.20 1097.04i −0.990318 0.138165i
\(399\) −47.5276 −0.00596330
\(400\) 5101.86 + 3159.53i 0.637732 + 0.394941i
\(401\) 1330.10i 0.165641i 0.996564 + 0.0828204i \(0.0263928\pi\)
−0.996564 + 0.0828204i \(0.973607\pi\)
\(402\) 142.814 1023.64i 0.0177187 0.127002i
\(403\) −12333.7 + 7325.73i −1.52453 + 0.905510i
\(404\) 3537.62 12431.5i 0.435652 1.53091i
\(405\) −1198.05 −0.146991
\(406\) −78.4799 10.9492i −0.00959333 0.00133842i
\(407\) 14782.7 1.80038
\(408\) −442.886 + 1002.87i −0.0537405 + 0.121690i
\(409\) 4071.81i 0.492270i 0.969236 + 0.246135i \(0.0791606\pi\)
−0.969236 + 0.246135i \(0.920839\pi\)
\(410\) 2320.91 16635.5i 0.279565 2.00383i
\(411\) 2387.12 0.286492
\(412\) 11421.3 + 3250.14i 1.36574 + 0.388648i
\(413\) 52.5469i 0.00626069i
\(414\) 2103.87 + 293.522i 0.249757 + 0.0348450i
\(415\) −4607.06 −0.544944
\(416\) 1327.78 8380.23i 0.156490 0.987680i
\(417\) −6695.44 −0.786276
\(418\) 8853.98 + 1235.27i 1.03603 + 0.144543i
\(419\) 6626.33i 0.772596i 0.922374 + 0.386298i \(0.126246\pi\)
−0.922374 + 0.386298i \(0.873754\pi\)
\(420\) −74.3435 21.1559i −0.00863712 0.00245786i
\(421\) 3778.98 0.437474 0.218737 0.975784i \(-0.429806\pi\)
0.218737 + 0.975784i \(0.429806\pi\)
\(422\) −1079.72 + 7739.07i −0.124550 + 0.892730i
\(423\) 1070.96i 0.123102i
\(424\) 4442.55 10059.7i 0.508843 1.15222i
\(425\) −1514.32 −0.172836
\(426\) 2117.36 + 295.404i 0.240813 + 0.0335971i
\(427\) 99.6161 0.0112898
\(428\) 194.165 682.309i 0.0219283 0.0770576i
\(429\) 5252.03 3119.50i 0.591073 0.351075i
\(430\) −186.742 + 1338.50i −0.0209430 + 0.150112i
\(431\) 5521.55i 0.617085i 0.951211 + 0.308543i \(0.0998412\pi\)
−0.951211 + 0.308543i \(0.900159\pi\)
\(432\) −909.798 + 1469.10i −0.101326 + 0.163616i
\(433\) −2290.27 −0.254188 −0.127094 0.991891i \(-0.540565\pi\)
−0.127094 + 0.991891i \(0.540565\pi\)
\(434\) 186.682 + 26.0451i 0.0206476 + 0.00288065i
\(435\) −5708.97 −0.629251
\(436\) −10375.2 2952.48i −1.13964 0.324308i
\(437\) 6071.42 0.664612
\(438\) 558.250 + 77.8845i 0.0609000 + 0.00849649i
\(439\) 3708.61 0.403194 0.201597 0.979469i \(-0.435387\pi\)
0.201597 + 0.979469i \(0.435387\pi\)
\(440\) 13299.7 + 5873.38i 1.44099 + 0.636370i
\(441\) −3086.57 −0.333287
\(442\) 828.548 + 1974.29i 0.0891630 + 0.212460i
\(443\) 1552.41i 0.166495i 0.996529 + 0.0832476i \(0.0265292\pi\)
−0.996529 + 0.0832476i \(0.973471\pi\)
\(444\) −2235.32 + 7855.09i −0.238927 + 0.839608i
\(445\) 14924.4i 1.58986i
\(446\) 1210.91 8679.41i 0.128561 0.921484i
\(447\) 3557.11i 0.376388i
\(448\) −82.3988 + 75.0975i −0.00868969 + 0.00791969i
\(449\) 13095.1i 1.37638i −0.725531 0.688190i \(-0.758406\pi\)
0.725531 0.688190i \(-0.241594\pi\)
