Properties

Label 312.4.m.a.181.74
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.74
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.73

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.48687 + 1.34740i) q^{2} +3.00000i q^{3} +(4.36905 + 6.70160i) q^{4} -8.37088 q^{5} +(-4.04219 + 7.46061i) q^{6} +16.5971i q^{7} +(1.83557 + 22.5528i) q^{8} -9.00000 q^{9} +(-20.8173 - 11.2789i) q^{10} +23.2256 q^{11} +(-20.1048 + 13.1072i) q^{12} +(46.2169 + 7.80987i) q^{13} +(-22.3629 + 41.2748i) q^{14} -25.1126i q^{15} +(-25.8228 + 58.5592i) q^{16} -14.7565 q^{17} +(-22.3818 - 12.1266i) q^{18} -124.395 q^{19} +(-36.5728 - 56.0983i) q^{20} -49.7913 q^{21} +(57.7591 + 31.2941i) q^{22} -173.645 q^{23} +(-67.6585 + 5.50670i) q^{24} -54.9283 q^{25} +(104.413 + 81.6946i) q^{26} -27.0000i q^{27} +(-111.227 + 72.5136i) q^{28} -126.409i q^{29} +(33.8367 - 62.4519i) q^{30} -27.9669i q^{31} +(-143.120 + 110.836i) q^{32} +69.6768i q^{33} +(-36.6976 - 19.8829i) q^{34} -138.932i q^{35} +(-39.3215 - 60.3144i) q^{36} +362.661 q^{37} +(-309.355 - 167.610i) q^{38} +(-23.4296 + 138.651i) q^{39} +(-15.3653 - 188.787i) q^{40} +309.872i q^{41} +(-123.825 - 67.0886i) q^{42} +556.370i q^{43} +(101.474 + 155.649i) q^{44} +75.3379 q^{45} +(-431.834 - 233.969i) q^{46} -163.307i q^{47} +(-175.678 - 77.4683i) q^{48} +67.5362 q^{49} +(-136.600 - 74.0102i) q^{50} -44.2696i q^{51} +(149.586 + 343.849i) q^{52} -334.459i q^{53} +(36.3797 - 67.1455i) q^{54} -194.419 q^{55} +(-374.312 + 30.4651i) q^{56} -373.186i q^{57} +(170.323 - 314.363i) q^{58} +809.123 q^{59} +(168.295 - 109.718i) q^{60} -6.20734i q^{61} +(37.6825 - 69.5500i) q^{62} -149.374i q^{63} +(-505.261 + 82.7945i) q^{64} +(-386.877 - 65.3755i) q^{65} +(-93.8822 + 173.277i) q^{66} +252.494 q^{67} +(-64.4721 - 98.8923i) q^{68} -520.936i q^{69} +(187.197 - 345.507i) q^{70} +822.887i q^{71} +(-16.5201 - 202.976i) q^{72} +449.440i q^{73} +(901.892 + 488.648i) q^{74} -164.785i q^{75} +(-543.489 - 833.647i) q^{76} +385.478i q^{77} +(-245.084 + 313.238i) q^{78} -547.122 q^{79} +(216.159 - 490.192i) q^{80} +81.0000 q^{81} +(-417.521 + 770.613i) q^{82} +959.070 q^{83} +(-217.541 - 333.681i) q^{84} +123.525 q^{85} +(-749.651 + 1383.62i) q^{86} +379.227 q^{87} +(42.6322 + 523.803i) q^{88} +656.191i q^{89} +(187.356 + 101.510i) q^{90} +(-129.621 + 767.067i) q^{91} +(-758.666 - 1163.70i) q^{92} +83.9007 q^{93} +(220.039 - 406.123i) q^{94} +1041.30 q^{95} +(-332.507 - 429.361i) q^{96} +417.791i q^{97} +(167.954 + 90.9980i) q^{98} -209.030 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48687 + 1.34740i 0.879242 + 0.476376i
\(3\) 3.00000i 0.577350i
\(4\) 4.36905 + 6.70160i 0.546131 + 0.837699i
\(5\) −8.37088 −0.748714 −0.374357 0.927285i \(-0.622137\pi\)
−0.374357 + 0.927285i \(0.622137\pi\)
\(6\) −4.04219 + 7.46061i −0.275036 + 0.507630i
\(7\) 16.5971i 0.896159i 0.893994 + 0.448080i \(0.147892\pi\)
−0.893994 + 0.448080i \(0.852108\pi\)
\(8\) 1.83557 + 22.5528i 0.0811214 + 0.996704i
\(9\) −9.00000 −0.333333
\(10\) −20.8173 11.2789i −0.658301 0.356670i
\(11\) 23.2256 0.636616 0.318308 0.947987i \(-0.396885\pi\)
0.318308 + 0.947987i \(0.396885\pi\)
\(12\) −20.1048 + 13.1072i −0.483646 + 0.315309i
\(13\) 46.2169 + 7.80987i 0.986021 + 0.166621i
\(14\) −22.3629 + 41.2748i −0.426909 + 0.787940i
\(15\) 25.1126i 0.432270i
\(16\) −25.8228 + 58.5592i −0.403481 + 0.914988i
\(17\) −14.7565 −0.210529 −0.105264 0.994444i \(-0.533569\pi\)
−0.105264 + 0.994444i \(0.533569\pi\)
\(18\) −22.3818 12.1266i −0.293081 0.158792i
\(19\) −124.395 −1.50201 −0.751006 0.660295i \(-0.770431\pi\)
−0.751006 + 0.660295i \(0.770431\pi\)
\(20\) −36.5728 56.0983i −0.408896 0.627198i
\(21\) −49.7913 −0.517398
\(22\) 57.7591 + 31.2941i 0.559740 + 0.303269i
\(23\) −173.645 −1.57424 −0.787121 0.616798i \(-0.788429\pi\)
−0.787121 + 0.616798i \(0.788429\pi\)
\(24\) −67.6585 + 5.50670i −0.575447 + 0.0468355i
\(25\) −54.9283 −0.439427
\(26\) 104.413 + 81.6946i 0.787577 + 0.616217i
\(27\) 27.0000i 0.192450i
\(28\) −111.227 + 72.5136i −0.750712 + 0.489421i
\(29\) 126.409i 0.809433i −0.914442 0.404716i \(-0.867370\pi\)
0.914442 0.404716i \(-0.132630\pi\)
\(30\) 33.8367 62.4519i 0.205923 0.380070i
\(31\) 27.9669i 0.162032i −0.996713 0.0810162i \(-0.974183\pi\)
0.996713 0.0810162i \(-0.0258165\pi\)
\(32\) −143.120 + 110.836i −0.790636 + 0.612287i
\(33\) 69.6768i 0.367551i
\(34\) −36.6976 19.8829i −0.185105 0.100291i
\(35\) 138.932i 0.670967i
\(36\) −39.3215 60.3144i −0.182044 0.279233i
\(37\) 362.661 1.61138 0.805692 0.592335i \(-0.201794\pi\)
0.805692 + 0.592335i \(0.201794\pi\)
\(38\) −309.355 167.610i −1.32063 0.715523i
\(39\) −23.4296 + 138.651i −0.0961985 + 0.569280i
\(40\) −15.3653 188.787i −0.0607368 0.746247i
\(41\) 309.872i 1.18034i 0.807279 + 0.590170i \(0.200939\pi\)
−0.807279 + 0.590170i \(0.799061\pi\)
\(42\) −123.825 67.0886i −0.454918 0.246476i
\(43\) 556.370i 1.97316i 0.163293 + 0.986578i \(0.447788\pi\)
−0.163293 + 0.986578i \(0.552212\pi\)
\(44\) 101.474 + 155.649i 0.347676 + 0.533293i
\(45\) 75.3379 0.249571
\(46\) −431.834 233.969i −1.38414 0.749932i
\(47\) 163.307i 0.506825i −0.967358 0.253412i \(-0.918447\pi\)
0.967358 0.253412i \(-0.0815530\pi\)
\(48\) −175.678 77.4683i −0.528269 0.232950i
