Properties

Label 312.4.m.a.181.68
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.68
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.67

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.30493 + 1.63930i) q^{2} -3.00000i q^{3} +(2.62541 + 7.55693i) q^{4} +3.15976 q^{5} +(4.91789 - 6.91479i) q^{6} +31.8225i q^{7} +(-6.33669 + 21.7220i) q^{8} -9.00000 q^{9} +(7.28302 + 5.17979i) q^{10} -30.3274 q^{11} +(22.6708 - 7.87622i) q^{12} +(-42.8769 - 18.9360i) q^{13} +(-52.1666 + 73.3487i) q^{14} -9.47928i q^{15} +(-50.2145 + 39.6800i) q^{16} +33.4761 q^{17} +(-20.7444 - 14.7537i) q^{18} -32.4678 q^{19} +(8.29565 + 23.8781i) q^{20} +95.4676 q^{21} +(-69.9025 - 49.7156i) q^{22} +92.1829 q^{23} +(65.1661 + 19.0101i) q^{24} -115.016 q^{25} +(-67.7866 - 113.934i) q^{26} +27.0000i q^{27} +(-240.481 + 83.5470i) q^{28} -11.6863i q^{29} +(15.5394 - 21.8491i) q^{30} +328.498i q^{31} +(-180.788 + 9.14316i) q^{32} +90.9822i q^{33} +(77.1601 + 54.8773i) q^{34} +100.551i q^{35} +(-23.6286 - 68.0124i) q^{36} +271.273 q^{37} +(-74.8359 - 53.2243i) q^{38} +(-56.8079 + 128.631i) q^{39} +(-20.0224 + 68.6364i) q^{40} +153.109i q^{41} +(220.046 + 156.500i) q^{42} -26.1234i q^{43} +(-79.6217 - 229.182i) q^{44} -28.4378 q^{45} +(212.475 + 151.115i) q^{46} -72.2968i q^{47} +(119.040 + 150.643i) q^{48} -669.673 q^{49} +(-265.104 - 188.545i) q^{50} -100.428i q^{51} +(30.5285 - 373.733i) q^{52} +666.675i q^{53} +(-44.2610 + 62.2331i) q^{54} -95.8272 q^{55} +(-691.250 - 201.649i) q^{56} +97.4033i q^{57} +(19.1574 - 26.9362i) q^{58} +512.543 q^{59} +(71.6343 - 24.8869i) q^{60} -527.725i q^{61} +(-538.505 + 757.164i) q^{62} -286.403i q^{63} +(-431.693 - 275.291i) q^{64} +(-135.481 - 59.8331i) q^{65} +(-149.147 + 209.708i) q^{66} +863.838 q^{67} +(87.8884 + 252.977i) q^{68} -276.549i q^{69} +(-164.834 + 231.764i) q^{70} -810.528i q^{71} +(57.0302 - 195.498i) q^{72} +157.904i q^{73} +(625.266 + 444.697i) q^{74} +345.048i q^{75} +(-85.2410 - 245.357i) q^{76} -965.094i q^{77} +(-341.802 + 203.360i) q^{78} +796.996 q^{79} +(-158.666 + 125.379i) q^{80} +81.0000 q^{81} +(-250.991 + 352.905i) q^{82} +69.5892 q^{83} +(250.641 + 721.442i) q^{84} +105.776 q^{85} +(42.8240 - 60.2126i) q^{86} -35.0590 q^{87} +(192.175 - 658.772i) q^{88} +1637.05i q^{89} +(-65.5472 - 46.6181i) q^{90} +(602.590 - 1364.45i) q^{91} +(242.017 + 696.620i) q^{92} +985.493 q^{93} +(118.516 - 166.639i) q^{94} -102.590 q^{95} +(27.4295 + 542.365i) q^{96} -904.235i q^{97} +(-1543.55 - 1097.79i) q^{98} +272.946 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30493 + 1.63930i 0.814916 + 0.579579i
\(3\) 3.00000i 0.577350i
\(4\) 2.62541 + 7.55693i 0.328176 + 0.944617i
\(5\) 3.15976 0.282617 0.141309 0.989966i \(-0.454869\pi\)
0.141309 + 0.989966i \(0.454869\pi\)
\(6\) 4.91789 6.91479i 0.334620 0.470492i
\(7\) 31.8225i 1.71825i 0.511762 + 0.859127i \(0.328993\pi\)
−0.511762 + 0.859127i \(0.671007\pi\)
\(8\) −6.33669 + 21.7220i −0.280045 + 0.959987i
\(9\) −9.00000 −0.333333
\(10\) 7.28302 + 5.17979i 0.230309 + 0.163799i
\(11\) −30.3274 −0.831277 −0.415639 0.909530i \(-0.636442\pi\)
−0.415639 + 0.909530i \(0.636442\pi\)
\(12\) 22.6708 7.87622i 0.545375 0.189472i
\(13\) −42.8769 18.9360i −0.914763 0.403991i
\(14\) −52.1666 + 73.3487i −0.995865 + 1.40023i
