Properties

Label 312.4.m.a.181.7
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.7
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73458 - 0.722559i) q^{2} -3.00000i q^{3} +(6.95582 + 3.95178i) q^{4} -2.18910 q^{5} +(-2.16768 + 8.20373i) q^{6} -4.02754i q^{7} +(-16.1658 - 15.8324i) q^{8} -9.00000 q^{9} +(5.98626 + 1.58175i) q^{10} +8.07699 q^{11} +(11.8554 - 20.8675i) q^{12} +(-40.2222 + 24.0660i) q^{13} +(-2.91013 + 11.0136i) q^{14} +6.56729i q^{15} +(32.7668 + 54.9758i) q^{16} +130.087 q^{17} +(24.6112 + 6.50303i) q^{18} -109.429 q^{19} +(-15.2270 - 8.65084i) q^{20} -12.0826 q^{21} +(-22.0871 - 5.83610i) q^{22} -77.1254 q^{23} +(-47.4973 + 48.4975i) q^{24} -120.208 q^{25} +(127.380 - 36.7473i) q^{26} +27.0000i q^{27} +(15.9160 - 28.0148i) q^{28} -94.2930i q^{29} +(4.74525 - 17.9588i) q^{30} +171.593i q^{31} +(-49.8802 - 174.011i) q^{32} -24.2310i q^{33} +(-355.734 - 93.9957i) q^{34} +8.81668i q^{35} +(-62.6024 - 35.5661i) q^{36} -18.4611 q^{37} +(299.241 + 79.0686i) q^{38} +(72.1979 + 120.667i) q^{39} +(35.3886 + 34.6588i) q^{40} +345.326i q^{41} +(33.0409 + 8.73040i) q^{42} +272.794i q^{43} +(56.1820 + 31.9185i) q^{44} +19.7019 q^{45} +(210.905 + 55.7276i) q^{46} -278.858i q^{47} +(164.927 - 98.3005i) q^{48} +326.779 q^{49} +(328.718 + 86.8572i) q^{50} -390.262i q^{51} +(-374.882 + 8.44902i) q^{52} +443.813i q^{53} +(19.5091 - 73.8336i) q^{54} -17.6813 q^{55} +(-63.7658 + 65.1085i) q^{56} +328.286i q^{57} +(-68.1322 + 257.851i) q^{58} +25.5699 q^{59} +(-25.9525 + 45.6809i) q^{60} +606.212i q^{61} +(123.986 - 469.234i) q^{62} +36.2479i q^{63} +(10.6677 + 511.889i) q^{64} +(88.0504 - 52.6828i) q^{65} +(-17.5083 + 66.2614i) q^{66} +583.980 q^{67} +(904.864 + 514.077i) q^{68} +231.376i q^{69} +(6.37057 - 24.1099i) q^{70} +847.652i q^{71} +(145.492 + 142.492i) q^{72} +1209.72i q^{73} +(50.4832 + 13.3392i) q^{74} +360.624i q^{75} +(-761.165 - 432.438i) q^{76} -32.5304i q^{77} +(-110.242 - 382.140i) q^{78} -1189.76 q^{79} +(-71.7298 - 120.347i) q^{80} +81.0000 q^{81} +(249.518 - 944.320i) q^{82} +932.173 q^{83} +(-84.0445 - 47.7479i) q^{84} -284.774 q^{85} +(197.109 - 745.975i) q^{86} -282.879 q^{87} +(-130.571 - 127.878i) q^{88} -227.209i q^{89} +(-53.8763 - 14.2358i) q^{90} +(96.9267 + 161.997i) q^{91} +(-536.470 - 304.783i) q^{92} +514.779 q^{93} +(-201.491 + 762.559i) q^{94} +239.550 q^{95} +(-522.034 + 149.640i) q^{96} -710.316i q^{97} +(-893.602 - 236.117i) q^{98} -72.6929 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73458 0.722559i −0.966819 0.255463i
\(3\) 3.00000i 0.577350i
\(4\) 6.95582 + 3.95178i 0.869477 + 0.493973i
\(5\) −2.18910 −0.195799 −0.0978994 0.995196i \(-0.531212\pi\)
−0.0978994 + 0.995196i \(0.531212\pi\)
\(6\) −2.16768 + 8.20373i −0.147492 + 0.558193i
\(7\) 4.02754i 0.217467i −0.994071 0.108733i \(-0.965321\pi\)
0.994071 0.108733i \(-0.0346795\pi\)
\(8\) −16.1658 15.8324i −0.714435 0.699702i
\(9\) −9.00000 −0.333333
\(10\) 5.98626 + 1.58175i 0.189302 + 0.0500194i
\(11\) 8.07699 0.221391 0.110696 0.993854i \(-0.464692\pi\)
0.110696 + 0.993854i \(0.464692\pi\)
\(12\) 11.8554 20.8675i 0.285195 0.501993i
\(13\) −40.2222 + 24.0660i −0.858126 + 0.513439i
\(14\) −2.91013 + 11.0136i −0.0555547 + 0.210251i
\(15\) 6.56729i 0.113045i
\(16\) 32.7668 + 54.9758i 0.511982 + 0.858996i
\(17\) 130.087 1.85593 0.927965 0.372668i \(-0.121557\pi\)
0.927965 + 0.372668i \(0.121557\pi\)
\(18\) 24.6112 + 6.50303i 0.322273 + 0.0851543i
\(19\) −109.429 −1.32130 −0.660649 0.750695i \(-0.729719\pi\)
−0.660649 + 0.750695i \(0.729719\pi\)
\(20\) −15.2270 8.65084i −0.170243 0.0967193i
\(21\) −12.0826 −0.125555
\(22\) −22.0871 5.83610i −0.214045 0.0565573i
\(23\) −77.1254 −0.699207 −0.349603 0.936898i \(-0.613684\pi\)
−0.349603 + 0.936898i \(0.613684\pi\)
\(24\) −47.4973 + 48.4975i −0.403973 + 0.412479i
\(25\) −120.208 −0.961663
\(26\) 127.380 36.7473i 0.960817 0.277183i
\(27\) 27.0000i 0.192450i
\(28\) 15.9160 28.0148i 0.107423 0.189082i
\(29\) 94.2930i 0.603785i −0.953342 0.301893i \(-0.902382\pi\)
0.953342 0.301893i \(-0.0976184\pi\)
\(30\) 4.74525 17.9588i 0.0288787 0.109294i
\(31\) 171.593i 0.994162i 0.867704 + 0.497081i \(0.165595\pi\)
−0.867704 + 0.497081i \(0.834405\pi\)
\(32\) −49.8802 174.011i −0.275552 0.961286i
\(33\) 24.2310i 0.127820i
\(34\) −355.734 93.9957i −1.79435 0.474121i
\(35\) 8.81668i 0.0425798i
\(36\) −62.6024 35.5661i −0.289826 0.164658i
\(37\) −18.4611 −0.0820264 −0.0410132 0.999159i \(-0.513059\pi\)
−0.0410132 + 0.999159i \(0.513059\pi\)
\(38\) 299.241 + 79.0686i 1.27745 + 0.337543i
\(39\) 72.1979 + 120.667i 0.296434 + 0.495439i
\(40\) 35.3886 + 34.6588i 0.139886 + 0.137001i
\(41\) 345.326i 1.31539i 0.753286 + 0.657693i \(0.228468\pi\)
−0.753286 + 0.657693i \(0.771532\pi\)
\(42\) 33.0409 + 8.73040i 0.121388 + 0.0320745i
\(43\) 272.794i 0.967457i 0.875218 + 0.483728i \(0.160718\pi\)
−0.875218 + 0.483728i \(0.839282\pi\)
\(44\) 56.1820 + 31.9185i 0.192495 + 0.109361i
\(45\) 19.7019 0.0652663
\(46\) 210.905 + 55.7276i 0.676006 + 0.178621i
\(47\) 278.858i 0.865439i −0.901529 0.432719i \(-0.857554\pi\)
0.901529 0.432719i \(-0.142446\pi\)
\(48\) 164.927 98.3005i 0.495942 0.295593i
\(49\) 326.779 0.952708
\(50\) 328.718 + 86.8572i 0.929754 + 0.245669i
\(51\) 390.262i 1.07152i