\(49\) 67.5362 0.196899
\(50\) −136.600 74.0102i −0.386362 0.209332i
\(51\) 44.2696i 0.121549i
\(52\) 149.586 + 343.849i 0.398919 + 0.916986i
\(53\) 334.459i 0.866821i −0.901197 0.433411i \(-0.857310\pi\)
0.901197 0.433411i \(-0.142690\pi\)
\(54\) 36.3797 67.1455i 0.0916786 0.169210i
\(55\) −194.419 −0.476644
\(56\) −374.312 + 30.4651i −0.893206 + 0.0726977i
\(57\) 373.186i 0.867187i
\(58\) 170.323 314.363i 0.385595 0.711687i
\(59\) 809.123 1.78540 0.892702 0.450647i \(-0.148807\pi\)
0.892702 + 0.450647i \(0.148807\pi\)
\(60\) 168.295 109.718i 0.362113 0.236077i
\(61\) 6.20734i 0.0130290i −0.999979 0.00651450i \(-0.997926\pi\)
0.999979 0.00651450i \(-0.00207364\pi\)
\(62\) 37.6825 69.5500i 0.0771883 0.142466i
\(63\) 149.374i 0.298720i
\(64\) −505.261 + 82.7945i −0.986839 + 0.161708i
\(65\) −386.877 65.3755i −0.738248 0.124751i
\(66\) −93.8822 + 173.277i −0.175092 + 0.323166i
\(67\) 252.494 0.460403 0.230202 0.973143i \(-0.426061\pi\)
0.230202 + 0.973143i \(0.426061\pi\)
\(68\) −64.4721 98.8923i −0.114976 0.176360i
\(69\) 520.936i 0.908889i
\(70\) 187.197 345.507i 0.319633 0.589942i
\(71\) 822.887i 1.37548i 0.725959 + 0.687738i \(0.241396\pi\)
−0.725959 + 0.687738i \(0.758604\pi\)
\(72\) −16.5201 202.976i −0.0270405 0.332235i
\(73\) 449.440i 0.720589i 0.932839 + 0.360294i \(0.117324\pi\)
−0.932839 + 0.360294i \(0.882676\pi\)
\(74\) 901.892 + 488.648i 1.41679 + 0.767624i
\(75\) 164.785i 0.253703i
\(76\) −543.489 833.647i −0.820296 1.25823i
\(77\) 385.478i 0.570510i
\(78\) −245.084 + 313.238i −0.355773 + 0.454708i
\(79\) −547.122 −0.779191 −0.389595 0.920986i \(-0.627385\pi\)
−0.389595 + 0.920986i \(0.627385\pi\)
\(80\) 216.159 490.192i 0.302092 0.685065i
\(81\) 81.0000 0.111111
\(82\) −417.521 + 770.613i −0.562286 + 1.03780i
\(83\) 959.070 1.26833 0.634166 0.773197i \(-0.281344\pi\)
0.634166 + 0.773197i \(0.281344\pi\)
\(84\) −217.541 333.681i −0.282567 0.433424i
\(85\) 123.525 0.157626
\(86\) −749.651 + 1383.62i −0.939964 + 1.73488i
\(87\) 379.227 0.467326
\(88\) 42.6322 + 523.803i 0.0516432 + 0.634518i
\(89\) 656.191i 0.781529i 0.920491 + 0.390765i \(0.127789\pi\)
−0.920491 + 0.390765i \(0.872211\pi\)
\(90\) 187.356 + 101.510i 0.219434 + 0.118890i
\(91\) −129.621 + 767.067i −0.149319 + 0.883632i
\(92\) −758.666 1163.70i −0.859743 1.31874i
\(93\) 83.9007 0.0935494
\(94\) 220.039 406.123i 0.241439 0.445621i
\(95\) 1041.30 1.12458
\(96\) −332.507 429.361i −0.353504 0.456474i
\(97\) 417.791i 0.437322i 0.975801 + 0.218661i \(0.0701689\pi\)
−0.975801 + 0.218661i \(0.929831\pi\)
\(98\) 167.954 + 90.9980i 0.173121 + 0.0937978i
\(99\) −209.030 −0.212205
\(100\) −239.985 368.108i −0.239985 0.368108i
\(101\) 1487.66i 1.46562i −0.680432 0.732811i \(-0.738208\pi\)
0.680432 0.732811i \(-0.261792\pi\)
\(102\) 59.6487 110.093i 0.0579029 0.106871i
\(103\) −220.278 −0.210724 −0.105362 0.994434i \(-0.533600\pi\)
−0.105362 + 0.994434i \(0.533600\pi\)
\(104\) −91.3005 + 1056.66i −0.0860842 + 0.996288i
\(105\) 416.797 0.387383
\(106\) 450.649 831.757i 0.412933 0.762145i
\(107\) 871.468i 0.787365i 0.919247 + 0.393682i \(0.128799\pi\)
−0.919247 + 0.393682i \(0.871201\pi\)
\(108\) 180.943 117.964i 0.161215 0.105103i
\(109\) −152.585 −0.134082 −0.0670411 0.997750i \(-0.521356\pi\)
−0.0670411 + 0.997750i \(0.521356\pi\)
\(110\) −483.494 261.959i −0.419085 0.227062i
\(111\) 1087.98i 0.930332i
\(112\) −971.914 428.583i −0.819975 0.361583i
\(113\) 1053.23 0.876810 0.438405 0.898778i \(-0.355544\pi\)
0.438405 + 0.898778i \(0.355544\pi\)
\(114\) 502.829 928.065i 0.413107 0.762467i
\(115\) 1453.57 1.17866
\(116\) 847.142 552.287i 0.678061 0.442057i
\(117\) −415.952 70.2889i −0.328674 0.0555402i
\(118\) 2012.18 + 1090.21i 1.56980 + 0.850524i
\(119\) 244.916i 0.188667i
\(120\) 566.362 46.0960i 0.430846 0.0350664i
\(121\) −791.572 −0.594720
\(122\) 8.36374 15.4369i 0.00620670 0.0114556i
\(123\) −929.617 −0.681470
\(124\) 187.423 122.189i 0.135734 0.0884910i
\(125\) 1506.16 1.07772
\(126\) 201.266 371.474i 0.142303 0.262647i
\(127\) 2021.53 1.41245 0.706226 0.707987i \(-0.250396\pi\)
0.706226 + 0.707987i \(0.250396\pi\)
\(128\) −1368.08 474.887i −0.944703 0.327926i
\(129\) −1669.11 −1.13920
\(130\) −874.025 683.856i −0.589670 0.461370i
\(131\) 1126.13i 0.751073i −0.926808 0.375537i \(-0.877458\pi\)
0.926808 0.375537i \(-0.122542\pi\)
\(132\) −466.946 + 304.422i −0.307897 + 0.200731i
\(133\) 2064.60i 1.34604i
\(134\) 627.919 + 340.209i 0.404806 + 0.219325i
\(135\) 226.014i 0.144090i
\(136\) −27.0866 332.802i −0.0170784 0.209835i
\(137\) 882.672i 0.550451i −0.961380 0.275225i \(-0.911248\pi\)
0.961380 0.275225i \(-0.0887525\pi\)
\(138\) 701.907 1295.50i 0.432973 0.799133i
\(139\) 2278.54i 1.39039i 0.718823 + 0.695193i \(0.244681\pi\)
−0.718823 + 0.695193i \(0.755319\pi\)
\(140\) 931.069 607.003i 0.562069 0.366436i
\(141\) 489.921 0.292615
\(142\) −1108.75 + 2046.41i −0.655244 + 1.20938i
\(143\) 1073.42 + 181.389i 0.627717 + 0.106073i
\(144\) 232.405 527.033i 0.134494 0.304996i
\(145\) 1058.15i 0.606034i
\(146\) −605.573 + 1117.70i −0.343271 + 0.633571i
\(147\) 202.609i 0.113679i
\(148\) 1584.49 + 2430.41i 0.880027 + 1.34985i
\(149\) −1732.23 −0.952413 −0.476207 0.879333i \(-0.657989\pi\)
−0.476207 + 0.879333i \(0.657989\pi\)