\(15\) 9.47928i 0.163169i
\(16\) −50.2145 + 39.6800i −0.784602 + 0.620000i
\(17\) 33.4761 0.477597 0.238799 0.971069i \(-0.423246\pi\)
0.238799 + 0.971069i \(0.423246\pi\)
\(18\) −20.7444 14.7537i −0.271639 0.193193i
\(19\) −32.4678 −0.392032 −0.196016 0.980601i \(-0.562800\pi\)
−0.196016 + 0.980601i \(0.562800\pi\)
\(20\) 8.29565 + 23.8781i 0.0927482 + 0.266965i
\(21\) 95.4676 0.992035
\(22\) −69.9025 49.7156i −0.677421 0.481791i
\(23\) 92.1829 0.835716 0.417858 0.908512i \(-0.362781\pi\)
0.417858 + 0.908512i \(0.362781\pi\)
\(24\) 65.1661 + 19.0101i 0.554249 + 0.161684i
\(25\) −115.016 −0.920127
\(26\) −67.7866 113.934i −0.511310 0.859397i
\(27\) 27.0000i 0.192450i
\(28\) −240.481 + 83.5470i −1.62309 + 0.563889i
\(29\) 11.6863i 0.0748309i −0.999300 0.0374155i \(-0.988088\pi\)
0.999300 0.0374155i \(-0.0119125\pi\)
\(30\) 15.5394 21.8491i 0.0945695 0.132969i
\(31\) 328.498i 1.90322i 0.307304 + 0.951611i \(0.400573\pi\)
−0.307304 + 0.951611i \(0.599427\pi\)
\(32\) −180.788 + 9.14316i −0.998724 + 0.0505093i
\(33\) 90.9822i 0.479938i
\(34\) 77.1601 + 54.8773i 0.389202 + 0.276805i
\(35\) 100.551i 0.485609i
\(36\) −23.6286 68.0124i −0.109392 0.314872i
\(37\) 271.273 1.20532 0.602662 0.797996i \(-0.294107\pi\)
0.602662 + 0.797996i \(0.294107\pi\)
\(38\) −74.8359 53.2243i −0.319473 0.227214i
\(39\) −56.8079 + 128.631i −0.233245 + 0.528139i
\(40\) −20.0224 + 68.6364i −0.0791455 + 0.271309i
\(41\) 153.109i 0.583209i 0.956539 + 0.291605i \(0.0941892\pi\)
−0.956539 + 0.291605i \(0.905811\pi\)
\(42\) 220.046 + 156.500i 0.808425 + 0.574963i
\(43\) 26.1234i 0.0926461i −0.998927 0.0463230i \(-0.985250\pi\)
0.998927 0.0463230i \(-0.0147504\pi\)
\(44\) −79.6217 229.182i −0.272805 0.785239i
\(45\) −28.4378 −0.0942058
\(46\) 212.475 + 151.115i 0.681038 + 0.484364i
\(47\) 72.2968i 0.224374i −0.993687 0.112187i \(-0.964214\pi\)
0.993687 0.112187i \(-0.0357855\pi\)
\(48\) 119.040 + 150.643i 0.357957 + 0.452990i
\(49\) −669.673 −1.95240
\(50\) −265.104 188.545i −0.749826 0.533287i
\(51\) 100.428i 0.275741i
\(52\) 30.5285 373.733i 0.0814142 0.996680i
\(53\) 666.675i 1.72783i 0.503641 + 0.863913i \(0.331993\pi\)
−0.503641 + 0.863913i \(0.668007\pi\)
\(54\) −44.2610 + 62.2331i −0.111540 + 0.156831i
\(55\) −95.8272 −0.234933
\(56\) −691.250 201.649i −1.64950 0.481188i
\(57\) 97.4033i 0.226340i
\(58\) 19.1574 26.9362i 0.0433704 0.0609809i
\(59\) 512.543 1.13097 0.565487 0.824757i \(-0.308688\pi\)
0.565487 + 0.824757i \(0.308688\pi\)
\(60\) 71.6343 24.8869i 0.154132 0.0535482i
\(61\) 527.725i 1.10768i −0.832624 0.553838i \(-0.813163\pi\)
0.832624 0.553838i \(-0.186837\pi\)
\(62\) −538.505 + 757.164i −1.10307 + 1.55097i
\(63\) 286.403i 0.572752i
\(64\) −431.693 275.291i −0.843150 0.537679i
\(65\) −135.481 59.8331i −0.258528 0.114175i
\(66\) −149.147 + 209.708i −0.278162 + 0.391109i
\(67\) 863.838 1.57514 0.787572 0.616223i \(-0.211338\pi\)
0.787572 + 0.616223i \(0.211338\pi\)
\(68\) 87.8884 + 252.977i 0.156736 + 0.451146i
\(69\) 276.549i 0.482501i
\(70\) −164.834 + 231.764i −0.281449 + 0.395730i
\(71\) 810.528i 1.35482i −0.735608 0.677408i \(-0.763103\pi\)
0.735608 0.677408i \(-0.236897\pi\)
\(72\) 57.0302 195.498i 0.0933483 0.319996i
\(73\) 157.904i 0.253167i 0.991956 + 0.126584i \(0.0404012\pi\)