\(52\) −374.882 + 8.44902i −0.999746 + 0.0225321i
\(53\) 443.813i 1.15023i 0.818071 + 0.575117i \(0.195043\pi\)
−0.818071 + 0.575117i \(0.804957\pi\)
\(54\) 19.5091 73.8336i 0.0491639 0.186064i
\(55\) −17.6813 −0.0433481
\(56\) −63.7658 + 65.1085i −0.152162 + 0.155366i
\(57\) 328.286i 0.762851i
\(58\) −68.1322 + 257.851i −0.154245 + 0.583751i
\(59\) 25.5699 0.0564224 0.0282112 0.999602i \(-0.491019\pi\)
0.0282112 + 0.999602i \(0.491019\pi\)
\(60\) −25.9525 + 45.6809i −0.0558409 + 0.0982897i
\(61\) 606.212i 1.27242i 0.771517 + 0.636209i \(0.219498\pi\)
−0.771517 + 0.636209i \(0.780502\pi\)
\(62\) 123.986 469.234i 0.253972 0.961174i
\(63\) 36.2479i 0.0724889i
\(64\) 10.6677 + 511.889i 0.0208353 + 0.999783i
\(65\) 88.0504 52.6828i 0.168020 0.100531i
\(66\) −17.5083 + 66.2614i −0.0326533 + 0.123579i
\(67\) 583.980 1.06484 0.532421 0.846479i \(-0.321282\pi\)
0.532421 + 0.846479i \(0.321282\pi\)
\(68\) 904.864 + 514.077i 1.61369 + 0.916779i
\(69\) 231.376i 0.403687i
\(70\) 6.37057 24.1099i 0.0108776 0.0411669i
\(71\) 847.652i 1.41687i 0.705776 + 0.708435i \(0.250598\pi\)
−0.705776 + 0.708435i \(0.749402\pi\)
\(72\) 145.492 + 142.492i 0.238145 + 0.233234i
\(73\) 1209.72i 1.93955i 0.243995 + 0.969776i \(0.421542\pi\)
−0.243995 + 0.969776i \(0.578458\pi\)
\(74\) 50.4832 + 13.3392i 0.0793047 + 0.0209547i
\(75\) 360.624i 0.555216i
\(76\) −761.165 432.438i −1.14884 0.652685i
\(77\) 32.5304i 0.0481452i
\(78\) −110.242 382.140i −0.160031 0.554728i
\(79\) −1189.76 −1.69442 −0.847208 0.531261i \(-0.821718\pi\)
−0.847208 + 0.531261i \(0.821718\pi\)
\(80\) −71.7298 120.347i −0.100245 0.168191i
\(81\) 81.0000 0.111111
\(82\) 249.518 944.320i 0.336032 1.27174i
\(83\) 932.173 1.23276 0.616381 0.787448i \(-0.288598\pi\)
0.616381 + 0.787448i \(0.288598\pi\)
\(84\) −84.0445 47.7479i −0.109167 0.0620205i
\(85\) −284.774 −0.363389
\(86\) 197.109 745.975i 0.247149 0.935355i
\(87\) −282.879 −0.348596
\(88\) −130.571 127.878i −0.158170 0.154908i
\(89\) 227.209i 0.270608i −0.990804 0.135304i \(-0.956799\pi\)
0.990804 0.135304i \(-0.0432011\pi\)
\(90\) −53.8763 14.2358i −0.0631007 0.0166731i
\(91\) 96.9267 + 161.997i 0.111656 + 0.186614i
\(92\) −536.470 304.783i −0.607944 0.345389i
\(93\) 514.779 0.573980
\(94\) −201.491 + 762.559i −0.221088 + 0.836723i
\(95\) 239.550 0.258708
\(96\) −522.034 + 149.640i −0.554999 + 0.159090i
\(97\) 710.316i 0.743522i −0.928329 0.371761i \(-0.878754\pi\)
0.928329 0.371761i \(-0.121246\pi\)
\(98\) −893.602 236.117i −0.921096 0.243382i
\(99\) −72.6929 −0.0737971
\(100\) −836.144 475.035i −0.836144 0.475035i
\(101\) 524.495i 0.516725i 0.966048 + 0.258363i \(0.0831829\pi\)
−0.966048 + 0.258363i \(0.916817\pi\)
\(102\) −281.987 + 1067.20i −0.273734 + 1.03597i
\(103\) −613.735 −0.587118 −0.293559 0.955941i \(-0.594840\pi\)
−0.293559 + 0.955941i \(0.594840\pi\)
\(104\) 1031.25 + 247.770i 0.972329 + 0.233614i
\(105\) 26.4500 0.0245834
\(106\) 320.681 1213.64i 0.293842 1.11207i
\(107\) 416.106i 0.375948i −0.982174 0.187974i \(-0.939808\pi\)
0.982174 0.187974i \(-0.0601921\pi\)
\(108\) −106.698 + 187.807i −0.0950651 + 0.167331i
\(109\) 485.276 0.426432 0.213216 0.977005i \(-0.431606\pi\)
0.213216 + 0.977005i \(0.431606\pi\)
\(110\) 48.3509 + 12.7758i 0.0419098 + 0.0110738i
\(111\) 55.3832i 0.0473580i
\(112\) 221.417 131.970i 0.186803 0.111339i
\(113\) −900.530 −0.749688 −0.374844 0.927088i \(-0.622304\pi\)
−0.374844 + 0.927088i \(0.622304\pi\)
\(114\) 237.206 897.723i 0.194880 0.737539i
\(115\) 168.835 0.136904
\(116\) 372.626 655.885i 0.298254 0.524978i
\(117\) 362.000 216.594i 0.286042 0.171146i
\(118\) −69.9230 18.4758i −0.0545503 0.0144138i
\(119\) 523.932i 0.403603i
\(120\) 103.976 106.166i 0.0790974 0.0807630i
\(121\) −1265.76 −0.950986
\(122\) 438.024 1657.73i 0.325056 1.23020i
\(123\) 1035.98 0.759438
\(124\) −678.098 + 1193.57i −0.491089 + 0.864401i
\(125\) 536.784 0.384091
\(126\) 26.1912 99.1226i 0.0185182 0.0700837i
\(127\) −253.242 −0.176942 −0.0884708 0.996079i \(-0.528198\pi\)
−0.0884708 + 0.996079i \(0.528198\pi\)
\(128\) 340.698 1407.51i 0.235264 0.971932i
\(129\) 818.381 0.558561
\(130\) −278.847 + 80.4435i −0.188127 + 0.0542720i
\(131\) 1768.04i 1.17919i −0.807698 0.589597i \(-0.799287\pi\)
0.807698 0.589597i \(-0.200713\pi\)
\(132\) 95.7555 168.546i 0.0631397 0.111137i
\(133\) 440.728i 0.287338i
\(134\) −1596.94 421.960i −1.02951 0.272028i
\(135\) 59.1056i 0.0376815i
\(136\) −2102.97 2059.60i −1.32594 1.29860i
\(137\) 2297.53i 1.43278i 0.697700 + 0.716390i \(0.254207\pi\)
−0.697700 + 0.716390i \(0.745793\pi\)
\(138\) 167.183 632.716i 0.103127 0.390292i
\(139\) 2409.47i 1.47028i −0.677915 0.735140i \(-0.737116\pi\)
0.677915 0.735140i \(-0.262884\pi\)
\(140\) −34.8416 + 61.3272i −0.0210332 + 0.0370221i
\(141\) −836.574 −0.499661
\(142\) 612.478 2317.97i 0.361958 1.36986i
\(143\) −324.874 + 194.381i −0.189982 + 0.113671i
\(144\) −294.901 494.782i −0.170661 0.286332i
\(145\) 206.417i 0.118220i
\(146\) 874.096 3308.08i 0.495484 1.87520i
\(147\) 980.337i 0.550046i
\(148\) −128.412 72.9541i −0.0713201 0.0405188i
\(149\) −3443.67 −1.89340 −0.946698 0.322121i \(-0.895604\pi\)
−0.946698 + 0.322121i \(0.895604\pi\)
\(150\) 260.572 986.153i 0.141837 0.536794i
\(151\) 2299.02i 1.23902i −0.784989 0.619510i \(-0.787331\pi\)