\(150\) 222.031 409.799i 0.120858 0.223066i
\(151\) 2401.99i 1.29451i 0.762274 + 0.647255i \(0.224083\pi\)
−0.762274 + 0.647255i \(0.775917\pi\)
\(152\) −228.336 2805.47i −0.121845 1.49706i
\(153\) 132.809 0.0701762
\(154\) −519.391 + 958.633i −0.271777 + 0.501616i
\(155\) 234.108i 0.121316i
\(156\) −1031.55 + 448.757i −0.529422 + 0.230316i
\(157\) 3021.09i 1.53573i 0.640612 + 0.767865i \(0.278681\pi\)
−0.640612 + 0.767865i \(0.721319\pi\)
\(158\) −1360.62 737.190i −0.685097 0.371188i
\(159\) 1003.38 0.500460
\(160\) 1198.04 927.793i 0.591960 0.458428i
\(161\) 2882.01i 1.41077i
\(162\) 201.437 + 109.139i 0.0976935 + 0.0529307i
\(163\) −1603.60 −0.770577 −0.385288 0.922796i \(-0.625898\pi\)
−0.385288 + 0.922796i \(0.625898\pi\)
\(164\) −2076.64 + 1353.85i −0.988770 + 0.644621i
\(165\) 583.256i 0.275190i
\(166\) 2385.08 + 1292.25i 1.11517 + 0.604203i
\(167\) 3215.29i 1.48986i −0.667143 0.744930i \(-0.732483\pi\)
0.667143 0.744930i \(-0.267517\pi\)
\(168\) −91.3953 1122.94i −0.0419720 0.515693i
\(169\) 2075.01 + 721.897i 0.944475 + 0.328583i
\(170\) 307.191 + 166.437i 0.138591 + 0.0750892i
\(171\) 1119.56 0.500671
\(172\) −3728.57 + 2430.81i −1.65291 + 1.07760i
\(173\) 2437.42i 1.07118i −0.844479 0.535589i \(-0.820090\pi\)
0.844479 0.535589i \(-0.179910\pi\)
\(174\) 943.088 + 510.968i 0.410893 + 0.222623i
\(175\) 911.651i 0.393796i
\(176\) −599.749 + 1360.07i −0.256863 + 0.582496i
\(177\) 2427.37i 1.03080i
\(178\) −884.148 + 1631.86i −0.372302 + 0.687153i
\(179\) 3033.74i 1.26677i 0.773835 + 0.633387i \(0.218336\pi\)
−0.773835 + 0.633387i \(0.781664\pi\)
\(180\) 329.155 + 504.884i 0.136299 + 0.209066i
\(181\) 1824.97i 0.749442i −0.927138 0.374721i \(-0.877738\pi\)
0.927138 0.374721i \(-0.122262\pi\)
\(182\) −1355.89 + 1732.95i −0.552228 + 0.705794i
\(183\) 18.6220 0.00752229
\(184\) −318.738 3916.20i −0.127705 1.56905i
\(185\) −3035.80 −1.20647
\(186\) 208.650 + 113.047i 0.0822525 + 0.0445647i
\(187\) −342.729 −0.134026
\(188\) 1094.42 713.496i 0.424567 0.276793i
\(189\) 448.122 0.172466
\(190\) 2589.57 + 1403.04i 0.988776 + 0.535722i
\(191\) 2060.69 0.780662 0.390331 0.920675i \(-0.372361\pi\)
0.390331 + 0.920675i \(0.372361\pi\)
\(192\) −248.384 1515.78i −0.0933622 0.569752i
\(193\) 2776.88i 1.03567i −0.855480 0.517835i \(-0.826738\pi\)
0.855480 0.517835i \(-0.173262\pi\)
\(194\) −562.930 + 1038.99i −0.208330 + 0.384512i
\(195\) 196.127 1160.63i 0.0720252 0.426228i
\(196\) 295.069 + 452.600i 0.107532 + 0.164942i
\(197\) 2780.38 1.00555 0.502776 0.864417i \(-0.332312\pi\)
0.502776 + 0.864417i \(0.332312\pi\)
\(198\) −519.832 281.647i −0.186580 0.101090i
\(199\) 3560.57 1.26835 0.634175 0.773189i \(-0.281340\pi\)
0.634175 + 0.773189i \(0.281340\pi\)
\(200\) −100.825 1238.79i −0.0356469 0.437979i
\(201\) 757.481i 0.265814i
\(202\) 2004.47 3699.62i 0.698187 1.28864i
\(203\) 2098.02 0.725381
\(204\) 296.677 193.416i 0.101821 0.0663816i
\(205\) 2593.91i 0.883738i
\(206\) −547.802 296.801i −0.185278 0.100384i
\(207\) 1562.81 0.524748
\(208\) −1650.79 + 2504.76i −0.550297 + 0.834969i
\(209\) −2889.15 −0.956205
\(210\) 1036.52 + 561.590i 0.340603 + 0.184540i
\(211\) 3569.23i 1.16453i 0.812999 + 0.582265i \(0.197833\pi\)
−0.812999 + 0.582265i \(0.802167\pi\)
\(212\) 2241.41 1461.27i 0.726136 0.473398i
\(213\) −2468.66 −0.794131
\(214\) −1174.21 + 2167.23i −0.375082 + 0.692284i
\(215\) 4657.31i 1.47733i
\(216\) 608.927 49.5603i 0.191816 0.0156118i
\(217\) 464.169 0.145207
\(218\) −379.458 205.592i −0.117891 0.0638735i
\(219\) −1348.32 −0.416032
\(220\) −849.425 1302.92i −0.260310 0.399284i
\(221\) −682.002 115.247i −0.207586 0.0350784i
\(222\) −1465.94 + 2705.68i −0.443188 + 0.817987i
\(223\) 1406.96i 0.422498i 0.977432 + 0.211249i \(0.0677531\pi\)
−0.977432 + 0.211249i \(0.932247\pi\)
\(224\) −1839.55 2375.38i −0.548707 0.708535i
\(225\) 494.355 0.146476
\(226\) 2619.24 + 1419.12i 0.770927 + 0.417691i
\(227\) 70.1646 0.0205154 0.0102577 0.999947i \(-0.496735\pi\)
0.0102577 + 0.999947i \(0.496735\pi\)
\(228\) 2500.94 1630.47i 0.726442 0.473598i
\(229\) 837.989 0.241816 0.120908 0.992664i \(-0.461419\pi\)
0.120908 + 0.992664i \(0.461419\pi\)
\(230\) 3614.83 + 1958.53i 1.03633 + 0.561485i
\(231\) −1156.43 −0.329384
\(232\) 2850.88 232.032i 0.806765 0.0656623i
\(233\) −6308.04 −1.77362 −0.886809 0.462136i \(-0.847083\pi\)
−0.886809 + 0.462136i \(0.847083\pi\)
\(234\) −939.713 735.252i −0.262526 0.205406i
\(235\) 1367.02i 0.379467i
\(236\) 3535.10 + 5422.42i 0.975065 + 1.49563i
\(237\) 1641.37i 0.449866i
\(238\) 329.998 609.074i 0.0898765 0.165884i
\(239\) 5112.79i 1.38376i −0.722012 0.691880i \(-0.756783\pi\)
0.722012 0.691880i \(-0.243217\pi\)
\(240\) 1470.58 + 648.478i 0.395522 + 0.174413i
\(241\) 276.608i 0.0739330i −0.999317 0.0369665i \(-0.988231\pi\)
0.999317 0.0369665i \(-0.0117695\pi\)
\(242\) −1968.54 1066.56i −0.522902 0.283310i
\(243\) 243.000i 0.0641500i
\(244\) 41.5991 27.1202i 0.0109144 0.00711554i
\(245\) −565.338 −0.147421
\(246\) −2311.84 1252.56i −0.599176 0.324636i
\(247\) −5749.17 971.511i −1.48102 0.250266i
\(248\) 630.733 51.3351i 0.161498 0.0131443i
\(249\) 2877.21i 0.732272i
\(250\) 3745.62 + 2029.39i 0.947576 + 0.513400i
\(251\) 3768.11i 0.947574i −0.880640 0.473787i \(-0.842887\pi\)