\(450\) −2363.97 329.811i −0.247642 0.0345498i
\(451\) 17441.9i 1.82108i
\(452\) −10379.6 2953.71i −1.08012 0.307369i
\(453\) −6727.52 −0.697763
\(454\) 5453.73 + 760.880i 0.563781 + 0.0786561i
\(455\) −129.790 + 77.0901i −0.0133728 + 0.00794294i
\(456\) −1995.21 + 4517.94i −0.204899 + 0.463974i
\(457\) 11281.8i 1.15480i 0.816462 + 0.577399i \(0.195932\pi\)
−0.816462 + 0.577399i \(0.804068\pi\)
\(458\) −19267.4 2688.09i −1.96573 0.274250i
\(459\) 436.055i 0.0443427i
\(460\) 9497.02 + 2702.57i 0.962611 + 0.273930i
\(461\) 1825.45 0.184425 0.0922123 0.995739i \(-0.470606\pi\)
0.0922123 + 0.995739i \(0.470606\pi\)
\(462\) −79.4947 11.0907i −0.00800525 0.00111686i
\(463\) 8151.83i 0.818246i −0.912479 0.409123i \(-0.865835\pi\)
0.912479 0.409123i \(-0.134165\pi\)
\(464\) −4335.40 + 7000.60i −0.433763 + 0.700419i
\(465\) 13580.1 1.35433
\(466\) −4636.69 646.890i −0.460924 0.0643060i
\(467\) 12778.0i 1.26616i −0.774088 0.633078i \(-0.781791\pi\)
0.774088 0.633078i \(-0.218209\pi\)
\(468\) 863.439 + 3262.47i 0.0852831 + 0.322239i
\(469\) 26.5229i 0.00261133i
\(470\) 687.863 4930.37i 0.0675079 0.483874i
\(471\) 7549.15 0.738528
\(472\) 4995.07 + 2205.92i 0.487112 + 0.215118i
\(473\) 1403.39i 0.136422i
\(474\) −192.604 + 1380.52i −0.0186637 + 0.133775i
\(475\) −6822.04 −0.658982
\(476\) 7.70014 27.0589i 0.000741461 0.00260555i
\(477\) 4374.03i 0.419859i
\(478\) −755.532 + 5415.40i −0.0722954 + 0.518190i
\(479\) 8119.97i 0.774553i 0.921964 + 0.387277i \(0.126584\pi\)
−0.921964 + 0.387277i \(0.873416\pi\)
\(480\) −5132.00 + 6178.92i −0.488006 + 0.587558i
\(481\) 8145.29 + 13713.5i 0.772127 + 1.29996i
\(482\) 576.948 4135.37i 0.0545213 0.390790i
\(483\) −54.5118 −0.00513534
\(484\) 4279.50 + 1217.82i 0.401906 + 0.114370i
\(485\) 6405.83i 0.599740i
\(486\) 94.9702 680.715i 0.00886407 0.0635347i
\(487\) 929.534i 0.0864912i 0.999064 + 0.0432456i \(0.0137698\pi\)
−0.999064 + 0.0432456i \(0.986230\pi\)
\(488\) 4181.88 9469.43i 0.387919 0.878404i
\(489\) 9521.32i 0.880509i
\(490\) −14209.6 1982.46i −1.31005 0.182772i
\(491\) 5954.02i 0.547253i 0.961836 + 0.273627i \(0.0882232\pi\)
−0.961836 + 0.273627i \(0.911777\pi\)
\(492\) 9268.10 + 2637.42i 0.849264 + 0.241675i
\(493\) 2077.90i 0.189825i
\(494\) 3732.62 + 8894.20i 0.339957 + 0.810059i
\(495\) −5782.79 −0.525085
\(496\) 10312.7 16652.5i 0.933580 1.50750i
\(497\) −54.8612 −0.00495143
\(498\) 365.206 2617.67i 0.0328620 0.235544i
\(499\) 997.844 0.0895183 0.0447591 0.998998i \(-0.485748\pi\)
0.0447591 + 0.998998i \(0.485748\pi\)
\(500\) 3554.77 + 1011.58i 0.317948 + 0.0904784i
\(501\) −1061.92 −0.0946971
\(502\) 2609.64 18705.0i 0.232020 1.66304i
\(503\) −10659.5 −0.944893 −0.472447 0.881359i \(-0.656629\pi\)