0.784989 0.619510i \(-0.212669\pi\)
\(152\) 1769.00 + 1732.52i 0.943981 + 0.924514i
\(153\) −1170.79 −0.618643
\(154\) −23.5051 + 88.9569i −0.0122993 + 0.0465477i
\(155\) 375.634i 0.194656i
\(156\) 25.3470 + 1124.65i 0.0130089 + 0.577204i
\(157\) 3399.69i 1.72819i 0.503333 + 0.864093i \(0.332107\pi\)
−0.503333 + 0.864093i \(0.667893\pi\)
\(158\) 3253.50 + 859.674i 1.63819 + 0.432861i
\(159\) 1331.44 0.664088
\(160\) 109.193 + 380.928i 0.0539527 + 0.188219i
\(161\) 310.626i 0.152054i
\(162\) −221.501 58.5272i −0.107424 0.0283848i
\(163\) 356.404 0.171262 0.0856309 0.996327i \(-0.472709\pi\)
0.0856309 + 0.996327i \(0.472709\pi\)
\(164\) −1364.65 + 2402.02i −0.649765 + 1.14370i
\(165\) 53.0439i 0.0250271i
\(166\) −2549.10 673.549i −1.19186 0.314925i
\(167\) 2820.49i 1.30692i 0.756960 + 0.653461i \(0.226684\pi\)
−0.756960 + 0.653461i \(0.773316\pi\)
\(168\) 195.326 + 191.297i 0.0897006 + 0.0878507i
\(169\) 1038.66 1935.98i 0.472762 0.881190i
\(170\) 778.736 + 205.766i 0.351331 + 0.0928324i
\(171\) 984.857 0.440432
\(172\) −1078.02 + 1897.50i −0.477897 + 0.841182i
\(173\) 2319.99i 1.01957i −0.860303 0.509784i \(-0.829725\pi\)
0.860303 0.509784i \(-0.170275\pi\)
\(174\) 773.554 + 204.397i 0.337029 + 0.0890533i
\(175\) 484.142i 0.209130i
\(176\) 264.657 + 444.039i 0.113348 + 0.190174i
\(177\) 76.7098i 0.0325755i
\(178\) −164.172 + 621.320i −0.0691303 + 0.261629i
\(179\) 3439.12i 1.43604i −0.696020 0.718022i \(-0.745048\pi\)
0.696020 0.718022i \(-0.254952\pi\)
\(180\) 137.043 + 77.8576i 0.0567476 + 0.0322398i
\(181\) 2779.16i 1.14129i 0.821197 + 0.570644i \(0.193307\pi\)
−0.821197 + 0.570644i \(0.806693\pi\)
\(182\) −148.001 513.028i −0.0602780 0.208946i
\(183\) 1818.64 0.734631
\(184\) 1246.80 + 1221.08i 0.499538 + 0.489236i
\(185\) 40.4130 0.0160607
\(186\) −1407.70 371.958i −0.554934 0.146631i
\(187\) 1050.71 0.410886
\(188\) 1101.99 1939.69i 0.427503 0.752480i
\(189\) 108.744 0.0418515
\(190\) −655.068 173.089i −0.250124 0.0660904i
\(191\) −2194.22 −0.831249 −0.415624 0.909536i \(-0.636437\pi\)
−0.415624 + 0.909536i \(0.636437\pi\)
\(192\) 1535.67 32.0030i 0.577225 0.0120293i
\(193\) 1082.72i 0.403814i −0.979405 0.201907i \(-0.935286\pi\)
0.979405 0.201907i \(-0.0647138\pi\)
\(194\) −513.245 + 1942.41i −0.189942 + 0.718851i
\(195\) −158.048 264.151i −0.0580414 0.0970065i
\(196\) 2273.01 + 1291.36i 0.828358 + 0.470612i
\(197\) 345.276 0.124873 0.0624363 0.998049i \(-0.480113\pi\)
0.0624363 + 0.998049i \(0.480113\pi\)
\(198\) 198.784 + 52.5249i 0.0713484 + 0.0188524i
\(199\) −4047.98 −1.44198 −0.720990 0.692946i \(-0.756313\pi\)
−0.720990 + 0.692946i \(0.756313\pi\)
\(200\) 1943.26 + 1903.18i 0.687046 + 0.672877i
\(201\) 1751.94i 0.614787i
\(202\) 378.979 1434.27i 0.132004 0.499579i
\(203\) −379.769 −0.131303
\(204\) 1542.23 2714.59i 0.529303 0.931664i
\(205\) 755.952i 0.257551i
\(206\) 1678.31 + 443.460i 0.567636 + 0.149987i
\(207\) 694.128 0.233069
\(208\) −2641.00 1422.68i −0.880387 0.474256i
\(209\) −883.853 −0.292523
\(210\) −72.3297 19.1117i −0.0237677 0.00628016i
\(211\) 2356.06i 0.768712i 0.923185 + 0.384356i \(0.125576\pi\)
−0.923185 + 0.384356i \(0.874424\pi\)
\(212\) −1753.85 + 3087.08i −0.568184 + 1.00010i
\(213\) 2542.95 0.818030
\(214\) −300.661 + 1137.87i −0.0960409 + 0.363474i
\(215\) 597.172i 0.189427i
\(216\) 427.476 436.477i 0.134658 0.137493i
\(217\) 691.098 0.216197
\(218\) −1327.03 350.641i −0.412282 0.108937i
\(219\) 3629.17 1.11980
\(220\) −122.988 69.8727i −0.0376902 0.0214128i
\(221\) −5232.40 + 3130.68i −1.59262 + 0.952906i
\(222\) 40.0176 151.449i 0.0120982 0.0457866i
\(223\) 529.135i 0.158895i −0.996839 0.0794473i \(-0.974684\pi\)
0.996839 0.0794473i \(-0.0253155\pi\)
\(224\) −700.838 + 200.894i −0.209048 + 0.0599233i
\(225\) 1081.87 0.320554
\(226\) 2462.57 + 650.686i 0.724813 + 0.191518i
\(227\) −2406.64 −0.703676 −0.351838 0.936061i \(-0.614443\pi\)
−0.351838 + 0.936061i \(0.614443\pi\)
\(228\) −1297.31 + 2283.50i −0.376828 + 0.663282i
\(229\) −3225.80 −0.930859 −0.465429 0.885085i \(-0.654100\pi\)
−0.465429 + 0.885085i \(0.654100\pi\)
\(230\) −461.692 121.993i −0.132361 0.0349739i
\(231\) −97.5912 −0.0277967
\(232\) −1492.89 + 1524.32i −0.422470 + 0.431365i
\(233\) 2607.36 0.733106 0.366553 0.930397i \(-0.380538\pi\)
0.366553 + 0.930397i \(0.380538\pi\)
\(234\) −1146.42 + 330.726i −0.320272 + 0.0923942i
\(235\) 610.448i 0.169452i
\(236\) 177.860 + 101.047i 0.0490580 + 0.0278711i
\(237\) 3569.29i 0.978272i
\(238\) −378.572 + 1432.73i −0.103106 + 0.390211i
\(239\) 2233.80i 0.604571i 0.953217 + 0.302285i \(0.0977496\pi\)
−0.953217 + 0.302285i \(0.902250\pi\)
\(240\) −361.042 + 215.189i −0.0971049 + 0.0578767i
\(241\) 3747.28i 1.00159i 0.865565 + 0.500796i \(0.166959\pi\)
−0.865565 + 0.500796i \(0.833041\pi\)
\(242\) 3461.32 + 914.587i 0.919431 + 0.242942i
\(243\) 243.000i 0.0641500i
\(244\) −2395.62 + 4216.70i −0.628540 + 1.10634i
\(245\) −715.351 −0.186539
\(246\) −2832.96 748.554i −0.734239 0.194008i
\(247\) 4401.46 2633.51i 1.13384 0.678405i
\(248\) 2716.74 2773.94i 0.695617 0.710264i
\(249\) 2796.52i 0.711735i
\(250\) −1467.88 387.858i −0.371347 0.0981211i
\(251\) 5937.12i 1.49302i −0.665375 0.746510i \(-0.731728\pi\)
0.665375 0.746510i \(-0.268272\pi\)