0.880640 0.473787i \(-0.157113\pi\)
\(252\) 1001.04 652.622i 0.250237 0.163140i
\(253\) −4033.02 −1.00219
\(254\) 5027.27 + 2723.79i 1.24189 + 0.672858i
\(255\) 370.576i 0.0910053i
\(256\) −2762.37 3024.32i −0.674406 0.738360i
\(257\) 1835.81 0.445583 0.222792 0.974866i \(-0.428483\pi\)
0.222792 + 0.974866i \(0.428483\pi\)
\(258\) −4150.86 2248.95i −1.00163 0.542689i
\(259\) 6019.13i 1.44406i
\(260\) −1252.16 2878.32i −0.298676 0.686561i
\(261\) 1137.68i 0.269811i
\(262\) 1517.34 2800.54i 0.357793 0.660375i
\(263\) −2858.96 −0.670308 −0.335154 0.942163i \(-0.608788\pi\)
−0.335154 + 0.942163i \(0.608788\pi\)
\(264\) −1571.41 + 127.896i −0.366339 + 0.0298162i
\(265\) 2799.72i 0.649002i
\(266\) 2781.83 5134.39i 0.641222 1.18350i
\(267\) −1968.57 −0.451216
\(268\) 1103.16 + 1692.11i 0.251441 + 0.385679i
\(269\) 1513.76i 0.343106i −0.985175 0.171553i \(-0.945122\pi\)
0.985175 0.171553i \(-0.0548784\pi\)
\(270\) −304.530 + 562.067i −0.0686411 + 0.126690i
\(271\) 3396.37i 0.761310i 0.924717 + 0.380655i \(0.124301\pi\)
−0.924717 + 0.380655i \(0.875699\pi\)
\(272\) 381.055 864.132i 0.0849443 0.192631i
\(273\) −2301.20 388.864i −0.510165 0.0862092i
\(274\) 1189.31 2195.09i 0.262222 0.483979i
\(275\) −1275.74 −0.279746
\(276\) 3491.10 2276.00i 0.761376 0.496373i
\(277\) 1744.88i 0.378482i −0.981931 0.189241i \(-0.939397\pi\)
0.981931 0.189241i \(-0.0606027\pi\)
\(278\) −3070.10 + 5666.44i −0.662346 + 1.22248i
\(279\) 251.702i 0.0540108i
\(280\) 3133.32 255.020i 0.668756 0.0544298i
\(281\) 3474.67i 0.737657i −0.929498 0.368828i \(-0.879759\pi\)
0.929498 0.368828i \(-0.120241\pi\)
\(282\) 1218.37 + 660.117i 0.257280 + 0.139395i
\(283\) 1706.09i 0.358363i −0.983816 0.179181i \(-0.942655\pi\)
0.983816 0.179181i \(-0.0573449\pi\)
\(284\) −5514.66 + 3595.24i −1.15223 + 0.751190i
\(285\) 3123.89i 0.649275i
\(286\) 2425.04 + 1897.41i 0.501384 + 0.392294i
\(287\) −5142.98 −1.05777
\(288\) 1288.08 997.522i 0.263545 0.204096i
\(289\) −4695.24 −0.955678
\(290\) −1425.75 + 2631.49i −0.288700 + 0.532850i
\(291\) −1253.37 −0.252488
\(292\) −3011.96 + 1963.63i −0.603637 + 0.393536i
\(293\) −3584.54 −0.714714 −0.357357 0.933968i \(-0.616322\pi\)
−0.357357 + 0.933968i \(0.616322\pi\)
\(294\) −272.994 + 503.861i −0.0541542 + 0.0999517i
\(295\) −6773.07 −1.33676
\(296\) 665.690 + 8179.05i 0.130718 + 1.60607i
\(297\) 627.091i 0.122517i
\(298\) −4307.83 2333.99i −0.837401 0.453707i
\(299\) −8025.36 1356.15i −1.55224 0.262301i
\(300\) 1104.32 719.954i 0.212527 0.138555i
\(301\) −9234.13 −1.76826
\(302\) −3236.43 + 5973.43i −0.616674 + 1.13819i
\(303\) 4462.98 0.846177
\(304\) 3212.23 7284.49i 0.606033 1.37432i
\(305\) 51.9609i 0.00975499i
\(306\) 330.278 + 178.946i 0.0617018 + 0.0334303i
\(307\) 4601.91 0.855520 0.427760 0.903892i \(-0.359303\pi\)
0.427760 + 0.903892i \(0.359303\pi\)
\(308\) −2583.32 + 1684.17i −0.477916 + 0.311573i
\(309\) 660.833i 0.121662i
\(310\) −315.435 + 582.195i −0.0577920 + 0.106666i
\(311\) 9575.88 1.74597 0.872987 0.487743i \(-0.162180\pi\)
0.872987 + 0.487743i \(0.162180\pi\)
\(312\) −3169.98 273.902i −0.575207 0.0497007i
\(313\) −640.816 −0.115722 −0.0578611 0.998325i \(-0.518428\pi\)
−0.0578611 + 0.998325i \(0.518428\pi\)
\(314\) −4070.61 + 7513.07i −0.731585 + 1.35028i
\(315\) 1250.39i 0.223656i
\(316\) −2390.41 3666.59i −0.425541 0.652728i
\(317\) 3844.07 0.681086 0.340543 0.940229i \(-0.389389\pi\)
0.340543 + 0.940229i \(0.389389\pi\)
\(318\) 2495.27 + 1351.95i 0.440025 + 0.238407i
\(319\) 2935.92i 0.515298i
\(320\) 4229.48 693.063i 0.738860 0.121073i
\(321\) −2614.41 −0.454585
\(322\) 3883.21 7167.19i 0.672058 1.24041i
\(323\) 1835.64 0.316216
\(324\) 353.893 + 542.829i 0.0606813 + 0.0930777i
\(325\) −2538.62 428.983i −0.433284 0.0732176i
\(326\) −3987.96 2160.69i −0.677523 0.367084i
\(327\) 457.754i 0.0774124i
\(328\) −6988.50 + 568.792i −1.17645 + 0.0957508i
\(329\) 2710.42 0.454196
\(330\) 785.877 1450.48i 0.131094 0.241959i
\(331\) −9122.40 −1.51484 −0.757421 0.652927i \(-0.773541\pi\)
−0.757421 + 0.652927i \(0.773541\pi\)
\(332\) 4190.22 + 6427.30i 0.692676 + 1.06248i
\(333\) −3263.95 −0.537128
\(334\) 4332.26 7996.01i 0.709733 1.30995i
\(335\) −2113.59 −0.344710
\(336\) 1285.75 2915.74i 0.208760 0.473413i
\(337\) 5151.68 0.832730 0.416365 0.909198i \(-0.363304\pi\)
0.416365 + 0.909198i \(0.363304\pi\)
\(338\) 4187.61 + 4591.13i 0.673893 + 0.738829i
\(339\) 3159.69i 0.506226i
\(340\) 539.688 + 827.816i 0.0860844 + 0.132043i
\(341\) 649.548i 0.103152i
\(342\) 2784.19 + 1508.49i 0.440210 + 0.238508i
\(343\) 6813.71i 1.07261i
\(344\) −12547.7 + 1021.26i −1.96665 + 0.160065i
\(345\) 4360.70i 0.680499i
\(346\) 3284.17 6061.55i 0.510284 0.941824i
\(347\) 11604.4i 1.79527i 0.440742 + 0.897634i \(0.354716\pi\)
−0.440742 + 0.897634i \(0.645284\pi\)
\(348\) 1656.86 + 2541.42i 0.255222 + 0.391479i
\(349\) −2017.61 −0.309456 −0.154728 0.987957i \(-0.549450\pi\)
−0.154728 + 0.987957i \(0.549450\pi\)
\(350\) 1228.35 2267.16i 0.187595 0.346242i
\(351\) 210.867 1247.86i 0.0320662 0.189760i
\(352\) −3324.06 + 2574.23i −0.503332 + 0.389792i
\(353\) 6809.89i 1.02678i −0.858155 0.513391i \(-0.828389\pi\)
0.858155 0.513391i \(-0.171611\pi\)