−0.472447 + 0.881359i \(0.656629\pi\)
\(504\) 17.9138 40.5640i 0.00158322 0.00358504i
\(505\) 23896.3i 2.10568i
\(506\) 10155.1 + 1416.79i 0.892189 + 0.124474i
\(507\) 5787.74 + 3153.31i 0.506987 + 0.276220i
\(508\) 1702.71 + 484.540i 0.148712 + 0.0423189i
\(509\) 9446.08 0.822574 0.411287 0.911506i \(-0.365079\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(510\) 280.071 2007.46i 0.0243172 0.174297i
\(511\) −14.4644 −0.00125219
\(512\) 3679.61 + 10985.4i 0.317612 + 0.948221i
\(513\) 1964.43i 0.169068i
\(514\) −18816.1 2625.14i −1.61468 0.225272i
\(515\) −21954.4 −1.87850
\(516\) −745.716 212.208i −0.0636208 0.0181046i
\(517\) 5169.37i 0.439746i
\(518\) 28.9589 207.567i 0.00245633 0.0176062i
\(519\) 4547.23 0.384588
\(520\) 1879.56 + 15574.0i 0.158508 + 1.31339i
\(521\) 22602.3 1.90063 0.950313 0.311296i \(-0.100763\pi\)
0.950313 + 0.311296i \(0.100763\pi\)
\(522\) 452.555 3243.76i 0.0379460 0.271984i
\(523\) 15055.5i 1.25876i −0.777099 0.629379i \(-0.783309\pi\)
0.777099 0.629379i \(-0.216691\pi\)
\(524\) −4618.84 + 16231.0i −0.385067 + 1.35315i
\(525\) 61.2511 0.00509184
\(526\) −4893.09 682.661i −0.405606 0.0565883i
\(527\) 4942.77i 0.408558i
\(528\) −4391.46 + 7091.12i −0.361958 + 0.584472i
\(529\) −5203.38 −0.427664
\(530\) −2809.37 + 20136.6i −0.230248 + 1.65034i
\(531\) −2171.89 −0.177499
\(532\) 34.6893 121.901i 0.00282701 0.00993433i
\(533\) 16180.4 9610.50i 1.31491 0.781008i
\(534\) −8479.87 1183.07i −0.687191 0.0958737i
\(535\) 1311.56i 0.105988i
\(536\) 2521.24 + 1113.43i 0.203174 + 0.0897253i
\(537\) 14112.7 1.13409
\(538\) −2593.00 + 18585.8i −0.207792 + 1.48939i
\(539\) −14898.4 −1.19058
\(540\) 874.426 3072.80i 0.0696839 0.244874i
\(541\) 7560.93 0.600869 0.300434 0.953802i \(-0.402868\pi\)
0.300434 + 0.953802i \(0.402868\pi\)
\(542\) 2854.15 20457.6i 0.226192 1.62127i
\(543\) −4511.93 −0.356585
\(544\) −2248.95 1867.90i −0.177248 0.147216i
\(545\) 19943.7 1.56751
\(546\) −33.5130 79.8558i −0.00262679 0.00625918i
\(547\) 23434.6i 1.83179i 0.401415 + 0.915896i \(0.368519\pi\)
−0.401415 + 0.915896i \(0.631481\pi\)
\(548\) −1742.30 + 6122.59i −0.135817 + 0.477270i
\(549\) 4117.37i 0.320082i
\(550\) −11410.5 1591.95i −0.884631 0.123420i
\(551\) 9360.97i 0.723759i
\(552\) −2288.40 + 5181.85i −0.176451 + 0.399555i
\(553\) 35.7697i 0.00275060i
\(554\) 2395.93 17173.2i 0.183742 1.31700i
\(555\) 15099.4i 1.15483i
\(556\) 4886.84 17172.7i 0.372748 1.30987i
\(557\) 5076.81 0.386196 0.193098 0.981179i \(-0.438146\pi\)
0.193098 + 0.981179i \(0.438146\pi\)
\(558\) −1076.51 + 7716.04i −0.0816705 + 0.585387i
\(559\) −1301.88 + 773.266i −0.0985039 + 0.0585075i
\(560\) 108.523 175.238i 0.00818917 0.0132235i