\(252\) −143.244 + 252.134i −0.0358076 + 0.0630275i
\(253\) −622.941 −0.154798
\(254\) 692.509 + 182.982i 0.171070 + 0.0452020i
\(255\) 854.322i 0.209803i
\(256\) −1948.67 + 3602.76i −0.475750 + 0.879581i
\(257\) −3657.10 −0.887639 −0.443820 0.896116i \(-0.646377\pi\)
−0.443820 + 0.896116i \(0.646377\pi\)
\(258\) −2237.93 591.328i −0.540028 0.142692i
\(259\) 74.3526i 0.0178380i
\(260\) 820.654 18.4957i 0.195749 0.00441175i
\(261\) 848.637i 0.201262i
\(262\) −1277.51 + 4834.84i −0.301240 + 1.14007i
\(263\) 4997.53 1.17171 0.585857 0.810414i \(-0.300758\pi\)
0.585857 + 0.810414i \(0.300758\pi\)
\(264\) −383.635 + 391.713i −0.0894360 + 0.0913193i
\(265\) 971.550i 0.225214i
\(266\) 318.452 1205.21i 0.0734043 0.277804i
\(267\) −681.627 −0.156236
\(268\) 4062.06 + 2307.76i 0.925857 + 0.526004i
\(269\) 1428.50i 0.323782i 0.986809 + 0.161891i \(0.0517592\pi\)
−0.986809 + 0.161891i \(0.948241\pi\)
\(270\) −42.7073 + 161.629i −0.00962623 + 0.0364312i
\(271\) 6676.48i 1.49656i −0.663384 0.748279i \(-0.730880\pi\)
0.663384 0.748279i \(-0.269120\pi\)
\(272\) 4262.55 + 7151.65i 0.950202 + 1.59424i
\(273\) 485.990 290.780i 0.107742 0.0644645i
\(274\) 1660.10 6282.76i 0.366022 1.38524i
\(275\) −970.917 −0.212904
\(276\) −914.348 + 1609.41i −0.199411 + 0.350997i
\(277\) 26.6863i 0.00578854i −0.999996 0.00289427i \(-0.999079\pi\)
0.999996 0.00289427i \(-0.000921275\pi\)
\(278\) −1740.99 + 6588.89i −0.375602 + 1.42149i
\(279\) 1544.34i 0.331387i
\(280\) 139.590 142.529i 0.0297931 0.0304205i
\(281\) 795.130i 0.168802i −0.996432 0.0844012i \(-0.973102\pi\)
0.996432 0.0844012i \(-0.0268977\pi\)
\(282\) 2287.68 + 604.474i 0.483082 + 0.127645i
\(283\) 549.921i 0.115510i 0.998331 + 0.0577551i \(0.0183943\pi\)
−0.998331 + 0.0577551i \(0.981606\pi\)
\(284\) −3349.74 + 5896.11i −0.699895 + 1.23194i
\(285\) 718.650i 0.149365i
\(286\) 1028.85 296.808i 0.212716 0.0613658i
\(287\) 1390.81 0.286053
\(288\) 448.921 + 1566.10i 0.0918505 + 0.320429i
\(289\) 12009.7 2.44448
\(290\) 149.148 564.462i 0.0302010 0.114298i
\(291\) −2130.95 −0.429273
\(292\) −4780.56 + 8414.61i −0.958087 + 1.68640i
\(293\) −972.414 −0.193888 −0.0969438 0.995290i \(-0.530907\pi\)
−0.0969438 + 0.995290i \(0.530907\pi\)
\(294\) −708.351 + 2680.81i −0.140516 + 0.531795i
\(295\) −55.9751 −0.0110474
\(296\) 298.438 + 292.283i 0.0586026 + 0.0573940i
\(297\) 218.079i 0.0426068i
\(298\) 9416.97 + 2488.25i 1.83057 + 0.483693i
\(299\) 3102.16 1856.10i 0.600008 0.359000i
\(300\) −1425.11 + 2508.43i −0.274262 + 0.482748i
\(301\) 1098.69 0.210390
\(302\) −1661.18 + 6286.86i −0.316524 + 1.19791i
\(303\) 1573.49 0.298331
\(304\) −3585.63 6015.92i −0.676480 1.13499i
\(305\) 1327.06i 0.249138i
\(306\) 3201.60 + 845.961i 0.598116 + 0.158040i
\(307\) 9425.92 1.75233 0.876166 0.482010i \(-0.160093\pi\)
0.876166 + 0.482010i \(0.160093\pi\)
\(308\) 128.553 226.276i 0.0237824 0.0418612i
\(309\) 1841.21i 0.338973i
\(310\) −271.417 + 1027.20i −0.0497273 + 0.188197i
\(311\) 287.018 0.0523321 0.0261661 0.999658i \(-0.491670\pi\)
0.0261661 + 0.999658i \(0.491670\pi\)
\(312\) 743.309 3093.75i 0.134877 0.561375i
\(313\) 6365.91 1.14959 0.574796 0.818296i \(-0.305081\pi\)
0.574796 + 0.818296i \(0.305081\pi\)
\(314\) 2456.48 9296.72i 0.441487 1.67084i
\(315\) 79.3501i 0.0141933i
\(316\) −8275.78 4701.69i −1.47326 0.836996i
\(317\) −7432.89 −1.31695 −0.658474 0.752603i \(-0.728798\pi\)
−0.658474 + 0.752603i \(0.728798\pi\)
\(318\) −3640.92 962.042i −0.642052 0.169650i
\(319\) 761.603i 0.133673i
\(320\) −23.3526 1120.57i −0.00407953 0.195756i
\(321\) −1248.32 −0.217054
\(322\) 224.445 849.430i 0.0388442 0.147009i
\(323\) −14235.3 −2.45223
\(324\) 563.421 + 320.094i 0.0966086 + 0.0548859i
\(325\) 4835.03 2892.92i 0.825228 0.493755i
\(326\) −974.613 257.522i −0.165579 0.0437511i
\(327\) 1455.83i 0.246200i
\(328\) 5467.35 5582.47i 0.920378 0.939758i
\(329\) −1123.11 −0.188204
\(330\) 38.3274 145.053i 0.00639349 0.0241966i
\(331\) −2577.56 −0.428023 −0.214012 0.976831i \(-0.568653\pi\)
−0.214012 + 0.976831i \(0.568653\pi\)
\(332\) 6484.02 + 3683.74i 1.07186 + 0.608951i
\(333\) 166.149 0.0273421
\(334\) 2037.97 7712.85i 0.333870 1.26356i
\(335\) −1278.39 −0.208495
\(336\) −395.909 664.252i −0.0642816 0.107851i
\(337\) −3146.09 −0.508542 −0.254271 0.967133i \(-0.581836\pi\)
−0.254271 + 0.967133i \(0.581836\pi\)
\(338\) −4239.14 + 4543.58i −0.682186 + 0.731178i
\(339\) 2701.59i 0.432833i
\(340\) −1980.84 1125.36i −0.315958 0.179504i
\(341\) 1385.95i 0.220099i
\(342\) −2693.17 711.617i −0.425818 0.112514i
\(343\) 2697.56i 0.424649i
\(344\) 4318.99 4409.93i 0.676931 0.691185i
\(345\) 506.505i 0.0790415i
\(346\) −1676.33 + 6344.18i −0.260462 + 0.985737i
\(347\) 4209.15i 0.651179i 0.945511 + 0.325590i \(0.105563\pi\)
−0.945511 + 0.325590i \(0.894437\pi\)
\(348\) −1967.66 1117.88i −0.303096 0.172197i
\(349\) −2651.37 −0.406661 −0.203330 0.979110i \(-0.565177\pi\)
−0.203330 + 0.979110i \(0.565177\pi\)
\(350\) 349.821 1323.92i 0.0534249 0.202191i
\(351\) −649.781 1086.00i −0.0988113 0.165146i
\(352\) −402.881 1405.49i −0.0610047 0.212820i
\(353\) 2792.23i 0.421006i −0.977593 0.210503i \(-0.932490\pi\)
0.977593 0.210503i \(-0.0675102\pi\)
\(354\) −55.4273 + 209.769i −0.00832184 + 0.0314946i