\(354\) −3270.63 + 6036.55i −0.491050 + 0.906325i
\(355\) 6888.29i 1.02984i
\(356\) −4397.53 + 2866.93i −0.654686 + 0.426818i
\(357\) 734.747 0.108927
\(358\) −4087.65 + 7544.53i −0.603461 + 1.11380i
\(359\) 4459.33i 0.655584i 0.944750 + 0.327792i \(0.106304\pi\)
−0.944750 + 0.327792i \(0.893696\pi\)
\(360\) 138.288 + 1699.08i 0.0202456 + 0.248749i
\(361\) 8615.18 1.25604
\(362\) 2458.96 4538.47i 0.357016 0.658941i
\(363\) 2374.71i 0.343361i
\(364\) −5706.90 + 2482.69i −0.821766 + 0.357495i
\(365\) 3762.21i 0.539515i
\(366\) 46.3106 + 25.0912i 0.00661391 + 0.00358344i
\(367\) −4612.98 −0.656118 −0.328059 0.944657i \(-0.606395\pi\)
−0.328059 + 0.944657i \(0.606395\pi\)
\(368\) 4484.01 10168.5i 0.635177 1.44041i
\(369\) 2788.85i 0.393447i
\(370\) −7549.63 4090.42i −1.06077 0.574732i
\(371\) 5551.06 0.776810
\(372\) 366.566 + 562.268i 0.0510903 + 0.0783663i
\(373\) 11536.7i 1.60147i −0.599018 0.800735i \(-0.704442\pi\)
0.599018 0.800735i \(-0.295558\pi\)
\(374\) −852.324 461.792i −0.117841 0.0638468i
\(375\) 4518.48i 0.622222i
\(376\) 3683.04 299.761i 0.505154 0.0411143i
\(377\) 987.238 5842.24i 0.134868 0.798118i
\(378\) 1114.42 + 603.797i 0.151639 + 0.0821587i
\(379\) −3947.90 −0.535066 −0.267533 0.963549i \(-0.586208\pi\)
−0.267533 + 0.963549i \(0.586208\pi\)
\(380\) 4549.48 + 6978.36i 0.614167 + 0.942058i
\(381\) 6064.58i 0.815479i
\(382\) 5124.67 + 2776.57i 0.686390 + 0.371889i
\(383\) 1328.83i 0.177285i 0.996064 + 0.0886425i \(0.0282529\pi\)
−0.996064 + 0.0886425i \(0.971747\pi\)
\(384\) 1424.66 4104.23i 0.189328 0.545425i
\(385\) 3226.79i 0.427149i
\(386\) 3741.56 6905.75i 0.493369 0.910605i
\(387\) 5007.33i 0.657718i
\(388\) −2799.87 + 1825.35i −0.366344 + 0.238835i
\(389\) 8622.02i 1.12379i 0.827209 + 0.561894i \(0.189927\pi\)
−0.827209 + 0.561894i \(0.810073\pi\)
\(390\) 2051.57 2622.08i 0.266372 0.340446i
\(391\) 2562.41 0.331423
\(392\) 123.967 + 1523.13i 0.0159727 + 0.196250i
\(393\) 3378.39 0.433632
\(394\) 6914.43 + 3746.27i 0.884122 + 0.479021i
\(395\) 4579.90 0.583391
\(396\) −913.265 1400.84i −0.115892 0.177764i
\(397\) 12450.9 1.57403 0.787017 0.616931i \(-0.211624\pi\)
0.787017 + 0.616931i \(0.211624\pi\)
\(398\) 8854.67 + 4797.49i 1.11519 + 0.604212i
\(399\) 6193.80 0.777138
\(400\) 1418.40 3216.56i 0.177300 0.402070i
\(401\) 2689.39i 0.334917i −0.985879 0.167458i \(-0.946444\pi\)
0.985879 0.167458i \(-0.0535560\pi\)
\(402\) −1020.63 + 1883.76i −0.126627 + 0.233715i
\(403\) 218.418 1292.54i 0.0269979 0.159767i
\(404\) 9969.70 6499.67i 1.22775 0.800422i
\(405\) −678.041 −0.0831905
\(406\) 5217.51 + 2826.87i 0.637785 + 0.345554i
\(407\) 8423.03 1.02583
\(408\) 998.406 81.2599i 0.121148 0.00986020i
\(409\) 9558.37i 1.15558i −0.816186 0.577789i \(-0.803916\pi\)
0.816186 0.577789i \(-0.196084\pi\)
\(410\) 3495.02 6450.71i 0.420992 0.777019i
\(411\) 2648.02 0.317803
\(412\) −962.405 1476.21i −0.115083 0.176524i
\(413\) 13429.1i 1.60001i
\(414\) 3886.50 + 2105.72i 0.461380 + 0.249977i
\(415\) −8028.26 −0.949619
\(416\) −7480.20 + 4004.74i −0.881603 + 0.471992i
\(417\) −6835.63 −0.802739
\(418\) −7184.95 3892.83i −0.840736 0.455514i
\(419\) 2835.98i 0.330660i −0.986238 0.165330i \(-0.947131\pi\)
0.986238 0.165330i \(-0.0528689\pi\)
\(420\) 1821.01 + 2793.21i 0.211562 + 0.324511i
\(421\) −6691.51 −0.774642 −0.387321 0.921945i \(-0.626600\pi\)
−0.387321 + 0.921945i \(0.626600\pi\)
\(422\) −4809.16 + 8876.21i −0.554754 + 1.02390i
\(423\) 1469.76i 0.168942i
\(424\) 7543.01 613.923i 0.863965 0.0703178i
\(425\) 810.552 0.0925119
\(426\) −6139.24 3326.26i −0.698233 0.378305i
\(427\) 103.024 0.0116761
\(428\) −5840.23 + 3807.49i −0.659575 + 0.430005i
\(429\) −544.167 + 3220.25i −0.0612416 + 0.362413i
\(430\) 6275.24 11582.1i 0.703765 1.29893i
\(431\) 4507.64i 0.503771i −0.967757 0.251886i \(-0.918949\pi\)
0.967757 0.251886i \(-0.0810507\pi\)
\(432\) 1581.10 + 697.215i 0.176090 + 0.0776499i
\(433\) 15177.6 1.68450 0.842248 0.539090i \(-0.181232\pi\)
0.842248 + 0.539090i \(0.181232\pi\)
\(434\) 1154.33 + 625.420i 0.127672 + 0.0691730i
\(435\) −3174.46 −0.349894
\(436\) −666.650 1022.56i −0.0732265 0.112321i
\(437\) 21600.7 2.36453
\(438\) −3353.10 1816.72i −0.365793 0.198188i
\(439\) −6916.43 −0.751943 −0.375972 0.926631i \(-0.622691\pi\)
−0.375972 + 0.926631i \(0.622691\pi\)
\(440\) −356.869 4384.69i −0.0386660 0.475073i
\(441\) −607.826 −0.0656328
\(442\) −1540.77 1205.53i −0.165807 0.129731i
\(443\) 935.734i 0.100357i −0.998740 0.0501784i \(-0.984021\pi\)
0.998740 0.0501784i \(-0.0159790\pi\)
\(444\) −7291.23 + 4753.46i −0.779339 + 0.508084i
\(445\) 5492.90i 0.585142i
\(446\) −1895.73 + 3498.93i −0.201268 + 0.371478i
\(447\) 5196.68i 0.549876i
\(448\) −1374.15 8385.87i −0.144916 0.884365i
\(449\) 3019.21i 0.317339i 0.987332 + 0.158669i \(0.0507204\pi\)
−0.987332 + 0.158669i \(0.949280\pi\)
\(450\) 1229.40 + 666.092i 0.128787 + 0.0697775i
\(451\) 7196.97i 0.751424i
\(452\) 4601.61 + 7058.32i 0.478853 + 0.734503i
\(453\) −7205.96 −0.747385
\(454\) 174.490 + 94.5395i 0.0180380 + 0.00977304i
\(455\) 1085.04 6421.03i 0.111797 0.661588i
\(456\) 8416.40 685.008i 0.864329 0.0703474i
\(457\) 13732.7i 1.40567i 0.711354 + 0.702834i \(0.248082\pi\)
−0.711354 + 0.702834i \(0.751918\pi\)