\(561\) 2104.77i 0.158402i
\(562\) 2579.89 18491.8i 0.193641 1.38795i
\(563\) 3458.50i 0.258896i −0.991586 0.129448i \(-0.958679\pi\)
0.991586 0.129448i \(-0.0413206\pi\)
\(564\) 2746.84 + 781.669i 0.205076 + 0.0583585i
\(565\) 19952.0 1.48564
\(566\) −1586.04 + 11368.2i −0.117785 + 0.844241i
\(567\) 17.6375i 0.00130636i
\(568\) −2303.07 + 5215.06i −0.170131 + 0.385245i
\(569\) 262.599 0.0193475 0.00967376 0.999953i \(-0.496921\pi\)
0.00967376 + 0.999953i \(0.496921\pi\)
\(570\) 1261.72 9043.62i 0.0927155 0.664554i
\(571\) 6517.21i 0.477647i −0.971063 0.238824i \(-0.923238\pi\)
0.971063 0.238824i \(-0.0767618\pi\)
\(572\) 4167.69 + 15747.5i 0.304650 + 1.15111i
\(573\) 5622.52i 0.409920i
\(574\) −244.906 34.1681i −0.0178086 0.00248458i
\(575\) −7824.53 −0.567488
\(576\) −3103.96 3405.74i −0.224534 0.246365i
\(577\) 468.070i 0.0337712i −0.999857 0.0168856i \(-0.994625\pi\)
0.999857 0.0168856i \(-0.00537512\pi\)
\(578\) −13032.1 1818.18i −0.937827 0.130841i
\(579\) −1601.04 −0.114917
\(580\) 4166.84 14642.6i 0.298308 1.04828i
\(581\) 67.8245i 0.00484309i
\(582\) 3639.71 + 507.796i 0.259228 + 0.0361663i
\(583\) 21112.8i 1.49983i
\(584\) −607.214 + 1374.97i −0.0430252 + 0.0974261i
\(585\) −3186.32 5364.53i −0.225193 0.379138i
\(586\) −15077.5 2103.54i −1.06288 0.148288i
\(587\) 18079.3 1.27123 0.635614 0.772007i \(-0.280747\pi\)
0.635614 + 0.772007i \(0.280747\pi\)
\(588\) 2252.81 7916.56i 0.158001 0.555227i
\(589\) 22267.2i 1.55773i
\(590\) −9998.70 1394.97i −0.697695 0.0973392i
\(591\) 11087.2i 0.771683i
\(592\) −18515.5 11466.5i −1.28544 0.796063i
\(593\) 12109.1i 0.838552i −0.907859 0.419276i \(-0.862284\pi\)
0.907859 0.419276i \(-0.137716\pi\)
\(594\) 458.407 3285.71i 0.0316644 0.226960i
\(595\) 52.0137i 0.00358379i
\(596\) −9123.41 2596.25i −0.627030 0.178434i
\(597\) 8420.96i 0.577298i
\(598\) 4281.13 + 10201.2i 0.292756 + 0.697589i
\(599\) −3624.13 −0.247209 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(600\) 2571.32 5822.49i 0.174956 0.396170i
\(601\) 15755.1 1.06933 0.534664 0.845065i \(-0.320438\pi\)
0.534664 + 0.845065i \(0.320438\pi\)
\(602\) 19.7052 + 2.74919i 0.00133410 + 0.000186127i
\(603\) −1096.25 −0.0740347
\(604\) 4910.26 17255.0i 0.330787 1.16241i
\(605\) −8226.23 −0.552800
\(606\) −13577.5 1894.28i −0.910149 0.126980i
\(607\) 9240.47 0.617890 0.308945 0.951080i \(-0.400024\pi\)
0.308945 + 0.951080i \(0.400024\pi\)
\(608\) −10131.5 8414.92i −0.675803 0.561299i
\(609\) 84.0467i 0.00559236i
\(610\) −2644.53 + 18955.1i −0.175531 + 1.25815i
\(611\) 4795.47 2848.32i 0.317519 0.188594i
\(612\) 1118.41 + 318.266i 0.0738709 + 0.0210214i
\(613\) −8042.08 −0.529880 −0.264940 0.964265i \(-0.585352\pi\)