\(355\) 1855.59i 0.277421i
\(356\) 897.880 1580.42i 0.133673 0.235287i
\(357\) −1571.80 −0.233020
\(358\) −2484.97 + 9404.54i −0.366856 + 1.38839i
\(359\) 9136.75i 1.34323i 0.740901 + 0.671615i \(0.234399\pi\)
−0.740901 + 0.671615i \(0.765601\pi\)
\(360\) −318.497 311.929i −0.0466285 0.0456669i
\(361\) 5115.62 0.745826
\(362\) 2008.11 7599.82i 0.291557 1.10342i
\(363\) 3797.29i 0.549052i
\(364\) 34.0288 + 1509.85i 0.00489998 + 0.217412i
\(365\) 2648.20i 0.379762i
\(366\) −4973.20 1314.07i −0.710255 0.187671i
\(367\) −1655.13 −0.235414 −0.117707 0.993048i \(-0.537554\pi\)
−0.117707 + 0.993048i \(0.537554\pi\)
\(368\) −2527.15 4240.03i −0.357981 0.600616i
\(369\) 3107.93i 0.438462i
\(370\) −110.513 29.2008i −0.0155278 0.00410291i
\(371\) 1787.47 0.250138
\(372\) 3580.71 + 2034.30i 0.499062 + 0.283530i
\(373\) 7639.53i 1.06048i −0.847847 0.530241i \(-0.822101\pi\)
0.847847 0.530241i \(-0.177899\pi\)
\(374\) −2873.26 759.202i −0.397253 0.104966i
\(375\) 1610.35i 0.221755i
\(376\) −4415.00 + 4507.97i −0.605549 + 0.618300i
\(377\) 2269.25 + 3792.68i 0.310007 + 0.518124i
\(378\) −297.368 78.5736i −0.0404628 0.0106915i
\(379\) −9088.73 −1.23181 −0.615906 0.787819i \(-0.711210\pi\)
−0.615906 + 0.787819i \(0.711210\pi\)
\(380\) 1666.27 + 946.649i 0.224941 + 0.127795i
\(381\) 759.726i 0.102157i
\(382\) 6000.27 + 1585.46i 0.803667 + 0.212353i
\(383\) 14687.1i 1.95946i −0.200320 0.979731i \(-0.564198\pi\)
0.200320 0.979731i \(-0.435802\pi\)
\(384\) −4222.52 1022.09i −0.561145 0.135830i
\(385\) 71.2122i 0.00942678i
\(386\) −782.330 + 2960.79i −0.103159 + 0.390415i
\(387\) 2455.14i 0.322486i
\(388\) 2807.01 4940.83i 0.367280 0.646475i
\(389\) 5135.82i 0.669400i −0.942325 0.334700i \(-0.891365\pi\)
0.942325 0.334700i \(-0.108635\pi\)
\(390\) 241.331 + 836.541i 0.0313340 + 0.108615i
\(391\) −10033.0 −1.29768
\(392\) −5282.65 5173.71i −0.680648 0.666611i
\(393\) −5304.12 −0.680808
\(394\) −944.184 249.482i −0.120729 0.0319004i
\(395\) 2604.51 0.331765
\(396\) −505.638 287.266i −0.0641649 0.0364537i
\(397\) 4691.05 0.593041 0.296520 0.955026i \(-0.404174\pi\)
0.296520 + 0.955026i \(0.404174\pi\)
\(398\) 11069.5 + 2924.91i 1.39413 + 0.368373i
\(399\) 1322.18 0.165895
\(400\) −3938.83 6608.52i −0.492354 0.826065i
\(401\) 6989.97i 0.870479i −0.900315 0.435240i \(-0.856664\pi\)
0.900315 0.435240i \(-0.143336\pi\)
\(402\) −1265.88 + 4790.81i −0.157055 + 0.594388i
\(403\) −4129.55 6901.85i −0.510441 0.853116i
\(404\) −2072.69 + 3648.29i −0.255248 + 0.449281i
\(405\) −177.317 −0.0217554
\(406\) 1038.51 + 274.405i 0.126946 + 0.0335431i
\(407\) −149.110 −0.0181599
\(408\) −6178.80 + 6308.91i −0.749745 + 0.765533i
\(409\) 8687.87i 1.05034i 0.850998 + 0.525168i \(0.175998\pi\)
−0.850998 + 0.525168i \(0.824002\pi\)
\(410\) −546.219 + 2067.21i −0.0657948 + 0.249005i
\(411\) 6892.58 0.827216
\(412\) −4269.03 2425.35i −0.510485 0.290020i
\(413\) 102.984i 0.0122700i
\(414\) −1898.15 501.548i −0.225335 0.0595405i
\(415\) −2040.62 −0.241373
\(416\) 6194.05 + 5798.71i 0.730020 + 0.683426i
\(417\) −7228.42 −0.848867
\(418\) 2416.96 + 638.636i 0.282817 + 0.0747289i
\(419\) 1379.30i 0.160819i 0.996762 + 0.0804094i \(0.0256228\pi\)
−0.996762 + 0.0804094i \(0.974377\pi\)
\(420\) 183.982 + 104.525i 0.0213747 + 0.0121436i
\(421\) 12625.1 1.46154 0.730769 0.682625i \(-0.239162\pi\)
0.730769 + 0.682625i \(0.239162\pi\)
\(422\) 1702.39 6442.84i 0.196377 0.743205i
\(423\) 2509.72i 0.288480i
\(424\) 7026.64 7174.60i 0.804820 0.821767i
\(425\) −15637.5 −1.78478
\(426\) −6953.90 1837.43i −0.790887 0.208976i
\(427\) 2441.54 0.276709
\(428\) 1644.36 2894.36i 0.185708 0.326878i
\(429\) 583.142 + 974.623i 0.0656279 + 0.109686i
\(430\) −431.492 + 1633.01i −0.0483916 + 0.183142i
\(431\) 849.996i 0.0949951i −0.998871 0.0474975i \(-0.984875\pi\)
0.998871 0.0474975i \(-0.0151246\pi\)
\(432\) −1484.35 + 884.704i −0.165314 + 0.0985309i
\(433\) 9796.64 1.08729 0.543645 0.839315i \(-0.317044\pi\)
0.543645 + 0.839315i \(0.317044\pi\)
\(434\) −1889.86 499.359i −0.209023 0.0552304i
\(435\) 619.250 0.0682546
\(436\) 3375.49 + 1917.71i 0.370773 + 0.210646i
\(437\) 8439.72 0.923860
\(438\) −9924.24 2622.29i −1.08265 0.286068i
\(439\) −8458.42 −0.919586 −0.459793 0.888026i \(-0.652076\pi\)
−0.459793 + 0.888026i \(0.652076\pi\)
\(440\) 285.833 + 279.938i 0.0309694 + 0.0303308i
\(441\) −2941.01 −0.317569
\(442\) 16570.5 4780.36i 1.78321 0.514431i
\(443\) 7815.21i 0.838176i 0.907946 + 0.419088i \(0.137650\pi\)
−0.907946 + 0.419088i \(0.862350\pi\)
\(444\) −218.862 + 385.235i −0.0233936 + 0.0411767i
\(445\) 497.383i 0.0529847i
\(446\) −382.331 + 1446.96i −0.0405917 + 0.153622i
\(447\) 10331.0i 1.09315i
\(448\) 2061.65 42.9645i 0.217420 0.00453099i
\(449\) 1877.83i 0.197373i −0.995119 0.0986864i \(-0.968536\pi\)
0.995119 0.0986864i \(-0.0314641\pi\)
\(450\) −2958.46 781.715i −0.309918 0.0818898i
\(451\) 2789.19i 0.291215i
\(452\) −6263.93 3558.70i −0.651837 0.370326i
\(453\) −6897.07 −0.715348
\(454\) 6581.15 + 1738.94i 0.680327 + 0.179763i
\(455\) −212.182 354.627i −0.0218621 0.0365388i
\(456\) 5197.57 5307.01i 0.533768 0.545008i
\(457\) 13143.5i 1.34536i 0.739935 + 0.672679i \(0.234856\pi\)
−0.739935 + 0.672679i \(0.765144\pi\)
\(458\) 8821.19 + 2330.83i 0.899972 + 0.237800i