\(458\) 2083.97 + 1129.10i 0.212615 + 0.115195i
\(459\) 398.427i 0.0405162i
\(460\) 6350.70 + 9741.21i 0.643702 + 0.987361i
\(461\) 9639.21 0.973846 0.486923 0.873445i \(-0.338119\pi\)
0.486923 + 0.873445i \(0.338119\pi\)
\(462\) −2875.90 1558.17i −0.289608 0.156911i
\(463\) 6341.49i 0.636532i −0.948001 0.318266i \(-0.896900\pi\)
0.948001 0.318266i \(-0.103100\pi\)
\(464\) 7402.41 + 3264.23i 0.740621 + 0.326591i
\(465\) −702.323 −0.0700418
\(466\) −15687.3 8499.42i −1.55944 0.844910i
\(467\) 5746.60i 0.569424i −0.958613 0.284712i \(-0.908102\pi\)
0.958613 0.284712i \(-0.0918980\pi\)
\(468\) −1346.27 3094.64i −0.132973 0.305662i
\(469\) 4190.66i 0.412595i
\(470\) −1841.92 + 3399.61i −0.180769 + 0.333643i
\(471\) −9063.28 −0.886654
\(472\) 1485.20 + 18248.0i 0.144834 + 1.77952i
\(473\) 12922.0i 1.25614i
\(474\) 2211.57 4081.87i 0.214305 0.395541i
\(475\) 6832.82 0.660024
\(476\) 1641.33 1070.05i 0.158046 0.103037i
\(477\) 3010.13i 0.288940i
\(478\) 6888.95 12714.8i 0.659191 1.21666i
\(479\) 7754.98i 0.739737i 0.929084 + 0.369869i \(0.120597\pi\)
−0.929084 + 0.369869i \(0.879403\pi\)
\(480\) 2783.38 + 3594.13i 0.264674 + 0.341768i
\(481\) 16761.1 + 2832.34i 1.58886 + 0.268490i
\(482\) 372.700 687.887i 0.0352199 0.0650050i
\(483\) 8646.03 0.814510
\(484\) −3458.42 5304.79i −0.324795 0.498196i
\(485\) 3497.28i 0.327429i
\(486\) −327.417 + 604.310i −0.0305595 + 0.0564034i
\(487\) 10370.4i 0.964947i −0.875911 0.482474i \(-0.839738\pi\)
0.875911 0.482474i \(-0.160262\pi\)
\(488\) 139.993 11.3940i 0.0129861 0.00105693i
\(489\) 4810.81i 0.444893i
\(490\) −1405.92 761.733i −0.129618 0.0702277i
\(491\) 18737.7i 1.72225i −0.508397 0.861123i \(-0.669762\pi\)
0.508397 0.861123i \(-0.330238\pi\)
\(492\) −4061.55 6229.92i −0.372172 0.570867i
\(493\) 1865.36i 0.170409i
\(494\) −12988.4 10162.4i −1.18295 0.925565i
\(495\) 1749.77 0.158881
\(496\) 1637.72 + 722.183i 0.148258 + 0.0653769i
\(497\) −13657.5 −1.23264
\(498\) −3876.74 + 7155.25i −0.348837 + 0.643844i
\(499\) 9332.52 0.837236 0.418618 0.908162i \(-0.362515\pi\)
0.418618 + 0.908162i \(0.362515\pi\)
\(500\) 6580.49 + 10093.7i 0.588577 + 0.902805i
\(501\) 9645.86 0.860171
\(502\) 5077.13 9370.80i 0.451402 0.833146i
\(503\) −85.6243 −0.00759006 −0.00379503 0.999993i \(-0.501208\pi\)
−0.00379503 + 0.999993i \(0.501208\pi\)
\(504\) 3368.81 274.186i 0.297735 0.0242326i
\(505\) 12453.0i 1.09733i
\(506\) −10029.6 5434.07i −0.881166 0.477419i
\(507\) −2165.69 + 6225.04i −0.189708 + 0.545293i
\(508\) 8832.15 + 13547.4i 0.771384 + 1.18321i
\(509\) −1278.96 −0.111373 −0.0556867 0.998448i \(-0.517735\pi\)
−0.0556867 + 0.998448i \(0.517735\pi\)
\(510\) −499.312 + 921.574i −0.0433528 + 0.0800156i
\(511\) −7459.40 −0.645762
\(512\) −2794.69 11243.1i −0.241229 0.970468i
\(513\) 3358.67i 0.289062i
\(514\) 4565.43 + 2473.57i 0.391775 + 0.212265i
\(515\) 1843.92 0.157772
\(516\) −7292.43 11185.7i −0.622154 0.954309i
\(517\) 3792.90i 0.322653i
\(518\) −8110.15 + 14968.8i −0.687914 + 1.26967i
\(519\) 7312.27 0.618445
\(520\) 764.266 8845.17i 0.0644524 0.745935i
\(521\) −1766.24 −0.148523 −0.0742616 0.997239i \(-0.523660\pi\)
−0.0742616 + 0.997239i \(0.523660\pi\)
\(522\) −1532.91 + 2829.26i −0.128532 + 0.237229i
\(523\) 15522.3i 1.29779i −0.760878 0.648894i \(-0.775232\pi\)
0.760878 0.648894i \(-0.224768\pi\)
\(524\) 7546.88 4920.13i 0.629174 0.410185i
\(525\) 2734.95 0.227358
\(526\) −7109.86 3852.15i −0.589363 0.319319i
\(527\) 412.694i 0.0341124i
\(528\) −4080.22 1799.25i −0.336304 0.148300i
\(529\) 17985.7 1.47824
\(530\) −3772.33 + 6962.54i −0.309169 + 0.570629i
\(531\) −7282.11 −0.595135
\(532\) 13836.1 9020.35i 1.12758 0.735116i
\(533\) −2420.06 + 14321.4i −0.196669 + 1.16384i
\(534\) −4895.59 2652.45i −0.396728 0.214949i
\(535\) 7294.96i 0.589511i
\(536\) 463.469 + 5694.45i 0.0373486 + 0.458886i
\(537\) −9101.23 −0.731373
\(538\) 2039.63 3764.52i 0.163447 0.301673i
\(539\) 1568.57 0.125349
\(540\) −1514.65 + 987.466i −0.120704 + 0.0786922i
\(541\) 22081.4 1.75481 0.877407 0.479748i \(-0.159272\pi\)
0.877407 + 0.479748i \(0.159272\pi\)
\(542\) −4576.26 + 8446.34i −0.362670 + 0.669375i
\(543\) 5474.91 0.432691
\(544\) 2111.96 1635.55i 0.166451 0.128904i
\(545\) 1277.27 0.100389
\(546\) −5198.84 4067.68i −0.407490 0.318829i
\(547\) 21980.9i 1.71817i −0.511837 0.859083i \(-0.671035\pi\)
0.511837 0.859083i \(-0.328965\pi\)
\(548\) 5915.31 3856.44i 0.461112 0.300618i
\(549\) 55.8661i 0.00434300i
\(550\) −3172.61 1718.93i −0.245965 0.133264i
\(551\) 15724.7i 1.21578i
\(552\) 11748.6 956.214i 0.905894 0.0737304i
\(553\) 9080.64i 0.698279i
\(554\) 2351.04 4339.28i 0.180300 0.332777i
\(555\) 9107.39i 0.696553i
\(556\) −15269.9 + 9955.08i −1.16473 + 0.759333i
\(557\) −23410.1 −1.78082 −0.890412 0.455156i \(-0.849584\pi\)
−0.890412 + 0.455156i \(0.849584\pi\)
\(558\) −339.142 + 625.950i −0.0257294 + 0.0474885i
\(559\) −4345.18 + 25713.7i −0.328769 + 1.94557i
\(560\) 8135.77 + 3587.62i 0.613927 + 0.270722i
\(561\) 1028.19i 0.0773799i
\(562\) 4681.76 8641.06i 0.351402 0.648578i
\(563\) 11642.7i 0.871551i −0.900056 0.435775i \(-0.856474\pi\)
0.900056 0.435775i \(-0.143526\pi\)
\(564\) 2140.49 + 3283.25i 0.159806 + 0.245124i
\(565\) −8816.46 −0.656480
\(566\) 2298.78 4242.83i 0.170715 0.315087i