−0.264940 + 0.964265i \(0.585352\pi\)
\(614\) −17760.7 2477.89i −1.16737 0.162866i
\(615\) −17815.5 −1.16812
\(616\) 86.4671 195.796i 0.00565562 0.0128066i
\(617\) 14180.1i 0.925236i −0.886558 0.462618i \(-0.846910\pi\)
0.886558 0.462618i \(-0.153090\pi\)
\(618\) 1740.34 12474.2i 0.113280 0.811951i
\(619\) −8596.09 −0.558168 −0.279084 0.960267i \(-0.590031\pi\)
−0.279084 + 0.960267i \(0.590031\pi\)
\(620\) −9911.79 + 34830.8i −0.642044 + 2.25619i
\(621\) 2253.10i 0.145594i
\(622\) −14401.4 2009.22i −0.928365 0.129521i
\(623\) 219.715 0.0141296
\(624\) −8997.91 166.618i −0.577251 0.0106892i
\(625\) −18553.7 −1.18744
\(626\) −28179.9 3931.53i −1.79919 0.251015i
\(627\) 9482.01i 0.603948i
\(628\) −5509.94 + 19362.4i −0.350113 + 1.23032i
\(629\) 5495.73 0.348377
\(630\) −11.3283 + 81.1974i −0.000716396 + 0.00513489i
\(631\) 12694.0i 0.800858i −0.916328 0.400429i \(-0.868861\pi\)
0.916328 0.400429i \(-0.131139\pi\)
\(632\) −3400.24 1501.61i −0.214010 0.0945108i
\(633\) 8288.03 0.520410
\(634\) −10831.3 1511.13i −0.678492 0.0946602i
\(635\) −3273.02 −0.204545
\(636\) −11218.7 3192.50i −0.699448 0.199042i
\(637\) −8209.03 13820.8i −0.510602 0.859656i
\(638\) 2184.42 15657.2i 0.135551 0.971587i
\(639\) 2267.55i 0.140380i
\(640\) −12102.2 17672.6i −0.747471 1.09152i
\(641\) −9877.43 −0.608635 −0.304318 0.952571i \(-0.598428\pi\)
−0.304318 + 0.952571i \(0.598428\pi\)
\(642\) −745.212 103.969i −0.0458118 0.00639146i
\(643\) 1673.36 0.102630 0.0513148 0.998683i \(-0.483659\pi\)
0.0513148 + 0.998683i \(0.483659\pi\)
\(644\) 39.7868 139.814i 0.00243450 0.00855503i
\(645\) 1433.45 0.0875068
\(646\) 3291.62 + 459.231i 0.200475 + 0.0279694i
\(647\) 9339.92 0.567527 0.283764 0.958894i \(-0.408417\pi\)
0.283764 + 0.958894i \(0.408417\pi\)
\(648\) 1676.61 + 740.420i 0.101641 + 0.0448865i
\(649\) −10483.4 −0.634067
\(650\) −4810.41 11462.4i −0.290276 0.691679i
\(651\) 199.924i 0.0120363i
\(652\) 24420.6 + 6949.38i 1.46685 + 0.417421i
\(653\) 7410.32i 0.444086i 0.975037 + 0.222043i \(0.0712725\pi\)
−0.975037 + 0.222043i \(0.928727\pi\)
\(654\) −1580.95 + 11331.8i −0.0945263 + 0.677533i
\(655\) 31199.8i 1.86119i
\(656\) −13529.1 + 21846.2i −0.805218 + 1.30023i
\(657\) 597.848i 0.0355012i
\(658\) −72.5842 10.1266i −0.00430034 0.000599964i
\(659\) 13144.9i 0.777013i −0.921446 0.388507i \(-0.872991\pi\)
0.921446 0.388507i \(-0.127009\pi\)
\(660\) 4220.72 14831.9i 0.248926 0.874745i
\(661\) 8190.36 0.481949 0.240974 0.970531i \(-0.422533\pi\)
0.240974 + 0.970531i \(0.422533\pi\)
\(662\) 7374.17 + 1028.81i 0.432938 + 0.0604016i
\(663\) 1952.53 1159.73i 0.114374 0.0679338i
\(664\) 6447.35 + 2847.27i 0.376816 + 0.166409i