\(459\) 3512.36i 0.357174i
\(460\) 1174.39 + 667.199i 0.119035 + 0.0676268i
\(461\) −1158.28 −0.117021 −0.0585105 0.998287i \(-0.518635\pi\)
−0.0585105 + 0.998287i \(0.518635\pi\)
\(462\) 266.871 + 70.5153i 0.0268743 + 0.00710102i
\(463\) 15029.1i 1.50856i 0.656555 + 0.754278i \(0.272013\pi\)
−0.656555 + 0.754278i \(0.727987\pi\)
\(464\) 5183.83 3089.68i 0.518649 0.309127i
\(465\) −1126.90 −0.112385
\(466\) −7130.02 1883.97i −0.708781 0.187281i
\(467\) 8548.28i 0.847039i −0.905887 0.423519i \(-0.860795\pi\)
0.905887 0.423519i \(-0.139205\pi\)
\(468\) 3373.94 76.0411i 0.333249 0.00751069i
\(469\) 2352.00i 0.231568i
\(470\) 441.084 1669.32i 0.0432887 0.163829i
\(471\) 10199.1 0.997768
\(472\) −413.359 404.835i −0.0403102 0.0394789i
\(473\) 2203.35i 0.214186i
\(474\) 2579.02 9760.50i 0.249912 0.945812i
\(475\) 13154.2 1.27064
\(476\) 2070.47 3644.38i 0.199369 0.350924i
\(477\) 3994.31i 0.383411i
\(478\) 1614.05 6108.49i 0.154445 0.584510i
\(479\) 545.299i 0.0520153i 0.999662 + 0.0260077i \(0.00827943\pi\)
−0.999662 + 0.0260077i \(0.991721\pi\)
\(480\) 1142.78 327.578i 0.108668 0.0311496i
\(481\) 742.545 444.283i 0.0703890 0.0421155i
\(482\) 2707.63 10247.2i 0.255870 0.968358i
\(483\) 931.877 0.0877886
\(484\) −8804.41 5002.02i −0.826861 0.469761i
\(485\) 1554.95i 0.145581i
\(486\) −175.582 + 664.502i −0.0163880 + 0.0620215i
\(487\) 7160.39i 0.666260i −0.942881 0.333130i \(-0.891895\pi\)
0.942881 0.333130i \(-0.108105\pi\)
\(488\) 9597.82 9799.92i 0.890313 0.909060i
\(489\) 1069.21i 0.0988781i
\(490\) 1956.18 + 516.883i 0.180350 + 0.0476539i
\(491\) 9108.23i 0.837166i 0.908178 + 0.418583i \(0.137473\pi\)
−0.908178 + 0.418583i \(0.862527\pi\)
\(492\) 7206.07 + 4093.96i 0.660314 + 0.375142i
\(493\) 12266.3i 1.12058i
\(494\) −13939.0 + 4021.21i −1.26952 + 0.366241i
\(495\) 159.132 0.0144494
\(496\) −9433.46 + 5622.56i −0.853981 + 0.508992i
\(497\) 3413.95 0.308122
\(498\) −2020.65 + 7647.29i −0.181822 + 0.688119i
\(499\) −9728.13 −0.872727 −0.436364 0.899770i \(-0.643734\pi\)
−0.436364 + 0.899770i \(0.643734\pi\)
\(500\) 3733.77 + 2121.25i 0.333959 + 0.189731i
\(501\) 8461.47 0.754552
\(502\) −4289.92 + 16235.5i −0.381411 + 1.44348i
\(503\) −3985.42 −0.353282 −0.176641 0.984275i \(-0.556523\pi\)
−0.176641 + 0.984275i \(0.556523\pi\)
\(504\) 573.892 585.977i 0.0507206 0.0517886i
\(505\) 1148.17i 0.101174i
\(506\) 1703.48 + 450.111i 0.149662 + 0.0395452i
\(507\) −5807.93 3115.97i −0.508756 0.272949i
\(508\) −1761.50 1000.76i −0.153847 0.0874044i
\(509\) 5335.24 0.464598 0.232299 0.972644i \(-0.425375\pi\)
0.232299 + 0.972644i \(0.425375\pi\)
\(510\) 617.297 2336.21i 0.0535968 0.202841i
\(511\) 4872.21 0.421788
\(512\) 7932.00 8444.00i 0.684664 0.728859i
\(513\) 2954.57i 0.254284i
\(514\) 10000.6 + 2642.47i 0.858187 + 0.226759i
\(515\) 1343.53 0.114957
\(516\) 5692.51 + 3234.06i 0.485656 + 0.275914i
\(517\) 2252.33i 0.191601i
\(518\) 53.7241 203.323i 0.00455696 0.0172461i
\(519\) −6959.96 −0.588648
\(520\) −2257.50 542.392i −0.190381 0.0457413i
\(521\) −12965.4 −1.09026 −0.545128 0.838353i \(-0.683519\pi\)
−0.545128 + 0.838353i \(0.683519\pi\)
\(522\) 613.190 2320.66i 0.0514149 0.194584i
\(523\) 14908.4i 1.24646i 0.782040 + 0.623228i \(0.214179\pi\)
−0.782040 + 0.623228i \(0.785821\pi\)
\(524\) 6986.91 12298.2i 0.582490 1.02528i
\(525\) 1452.43 0.120741
\(526\) −13666.1 3611.01i −1.13284 0.299330i
\(527\) 22322.1i 1.84509i
\(528\) 1332.12 793.971i 0.109797 0.0654416i
\(529\) −6218.68 −0.511110
\(530\) −702.001 + 2656.78i −0.0575339 + 0.217742i
\(531\) −230.129 −0.0188075
\(532\) −1741.66 + 3065.63i −0.141937 + 0.249834i
\(533\) −8310.60 13889.8i −0.675370 1.12877i
\(534\) 1863.96 + 492.515i 0.151051 + 0.0399124i
\(535\) 910.896i 0.0736102i
\(536\) −9440.51 9245.82i −0.760761 0.745072i
\(537\) −10317.4 −0.829101
\(538\) 1032.18 3906.35i 0.0827142 0.313038i
\(539\) 2639.39 0.210921
\(540\) 233.573 411.128i 0.0186136 0.0327632i
\(541\) 9863.25 0.783834 0.391917 0.920001i \(-0.371812\pi\)
0.391917 + 0.920001i \(0.371812\pi\)
\(542\) −4824.15 + 18257.3i −0.382315 + 1.44690i
\(543\) 8337.48 0.658923
\(544\) −6488.78 22636.7i −0.511404 1.78408i
\(545\) −1062.32 −0.0834948
\(546\) −1539.08 + 444.004i −0.120635 + 0.0348015i
\(547\) 19142.7i 1.49631i 0.663525 + 0.748154i \(0.269060\pi\)
−0.663525 + 0.748154i \(0.730940\pi\)
\(548\) −9079.32 + 15981.2i −0.707754 + 1.24577i
\(549\) 5455.91i 0.424139i
\(550\) 2655.05 + 701.544i 0.205839 + 0.0543890i
\(551\) 10318.4i 0.797780i
\(552\) 3663.25 3740.39i 0.282461 0.288408i
\(553\) 4791.82i 0.368479i
\(554\) −19.2824 + 72.9757i −0.00147876 + 0.00559647i
\(555\) 121.239i 0.00927264i
\(556\) 9521.72 16759.9i 0.726278 1.27838i
\(557\) 21532.3 1.63797 0.818987 0.573812i \(-0.194536\pi\)
0.818987 + 0.573812i \(0.194536\pi\)
\(558\) −1115.87 + 4223.11i −0.0846572 + 0.320391i
\(559\) −6565.05 10972.4i −0.496730 0.830200i
\(560\) −484.704 + 288.895i −0.0365759 + 0.0218000i
\(561\) 3152.14i 0.237225i
\(562\) −574.528 + 2174.34i −0.0431228 + 0.163201i
\(563\) 3177.08i 0.237830i 0.992904 + 0.118915i \(0.0379416\pi\)
−0.992904 + 0.118915i \(0.962058\pi\)
\(564\) −5819.06 3305.96i −0.434444 0.246819i
\(565\) 1971.35 0.146788
\(566\) 397.350 1503.80i 0.0295086 0.111678i
\(567\) 326.231i 0.0241630i