\(567\) 1344.37i 0.0995733i
\(568\) −18558.4 + 1510.47i −1.37094 + 0.111580i
\(569\) 13777.7 1.01510 0.507548 0.861624i \(-0.330552\pi\)
0.507548 + 0.861624i \(0.330552\pi\)
\(570\) −4209.12 + 7768.72i −0.309299 + 0.570870i
\(571\) 9112.18i 0.667834i 0.942603 + 0.333917i \(0.108370\pi\)
−0.942603 + 0.333917i \(0.891630\pi\)
\(572\) 3474.21 + 7986.10i 0.253958 + 0.583768i
\(573\) 6182.08i 0.450715i
\(574\) −12789.9 6929.63i −0.930038 0.503898i
\(575\) 9538.06 0.691764
\(576\) 4547.35 745.151i 0.328946 0.0539027i
\(577\) 3992.15i 0.288033i −0.989575 0.144017i \(-0.953998\pi\)
0.989575 0.144017i \(-0.0460019\pi\)
\(578\) −11676.5 6326.35i −0.840272 0.455262i
\(579\) 8330.65 0.597945
\(580\) −7091.32 + 4623.13i −0.507674 + 0.330974i
\(581\) 15917.8i 1.13663i
\(582\) −3116.98 1688.79i −0.221998 0.120279i
\(583\) 7768.02i 0.551833i
\(584\) −10136.1 + 824.978i −0.718214 + 0.0584552i
\(585\) 3481.89 + 588.380i 0.246083 + 0.0415838i
\(586\) −8914.29 4829.79i −0.628406 0.340473i
\(587\) 4964.98 0.349109 0.174554 0.984648i \(-0.444152\pi\)
0.174554 + 0.984648i \(0.444152\pi\)
\(588\) −1357.80 + 885.207i −0.0952292 + 0.0620839i
\(589\) 3478.95i 0.243374i
\(590\) −16843.8 9126.01i −1.17533 0.636800i
\(591\) 8341.13i 0.580555i
\(592\) −9364.92 + 21237.2i −0.650162 + 1.47440i
\(593\) 6012.41i 0.416357i 0.978091 + 0.208179i \(0.0667536\pi\)
−0.978091 + 0.208179i \(0.933246\pi\)
\(594\) 844.940 1559.49i 0.0583641 0.107722i
\(595\) 2050.16i 0.141258i
\(596\) −7568.19 11608.7i −0.520143 0.797836i
\(597\) 10681.7i 0.732283i
\(598\) −18130.8 14185.9i −1.23984 0.970075i
\(599\) −5330.42 −0.363598 −0.181799 0.983336i \(-0.558192\pi\)
−0.181799 + 0.983336i \(0.558192\pi\)
\(600\) 3716.37 302.474i 0.252867 0.0205808i
\(601\) −4976.57 −0.337768 −0.168884 0.985636i \(-0.554016\pi\)
−0.168884 + 0.985636i \(0.554016\pi\)
\(602\) −22964.1 12442.0i −1.55473 0.842358i
\(603\) −2272.44 −0.153468
\(604\) −16097.1 + 10494.4i −1.08441 + 0.706972i
\(605\) 6626.15 0.445275
\(606\) 11098.9 + 6013.40i 0.743994 + 0.403099i
\(607\) −3168.09 −0.211843 −0.105922 0.994374i \(-0.533779\pi\)
−0.105922 + 0.994374i \(0.533779\pi\)
\(608\) 17803.5 13787.4i 1.18754 0.919662i
\(609\) 6294.07i 0.418799i
\(610\) −70.0119 + 129.220i −0.00464705 + 0.00857700i
\(611\) 1275.41 7547.55i 0.0844475 0.499740i
\(612\) 580.249 + 890.031i 0.0383254 + 0.0587866i
\(613\) 3807.27 0.250855 0.125428 0.992103i \(-0.459970\pi\)
0.125428 + 0.992103i \(0.459970\pi\)
\(614\) 11444.3 + 6200.59i 0.752209 + 0.407549i
\(615\) 7781.72 0.510226
\(616\) −8693.62 + 707.570i −0.568629 + 0.0462806i
\(617\) 8976.23i 0.585688i 0.956160 + 0.292844i \(0.0946017\pi\)
−0.956160 + 0.292844i \(0.905398\pi\)
\(618\) 890.404 1643.41i 0.0579568 0.106970i
\(619\) −1253.41 −0.0813872 −0.0406936 0.999172i \(-0.512957\pi\)
−0.0406936 + 0.999172i \(0.512957\pi\)
\(620\) −1568.89 + 1022.83i −0.101626 + 0.0662544i
\(621\) 4688.43i 0.302963i
\(622\) 23814.0 + 12902.5i 1.53513 + 0.831741i
\(623\) −10890.9 −0.700375
\(624\) −7514.27 4952.37i −0.482070 0.317714i
\(625\) −5741.83 −0.367477
\(626\) −1593.63 863.432i −0.101748 0.0551273i
\(627\) 8667.46i 0.552065i
\(628\) −20246.2 + 13199.3i −1.28648 + 0.838710i
\(629\) −5351.63 −0.339242
\(630\) −1684.77 + 3109.56i −0.106544 + 0.196647i
\(631\) 22115.1i 1.39523i 0.716474 + 0.697614i \(0.245755\pi\)
−0.716474 + 0.697614i \(0.754245\pi\)
\(632\) −1004.28 12339.2i −0.0632090 0.776623i
\(633\) −10707.7 −0.672342
\(634\) 9559.69 + 5179.48i 0.598839 + 0.324453i
\(635\) −16921.9 −1.05752
\(636\) 4383.81 + 6724.24i 0.273317 + 0.419235i
\(637\) 3121.32 + 527.449i 0.194146 + 0.0328074i
\(638\) 3955.85 7301.26i 0.245476 0.453072i
\(639\) 7405.98i 0.458492i
\(640\) 11452.0 + 3975.23i 0.707313 + 0.245523i
\(641\) −26606.7 −1.63947 −0.819736 0.572741i \(-0.805880\pi\)
−0.819736 + 0.572741i \(0.805880\pi\)
\(642\) −6501.69 3522.64i −0.399690 0.216554i
\(643\) −15622.5 −0.958152 −0.479076 0.877773i \(-0.659028\pi\)
−0.479076 + 0.877773i \(0.659028\pi\)
\(644\) 19314.1 12591.7i 1.18180 0.770467i
\(645\) 13971.9 0.852937
\(646\) 4565.01 + 2473.34i 0.278031 + 0.150638i
\(647\) −8706.60 −0.529045 −0.264522 0.964380i \(-0.585214\pi\)
−0.264522 + 0.964380i \(0.585214\pi\)
\(648\) 148.681 + 1826.78i 0.00901349 + 0.110745i
\(649\) 18792.4 1.13662
\(650\) −5735.21 4487.35i −0.346082 0.270782i
\(651\) 1392.51i 0.0838352i
\(652\) −7006.23 10746.7i −0.420836 0.645512i
\(653\) 3649.42i 0.218703i −0.994003 0.109351i \(-0.965123\pi\)
0.994003 0.109351i \(-0.0348773\pi\)
\(654\) 616.775 1138.37i 0.0368774 0.0680642i
\(655\) 9426.71i 0.562339i
\(656\) −18145.9 8001.76i −1.08000 0.476245i
\(657\) 4044.96i 0.240196i
\(658\) 6740.47 + 3652.01i 0.399348 + 0.216368i
\(659\) 17881.8i 1.05702i 0.848927 + 0.528510i \(0.177249\pi\)
−0.848927 + 0.528510i \(0.822751\pi\)
\(660\) 3908.75 2548.28i 0.230527 0.150290i
\(661\) 4411.35 0.259579 0.129789 0.991542i \(-0.458570\pi\)
0.129789 + 0.991542i \(0.458570\pi\)
\(662\) −22686.2 12291.5i −1.33191 0.721634i
\(663\) 345.740 2046.01i 0.0202525 0.119850i
\(664\) 1760.44 + 21629.7i 0.102889 + 1.26415i
\(665\) 17282.5i 1.00780i
\(666\) −8117.03 4397.83i −0.472265 0.255875i
\(667\) 21950.3i 1.27424i
\(668\) 21547.6 14047.8i 1.24805 0.813659i