\(665\) 234.322i 0.0136641i
\(666\) 8579.27 + 1196.94i 0.499159 + 0.0696404i
\(667\) 10736.6i 0.623270i
\(668\) 775.072 2723.66i 0.0448929 0.157757i
\(669\) −9295.07 −0.537172
\(670\) −5046.81 704.107i −0.291008 0.0406001i
\(671\) 19873.9i 1.14341i
\(672\) 90.9651 + 75.5526i 0.00522181 + 0.00433706i
\(673\) −4991.19 −0.285879 −0.142939 0.989731i \(-0.545655\pi\)
−0.142939 + 0.989731i \(0.545655\pi\)
\(674\) −5760.46 803.673i −0.329206 0.0459293i
\(675\) 2531.66i 0.144361i
\(676\) −12312.1 + 12543.1i −0.700504 + 0.713649i
\(677\) 2640.52i 0.149902i −0.997187 0.0749508i \(-0.976120\pi\)
0.997187 0.0749508i \(-0.0238800\pi\)
\(678\) −1581.61 + 11336.5i −0.0895893 + 0.642146i
\(679\) −94.3058 −0.00533008
\(680\) 4944.38 + 2183.53i 0.278836 + 0.123139i
\(681\) 5840.58i 0.328651i
\(682\) −5196.13 + 37244.1i −0.291745 + 2.09113i
\(683\) −32008.8 −1.79324 −0.896621 0.442799i \(-0.853985\pi\)
−0.896621 + 0.442799i \(0.853985\pi\)
\(684\) 5038.45 + 1433.79i 0.281652 + 0.0801497i
\(685\) 11769.1i 0.656458i
\(686\) −58.3750 + 418.412i −0.00324893 + 0.0232873i
\(687\) 20634.0i 1.14591i
\(688\) 1088.56 1757.76i 0.0603212 0.0974038i
\(689\) −19585.7 + 11633.1i −1.08295 + 0.643232i
\(690\) 1447.13 10372.6i 0.0798427 0.572286i
\(691\) −28514.4 −1.56981 −0.784904 0.619618i \(-0.787288\pi\)
−0.784904 + 0.619618i \(0.787288\pi\)
\(692\) −3318.91 + 11662.9i −0.182321 + 0.640690i
\(693\) 85.1335i 0.00466660i
\(694\) 1272.69 9122.21i 0.0696118 0.498954i
\(695\) 33010.1i 1.80165i
\(696\) 7989.42 + 3528.27i 0.435112 + 0.192154i
\(697\) 6484.33i 0.352384i
\(698\) 27785.3 + 3876.48i 1.50672 + 0.210210i
\(699\) 4965.59i 0.268692i
\(700\) −44.7057 + 157.099i −0.00241388 + 0.00848255i
\(701\) 25877.8i 1.39428i −0.716935 0.697140i \(-0.754455\pi\)
0.716935 0.697140i \(-0.245545\pi\)
\(702\) 3300.64 1385.17i 0.177456 0.0744730i
\(703\) 24758.4 1.32828
\(704\) −14982.3 16439.0i −0.802086 0.880069i
\(705\) −5280.10 −0.282071
\(706\) 1485.01 10644.1i 0.0791632 0.567416i
\(707\) 351.798 0.0187139
\(708\) 1585.21 5570.55i 0.0841467 0.295698i
\(709\) 9601.34 0.508584 0.254292 0.967127i \(-0.418158\pi\)
0.254292 + 0.967127i \(0.418158\pi\)
\(710\) 1456.41 10439.1i 0.0769832 0.551790i
\(711\) 1478.45 0.0779833
\(712\) 9223.64 20886.0i 0.485492 1.09935i
\(713\) 25539.4i 1.34145i
\(714\) −29.5535 4.12317i −0.00154904 0.000216114i
\(715\) −15379.9 25893.8i −0.804441 1.35437i
\(716\) −10300.5 + 36196.7i −0.537636 + 1.88929i
\(717\) 5799.53 0.302074
\(718\) 3632.09 26033.6i 0.188786 1.35316i
\(719\) 24296.8 1.26025 0.630124 0.776494i \(-0.283004\pi\)
0.630124 + 0.776494i \(0.283004\pi\)
\(720\) 7243.00 + 4485.52i 0.374904 + 0.232174i