\(568\) 13420.4 13703.0i 0.991386 1.01226i
\(569\) −7839.52 −0.577592 −0.288796 0.957391i \(-0.593255\pi\)
−0.288796 + 0.957391i \(0.593255\pi\)
\(570\) −519.267 + 1965.20i −0.0381573 + 0.144409i
\(571\) 7143.10i 0.523519i 0.965133 + 0.261760i \(0.0843027\pi\)
−0.965133 + 0.261760i \(0.915697\pi\)
\(572\) −3027.92 + 68.2426i −0.221335 + 0.00498840i
\(573\) 6582.67i 0.479922i
\(574\) −3803.29 1004.94i −0.276561 0.0730759i
\(575\) 9271.08 0.672401
\(576\) −96.0091 4607.00i −0.00694510 0.333261i
\(577\) 6948.29i 0.501319i −0.968075 0.250659i \(-0.919353\pi\)
0.968075 0.250659i \(-0.0806474\pi\)
\(578\) −32841.5 8677.72i −2.36337 0.624473i
\(579\) −3248.17 −0.233142
\(580\) −815.714 + 1435.80i −0.0583977 + 0.102790i
\(581\) 3754.36i 0.268085i
\(582\) 5827.24 + 1539.73i 0.415029 + 0.109663i
\(583\) 3584.67i 0.254651i
\(584\) 19152.9 19556.2i 1.35711 1.38568i
\(585\) −792.454 + 474.145i −0.0560067 + 0.0335102i
\(586\) 2659.14 + 702.626i 0.187454 + 0.0495311i
\(587\) −17711.1 −1.24534 −0.622672 0.782483i \(-0.713953\pi\)
−0.622672 + 0.782483i \(0.713953\pi\)
\(588\) 3874.08 6819.04i 0.271708 0.478253i
\(589\) 18777.2i 1.31358i
\(590\) 153.068 + 40.4453i 0.0106809 + 0.00282221i
\(591\) 1035.83i 0.0720953i
\(592\) −604.910 1014.91i −0.0419960 0.0704604i
\(593\) 9951.18i 0.689117i 0.938765 + 0.344558i \(0.111971\pi\)
−0.938765 + 0.344558i \(0.888029\pi\)
\(594\) 157.575 596.353i 0.0108844 0.0411930i
\(595\) 1146.94i 0.0790250i
\(596\) −23953.5 13608.6i −1.64627 0.935287i
\(597\) 12144.0i 0.832528i
\(598\) −9824.22 + 2834.15i −0.671810 + 0.193808i
\(599\) 11352.6 0.774379 0.387190 0.922000i \(-0.373446\pi\)
0.387190 + 0.922000i \(0.373446\pi\)
\(600\) 5709.55 5829.78i 0.388486 0.396666i
\(601\) 3952.91 0.268291 0.134145 0.990962i \(-0.457171\pi\)
0.134145 + 0.990962i \(0.457171\pi\)
\(602\) −3004.45 793.866i −0.203409 0.0537468i
\(603\) −5255.82 −0.354948
\(604\) 9085.24 15991.6i 0.612042 1.07730i
\(605\) 2770.88 0.186202
\(606\) −4302.82 1136.94i −0.288432 0.0762126i
\(607\) −11301.7 −0.755719 −0.377860 0.925863i \(-0.623340\pi\)
−0.377860 + 0.925863i \(0.623340\pi\)
\(608\) 5458.32 + 19041.8i 0.364085 + 1.27014i
\(609\) 1139.31i 0.0758080i
\(610\) −958.877 + 3628.94i −0.0636455 + 0.240871i
\(611\) 6710.99 + 11216.3i 0.444350 + 0.742656i
\(612\) −8143.77 4626.69i −0.537896 0.305593i
\(613\) −1858.88 −0.122479 −0.0612393 0.998123i \(-0.519505\pi\)
−0.0612393 + 0.998123i \(0.519505\pi\)
\(614\) −25775.9 6810.78i −1.69419 0.447656i
\(615\) −2267.86 −0.148697
\(616\) −515.036 + 525.881i −0.0336873 + 0.0343966i
\(617\) 5899.45i 0.384932i −0.981304 0.192466i \(-0.938351\pi\)
0.981304 0.192466i \(-0.0616485\pi\)
\(618\) 1330.38 5034.92i 0.0865949 0.327725i
\(619\) 7343.08 0.476807 0.238403 0.971166i \(-0.423376\pi\)
0.238403 + 0.971166i \(0.423376\pi\)
\(620\) 1484.42 2612.84i 0.0961547 0.169249i
\(621\) 2082.39i 0.134562i
\(622\) −784.872 207.387i −0.0505957 0.0133689i
\(623\) −915.093 −0.0588482
\(624\) −4268.05 + 7923.00i −0.273812 + 0.508292i
\(625\) 13850.9 0.886458
\(626\) −17408.1 4599.74i −1.11145 0.293678i
\(627\) 2651.56i 0.168889i
\(628\) −13434.9 + 23647.7i −0.853677 + 1.50262i
\(629\) −2401.55 −0.152235
\(630\) −57.3351 + 216.989i −0.00362585 + 0.0137223i
\(631\) 629.449i 0.0397116i −0.999803 0.0198558i \(-0.993679\pi\)
0.999803 0.0198558i \(-0.00632071\pi\)
\(632\) 19233.5 + 18836.9i 1.21055 + 1.18559i
\(633\) 7068.19 0.443816
\(634\) 20325.8 + 5370.70i 1.27325 + 0.336432i
\(635\) 554.371 0.0346450
\(636\) 9261.24 + 5261.56i 0.577409 + 0.328041i
\(637\) −13143.8 + 7864.26i −0.817544 + 0.489157i
\(638\) −550.303 + 2082.66i −0.0341484 + 0.129237i
\(639\) 7628.86i 0.472290i
\(640\) −745.821 + 3081.17i −0.0460643 + 0.190303i
\(641\) −7948.77 −0.489793 −0.244897 0.969549i \(-0.578754\pi\)
−0.244897 + 0.969549i \(0.578754\pi\)
\(642\) 3413.62 + 901.982i 0.209852 + 0.0554492i
\(643\) −11127.9 −0.682494 −0.341247 0.939974i \(-0.610849\pi\)
−0.341247 + 0.939974i \(0.610849\pi\)
\(644\) −1227.53 + 2160.66i −0.0751107 + 0.132208i
\(645\) −1791.52 −0.109366
\(646\) 38927.4 + 10285.8i 2.37087 + 0.626455i
\(647\) 21992.8 1.33636 0.668181 0.743999i \(-0.267073\pi\)
0.668181 + 0.743999i \(0.267073\pi\)
\(648\) −1309.43 1282.43i −0.0793817 0.0777446i
\(649\) 206.528 0.0124914
\(650\) −15312.1 + 4417.32i −0.923982 + 0.266556i
\(651\) 2073.29i 0.124821i
\(652\) 2479.08 + 1408.43i 0.148908 + 0.0845987i
\(653\) 21999.4i 1.31838i 0.751976 + 0.659191i \(0.229101\pi\)
−0.751976 + 0.659191i \(0.770899\pi\)
\(654\) −1051.92 + 3981.08i −0.0628951 + 0.238031i
\(655\) 3870.41i 0.230885i
\(656\) −18984.5 + 11315.2i −1.12991 + 0.673453i
\(657\) 10887.5i 0.646518i
\(658\) 3071.24 + 811.515i 0.181959 + 0.0480792i
\(659\) 49.4921i 0.00292555i −0.999999 0.00146278i \(-0.999534\pi\)
0.999999 0.00146278i \(-0.000465616\pi\)
\(660\) −209.618 + 368.964i −0.0123627 + 0.0217605i
\(661\) −13469.3 −0.792580 −0.396290 0.918125i \(-0.629703\pi\)
−0.396290 + 0.918125i \(0.629703\pi\)
\(662\) 7048.54 + 1862.44i 0.413821 + 0.109344i
\(663\) 9392.04 + 15697.2i 0.550161 + 0.919501i
\(664\) −15069.3 14758.6i −0.880728 0.862565i
\(665\) 964.797i 0.0562605i
\(666\) −454.348 120.053i −0.0264349 0.00698491i
\(667\) 7272.38i 0.422171i