\(669\) −4220.88 −0.243929
\(670\) −5256.24 2847.85i −0.303084 0.164212i
\(671\) 144.169i 0.00829447i
\(672\) 7126.15 5518.66i 0.409073 0.316796i
\(673\) −18882.8 −1.08154 −0.540771 0.841170i \(-0.681868\pi\)
−0.540771 + 0.841170i \(0.681868\pi\)
\(674\) 12811.6 + 6941.35i 0.732171 + 0.396693i
\(675\) 1483.07i 0.0845677i
\(676\) 4227.97 + 17059.9i 0.240554 + 0.970636i
\(677\) 8607.17i 0.488627i 0.969696 + 0.244313i \(0.0785625\pi\)
−0.969696 + 0.244313i \(0.921437\pi\)
\(678\) −4257.35 + 7857.73i −0.241154 + 0.445095i
\(679\) −6934.12 −0.391910
\(680\) 226.739 + 2785.84i 0.0127868 + 0.157106i
\(681\) 210.494i 0.0118446i
\(682\) 875.198 1615.34i 0.0491394 0.0906959i
\(683\) −8615.26 −0.482656 −0.241328 0.970444i \(-0.577583\pi\)
−0.241328 + 0.970444i \(0.577583\pi\)
\(684\) 4891.40 + 7502.82i 0.273432 + 0.419412i
\(685\) 7388.74i 0.412130i
\(686\) −9180.76 + 16944.8i −0.510967 + 0.943085i
\(687\) 2513.97i 0.139613i
\(688\) −32580.6 14367.0i −1.80541 0.796130i
\(689\) 2612.09 15457.7i 0.144430 0.854704i
\(690\) −5875.58 + 10844.5i −0.324173 + 0.598323i
\(691\) 3884.91 0.213877 0.106938 0.994266i \(-0.465895\pi\)
0.106938 + 0.994266i \(0.465895\pi\)
\(692\) 16334.6 10649.2i 0.897325 0.585004i
\(693\) 3469.30i 0.190170i
\(694\) −15635.7 + 28858.7i −0.855223 + 1.57847i
\(695\) 19073.4i 1.04100i
\(696\) 696.097 + 8552.64i 0.0379102 + 0.465786i
\(697\) 4572.64i 0.248495i
\(698\) −5017.53 2718.52i −0.272087 0.147418i
\(699\) 18924.1i 1.02400i
\(700\) 6109.52 3983.05i 0.329883 0.215065i
\(701\) 5168.26i 0.278463i 0.990260 + 0.139231i \(0.0444632\pi\)
−0.990260 + 0.139231i \(0.955537\pi\)
\(702\) 2205.76 2819.14i 0.118591 0.151569i
\(703\) −45113.4 −2.42032
\(704\) −11735.0 + 1922.95i −0.628238 + 0.102946i
\(705\) −4101.07 −0.219085
\(706\) 9175.62 16935.3i 0.489135 0.902789i
\(707\) 24690.9 1.31343
\(708\) −16267.2 + 10605.3i −0.863504 + 0.562954i
\(709\) 12559.3 0.665269 0.332635 0.943056i \(-0.392062\pi\)
0.332635 + 0.943056i \(0.392062\pi\)
\(710\) 9281.25 17130.3i 0.490590 0.905476i
\(711\) 4924.10 0.259730
\(712\) −14799.0 + 1204.48i −0.778953 + 0.0633987i
\(713\) 4856.32i 0.255078i
\(714\) 1827.22 + 989.995i 0.0957732 + 0.0518902i
\(715\) −8985.44 1518.39i −0.469981 0.0794187i
\(716\) −20330.9 + 13254.6i −1.06118 + 0.691826i
\(717\) 15338.4 0.798915
\(718\) −6008.48 + 11089.8i −0.312304 + 0.576416i
\(719\) −595.772 −0.0309020 −0.0154510 0.999881i \(-0.504918\pi\)
−0.0154510 + 0.999881i \(0.504918\pi\)
\(720\) −1945.43 + 4411.73i −0.100697 + 0.228355i
\(721\) 3655.97i 0.188843i
\(722\) 21424.8 + 11608.0i 1.10436 + 0.598347i
\(723\) 829.823 0.0426852
\(724\) 12230.2 7973.39i 0.627807 0.409294i
\(725\) 6943.43i 0.355686i
\(726\) 3199.68 5905.61i 0.163569 0.301898i
\(727\) 21554.1 1.09958 0.549792 0.835302i \(-0.314707\pi\)
0.549792 + 0.835302i \(0.314707\pi\)
\(728\) −17537.5 1515.32i −0.892833 0.0771451i
\(729\) −729.000 −0.0370370
\(730\) 5069.18 9356.13i 0.257012 0.474364i
\(731\) 8210.10i 0.415406i
\(732\) 81.3606 + 124.797i 0.00410816 + 0.00630142i
\(733\) 264.927 0.0133496 0.00667482 0.999978i \(-0.497875\pi\)
0.00667482 + 0.999978i \(0.497875\pi\)
\(734\) −11471.9 6215.50i −0.576887 0.312559i
\(735\) 1696.01i 0.0851134i
\(736\) 24852.2 19246.1i 1.24465 0.963888i
\(737\) 5864.32 0.293100
\(738\) 3757.69 6935.51i 0.187429 0.345935i
\(739\) −405.069 −0.0201633 −0.0100817 0.999949i \(-0.503209\pi\)
−0.0100817 + 0.999949i \(0.503209\pi\)
\(740\) −13263.5 20344.7i −0.658889 1.01066i
\(741\) 2914.53 17247.5i 0.144491 0.855065i
\(742\) 13804.8 + 7479.47i 0.683004 + 0.370054i
\(743\) 16691.2i 0.824149i −0.911150 0.412074i \(-0.864804\pi\)
0.911150 0.412074i \(-0.135196\pi\)
\(744\) 154.005 + 1892.20i 0.00758886 + 0.0932411i
\(745\) 14500.3 0.713086
\(746\) 15544.5 28690.3i 0.762902 1.40808i
\(747\) −8631.63 −0.422777
\(748\) −1497.40 2296.83i −0.0731958 0.112273i
\(749\) −14463.8 −0.705604
\(750\) −6088.17 + 11236.9i −0.296412 + 0.547083i
\(751\) −30944.9 −1.50359 −0.751796 0.659396i \(-0.770812\pi\)
−0.751796 + 0.659396i \(0.770812\pi\)
\(752\) 9563.13 + 4217.04i 0.463739 + 0.204494i
\(753\) 11304.3 0.547082
\(754\) 10326.9 13198.7i 0.498786 0.637490i
\(755\) 20106.7i 0.969218i
\(756\) 1957.87 + 3003.13i 0.0941891 + 0.144475i
\(757\) 22212.4i 1.06648i −0.845965 0.533238i \(-0.820975\pi\)
0.845965 0.533238i \(-0.179025\pi\)
\(758\) −9817.92 5319.38i −0.470452 0.254893i
\(759\) 12099.1i 0.578614i
\(760\) 1911.37 + 23484.2i 0.0912273 + 1.12087i
\(761\) 20301.1i 0.967034i 0.875335 + 0.483517i \(0.160641\pi\)
−0.875335 + 0.483517i \(0.839359\pi\)
\(762\) −8171.38 + 15081.8i −0.388475 + 0.717003i
\(763\) 2532.46i 0.120159i
\(764\) 9003.27 + 13809.9i 0.426344 + 0.653960i
\(765\) −1111.73 −0.0525419
\(766\) −1790.46 + 3304.63i −0.0844544 + 0.155876i
\(767\) 37395.2 + 6319.15i 1.76045 + 0.297485i
\(768\) 9072.97 8287.11i 0.426293 0.389369i
\(769\) 25514.7i 1.19647i −0.801322 0.598233i \(-0.795870\pi\)
0.801322 0.598233i \(-0.204130\pi\)
\(770\) 4347.76 8024.60i 0.203484 0.375567i
\(771\) 5507.44i 0.257258i
\(772\) 18609.6 12132.4i 0.867581 0.565612i
\(773\) −1757.92 −0.0817955 −0.0408977 0.999163i \(-0.513022\pi\)
−0.0408977 + 0.999163i \(0.513022\pi\)
\(774\) 6746.86 12452.6i 0.313321