\(721\) 323.210i 0.0166948i
\(722\) −4385.31 611.818i −0.226045 0.0315367i
\(723\) −4428.70 −0.227808
\(724\) 3293.15 11572.4i 0.169046 0.594039i
\(725\) 12063.9i 0.617991i
\(726\) 652.100 4674.04i 0.0333357 0.238939i
\(727\) −2605.14 −0.132901 −0.0664507 0.997790i \(-0.521168\pi\)
−0.0664507 + 0.997790i \(0.521168\pi\)
\(728\) 229.278 27.6707i 0.0116725 0.00140871i
\(729\) −729.000 −0.0370370
\(730\) 383.989 2752.30i 0.0194686 0.139544i
\(731\) 521.733i 0.0263981i
\(732\) −10560.4 3005.17i −0.533229 0.151741i
\(733\) −38944.7 −1.96242 −0.981210 0.192943i \(-0.938197\pi\)
−0.981210 + 0.192943i \(0.938197\pi\)
\(734\) 38291.8 + 5342.30i 1.92558 + 0.268648i
\(735\) 15217.5i 0.763683i
\(736\) −11620.4 9651.48i −0.581973 0.483367i
\(737\) −5291.45 −0.264468
\(738\) 1412.25 10122.5i 0.0704413 0.504900i
\(739\) 31475.0 1.56675 0.783373 0.621551i \(-0.213497\pi\)
0.783373 + 0.621551i \(0.213497\pi\)
\(740\) 38727.4 + 11020.7i 1.92385 + 0.547470i
\(741\) 8796.18 5224.59i 0.436081 0.259015i
\(742\) 296.449 + 41.3592i 0.0146671 + 0.00204628i
\(743\) 23967.1i 1.18340i 0.806157 + 0.591701i \(0.201543\pi\)
−0.806157 + 0.591701i \(0.798457\pi\)
\(744\) −19004.7 8392.81i −0.936485 0.413569i
\(745\) 17537.4 0.862444
\(746\) −3725.98 + 26706.6i −0.182866 + 1.31072i
\(747\) −2803.35 −0.137308
\(748\) 5398.39 + 1536.22i 0.263883 + 0.0750933i
\(749\) 19.3086 0.000941952
\(750\) 541.667 3882.49i 0.0263718 0.189024i
\(751\) 21751.2 1.05687 0.528436 0.848973i \(-0.322779\pi\)
0.528436 + 0.848973i \(0.322779\pi\)
\(752\) −4009.71 + 6474.69i −0.194440 + 0.313973i
\(753\) −20031.8 −0.969456
\(754\) 15728.3 6600.68i 0.759669 0.318810i
\(755\) 33168.3i 1.59883i
\(756\) −45.2373 12.8732i −0.00217628 0.000619302i
\(757\) 34563.4i 1.65948i 0.558150 + 0.829740i \(0.311511\pi\)
−0.558150 + 0.829740i \(0.688489\pi\)
\(758\) 33747.8 + 4708.34i 1.61712 + 0.225613i
\(759\) 10875.4i 0.520094i
\(760\) 22274.5 + 9836.84i 1.06313 + 0.469500i
\(761\) 1383.22i 0.0658893i −0.999457 0.0329446i \(-0.989511\pi\)
0.999457 0.0329446i \(-0.0104885\pi\)
\(762\) 259.455 1859.69i 0.0123347 0.0884112i
\(763\) 293.608i 0.0139310i
\(764\) −14420.8 4103.74i −0.682890 0.194330i
\(765\) −2149.85 −0.101605
\(766\) −2653.22 + 19017.4i −0.125150 + 0.897032i
\(767\) −5776.35 9725.13i −0.271932 0.457828i
\(768\) 11000.7 5475.39i 0.516866 0.257260i
\(769\) 7417.38i 0.347825i −0.984761 0.173913i \(-0.944359\pi\)
0.984761 0.173913i \(-0.0556411\pi\)
\(770\) −54.6799 + 391.927i −0.00255913 + 0.0183430i
\(771\) 20150.8i 0.941264i
\(772\) 1168.56 4106.42i 0.0544786 0.191442i
\(773\) 15282.4 0.711085 0.355542 0.934660i \(-0.384296\pi\)
0.355542 + 0.934660i \(0.384296\pi\)
\(774\) −113.631 +