\(668\) −11146.0 + 19618.8i −0.645584 + 1.13634i
\(669\) −1587.40 −0.0917378
\(670\) 3495.85 + 923.711i 0.201577 + 0.0532628i
\(671\) 4896.37i 0.281702i
\(672\) 602.683 + 2102.51i 0.0345967 + 0.120694i
\(673\) 8390.33 0.480570 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(674\) 8603.24 + 2273.24i 0.491668 + 0.129914i
\(675\) 3245.61i 0.185072i
\(676\) 14875.3 9361.74i 0.846340 0.532644i
\(677\) 26739.0i 1.51797i 0.651109 + 0.758984i \(0.274304\pi\)
−0.651109 + 0.758984i \(0.725696\pi\)
\(678\) 1952.06 7387.71i 0.110573 0.418471i
\(679\) −2860.83 −0.161691
\(680\) 4603.60 + 4508.67i 0.259618 + 0.254264i
\(681\) 7219.93i 0.406267i
\(682\) 1001.43 3790.00i 0.0562271 0.212795i
\(683\) 15962.9 0.894296 0.447148 0.894460i \(-0.352440\pi\)
0.447148 + 0.894460i \(0.352440\pi\)
\(684\) 6850.49 + 3891.94i 0.382946 + 0.217562i
\(685\) 5029.51i 0.280537i
\(686\) −1949.15 + 7376.69i −0.108482 + 0.410559i
\(687\) 9677.39i 0.537432i
\(688\) −14997.0 + 8938.58i −0.831042 + 0.495320i
\(689\) −10680.8 17851.1i −0.590574 0.987045i
\(690\) −365.980 + 1385.08i −0.0201922 + 0.0764188i
\(691\) −15520.7 −0.854466 −0.427233 0.904142i \(-0.640512\pi\)
−0.427233 + 0.904142i \(0.640512\pi\)
\(692\) 9168.08 16137.4i 0.503639 0.886491i
\(693\) 292.774i 0.0160484i
\(694\) 3041.36 11510.2i 0.166352 0.629572i
\(695\) 5274.57i 0.287879i
\(696\) 4572.97 + 4478.67i 0.249049 + 0.243913i
\(697\) 44922.5i 2.44126i
\(698\) 7250.38 + 1915.77i 0.393167 + 0.103887i
\(699\) 7822.07i 0.423259i
\(700\) −1913.22 + 3367.60i −0.103304 + 0.181834i
\(701\) 31246.8i 1.68356i −0.539822 0.841779i \(-0.681508\pi\)
0.539822 0.841779i \(-0.318492\pi\)
\(702\) 992.178 + 3439.26i 0.0533438 + 0.184909i
\(703\) 2020.17 0.108381
\(704\) 86.1627 + 4134.52i 0.00461275 + 0.221343i
\(705\) 1831.34 0.0978331
\(706\) −2017.55 + 7635.56i −0.107552 + 0.407037i
\(707\) 2112.43 0.112371
\(708\) 303.141 533.580i 0.0160914 0.0283237i
\(709\) 25294.8 1.33987 0.669934 0.742421i \(-0.266323\pi\)
0.669934 + 0.742421i \(0.266323\pi\)
\(710\) −1340.77 + 5074.26i −0.0708709 + 0.268216i
\(711\) 10707.9 0.564805
\(712\) −3597.27 + 3673.02i −0.189345 + 0.193332i
\(713\) 13234.2i 0.695124i
\(714\) 4298.20 + 1135.71i 0.225288 + 0.0595281i
\(715\) 711.182 425.518i 0.0371982 0.0222566i
\(716\) 13590.7 23921.9i 0.709367 1.24861i
\(717\) 6701.40 0.349049
\(718\) 6601.84 24985.2i 0.343145 1.29866i
\(719\) 10905.7 0.565664 0.282832 0.959169i \(-0.408726\pi\)
0.282832 + 0.959169i \(0.408726\pi\)
\(720\) 645.568 + 1083.13i 0.0334151 + 0.0560635i
\(721\) 2471.84i 0.127679i
\(722\) −13989.1 3696.33i −0.721078 0.190531i
\(723\) 11241.9 0.578270
\(724\) −10982.6 + 19331.3i −0.563766 + 0.992325i
\(725\) 11334.8i 0.580638i
\(726\) 2743.76 10384.0i 0.140262 0.530834i
\(727\) −8503.83 −0.433823 −0.216912 0.976191i \(-0.569598\pi\)
−0.216912 + 0.976191i \(0.569598\pi\)
\(728\) 997.903 4153.40i 0.0508032 0.211449i
\(729\) −729.000 −0.0370370
\(730\) −1913.48 + 7241.71i −0.0970152 + 0.367161i
\(731\) 35487.0i 1.79553i
\(732\) 12650.1 + 7186.86i 0.638745 + 0.362888i
\(733\) 21415.4 1.07912 0.539562 0.841946i \(-0.318590\pi\)
0.539562 + 0.841946i \(0.318590\pi\)
\(734\) 4526.07 + 1195.93i 0.227602 + 0.0601395i
\(735\) 2146.05i 0.107698i
\(736\) 3847.03 + 13420.7i 0.192667 + 0.672138i
\(737\) 4716.80 0.235747
\(738\) −2245.66 + 8498.88i −0.112011 + 0.423913i
\(739\) −21527.1 −1.07157 −0.535784 0.844355i \(-0.679984\pi\)
−0.535784 + 0.844355i \(0.679984\pi\)
\(740\) 281.106 + 159.704i 0.0139644 + 0.00793354i
\(741\) −7900.52 13204.4i −0.391677 0.654623i
\(742\) −4887.99 1291.55i −0.241838 0.0639009i
\(743\) 3606.40i 0.178070i −0.996028 0.0890351i \(-0.971622\pi\)
0.996028 0.0890351i \(-0.0283783\pi\)
\(744\) −8321.83 8150.21i −0.410071 0.401614i
\(745\) 7538.52 0.370725
\(746\) −5520.01 + 20890.9i −0.270914 + 1.02529i
\(747\) −8389.55 −0.410921
\(748\) 7308.57 + 4152.19i 0.357256 + 0.202967i
\(749\) −1675.88 −0.0817562
\(750\) −1163.57 + 4403.63i −0.0566503 + 0.214397i
\(751\) −11630.5 −0.565116 −0.282558 0.959250i \(-0.591183\pi\)
−0.282558 + 0.959250i \(0.591183\pi\)
\(752\) 15330.4 9137.29i 0.743409 0.443089i
\(753\) −17811.4 −0.861995
\(754\) −3465.02 12011.0i −0.167359 0.580127i
\(755\) 5032.79i 0.242599i
\(756\) 756.401 + 429.731i 0.0363889 + 0.0206735i
\(757\) 7346.59i 0.352729i −0.984325 0.176365i \(-0.943566\pi\)
0.984325 0.176365i \(-0.0564338\pi\)
\(758\) 24853.8 + 6567.14i 1.19094 + 0.314683i
\(759\) 1868.82i 0.0893728i
\(760\) −3872.52 3792.66i −0.184830 0.181019i
\(761\) 22964.8i 1.09392i 0.837159 + 0.546960i \(0.184215\pi\)
−0.837159 + 0.546960i \(0.815785\pi\)
\(762\) 548.946 2077.53i 0.0260974 0.0987676i
\(763\) 1954.47i 0.0927347i
\(764\) −15262.6 8671.10i −0.722752 0.410614i
\(765\) 2562.96 0.121130
\(766\) −10612.3 + 40162.9i −0.500570 + 1.89444i
\(767\) −1028.48 + 615.366i −0.0484176 + 0.0289694i
\(768\) 10808.3 + 5846.01i 0.507826 + 0.274674i
\(769\) 4707.99i 0.220773i 0.993889 + 0.110387i \(0.0352089\pi\)
−0.993889 + 0.110387i \(0.964791\pi\)
\(770\) 51.4550 194.735i 0.00240819 0.00911399i
\(771\) 10971.3i 0.512479i
\(772\) 4278.68 7531.22i 0.199473 0.351107i
\(773\) −12304.9 −0.572543 −0.286271 0.958149i \(-0.592416\pi\)
−0.286271 + 0.958149i \(0.592416\pi\)
\(774\) −1773.98 + 6713.78i −0.0823831 +