−0.991956 + 0.126584i \(0.959599\pi\)
\(74\) 625.266 + 444.697i 0.982238 + 0.698581i
\(75\) 345.048i 0.531236i
\(76\) −85.2410 245.357i −0.128655 0.370320i
\(77\) 965.094i 1.42835i
\(78\) −341.802 + 203.360i −0.496173 + 0.295205i
\(79\) 796.996 1.13505 0.567526 0.823356i \(-0.307901\pi\)
0.567526 + 0.823356i \(0.307901\pi\)
\(80\) −158.666 + 125.379i −0.221742 + 0.175223i
\(81\) 81.0000 0.111111
\(82\) −250.991 + 352.905i −0.338016 + 0.475267i
\(83\) 69.5892 0.0920290 0.0460145 0.998941i \(-0.485348\pi\)
0.0460145 + 0.998941i \(0.485348\pi\)
\(84\) 250.641 + 721.442i 0.325562 + 0.937093i
\(85\) 105.776 0.134977
\(86\) 42.8240 60.2126i 0.0536958 0.0754988i
\(87\) −35.0590 −0.0432036
\(88\) 192.175 658.772i 0.232795 0.798015i
\(89\) 1637.05i 1.94975i 0.222761 + 0.974873i \(0.428493\pi\)
−0.222761 + 0.974873i \(0.571507\pi\)
\(90\) −65.5472 46.6181i −0.0767698 0.0545997i
\(91\) 602.590 1364.45i 0.694160 1.57180i
\(92\) 242.017 + 696.620i 0.274262 + 0.789431i
\(93\) 985.493 1.09883
\(94\) 118.516 166.639i 0.130042 0.182846i
\(95\) −102.590 −0.110795
\(96\) 27.4295 + 542.365i 0.0291616 + 0.576613i
\(97\) 904.235i 0.946507i −0.880926 0.473253i \(-0.843080\pi\)
0.880926 0.473253i \(-0.156920\pi\)
\(98\) −1543.55 1097.79i −1.59104 1.13157i
\(99\) 272.946 0.277092
\(100\) −301.963 869.168i −0.301963 0.869168i
\(101\) 571.027i 0.562567i −0.959625 0.281283i \(-0.909240\pi\)
0.959625 0.281283i \(-0.0907601\pi\)
\(102\) 164.632 231.480i 0.159814 0.224706i
\(103\) −348.693 −0.333570 −0.166785 0.985993i \(-0.553339\pi\)
−0.166785 + 0.985993i \(0.553339\pi\)
\(104\) 683.025 811.382i 0.644001 0.765025i
\(105\) 301.654 0.280366
\(106\) −1092.88 + 1536.64i −1.00141 + 1.40803i
\(107\) 224.543i 0.202873i 0.994842 + 0.101436i \(0.0323439\pi\)
−0.994842 + 0.101436i \(0.967656\pi\)
\(108\) −204.037 + 70.8859i −0.181792 + 0.0631574i
\(109\) −933.844 −0.820606 −0.410303 0.911949i \(-0.634577\pi\)
−0.410303 + 0.911949i \(0.634577\pi\)
\(110\) −220.875 157.089i −0.191451 0.136163i
\(111\) 813.819i 0.695895i
\(112\) −1262.72 1597.95i −1.06532 1.34815i
\(113\) −39.1345 −0.0325793 −0.0162897 0.999867i \(-0.505185\pi\)
−0.0162897 + 0.999867i \(0.505185\pi\)
\(114\) −159.673 + 224.508i −0.131182 + 0.184448i
\(115\) 291.276 0.236188
\(116\) 88.3128 30.6813i 0.0706865 0.0245577i
\(117\) 385.892 + 170.424i 0.304921 + 0.134664i
\(118\) 1181.38 + 840.211i 0.921648 + 0.655489i
\(119\) 1065.29i 0.820634i
\(120\) 205.909 + 60.0672i 0.156640 + 0.0456947i
\(121\) −411.250 −0.308978
\(122\) 865.098 1216.37i 0.641986 0.902663i
\(123\) 459.327 0.336716
\(124\) −2482.43 + 862.439i −1.79782 + 0.624591i
\(125\) −758.392 −0.542661
\(126\) 469.499 660.138i 0.331955 0.466744i
\(127\) 2654.51 1.85472 0.927360 0.374170i \(-0.122072\pi\)
0.927360 + 0.374170i \(0.122072\pi\)
\(128\) −543.737 1342.20i −0.375469 0.926835i
\(129\) −78.3702 −0.0534892
\(130\) −214.189 360.004i −0.144505 0.242880i
\(131\) 1492.43i 0.995378i 0.867356 + 0.497689i \(0.165818\pi\)
−0.867356 + 0.497689i \(0.834182\pi\)
\(132\) −687.546 + 238.865i −0.453358 + 0.157504i
\(133\) 1033.21i 0.673611i
\(134\) 1991.09 + 1416.09i 1.28361 + 0.912920i
\(135\) 85.3135i 0.0543897i
\(136\) −212.128 + 727.169i −0.133749 + 0.458487i
\(137\) 1648.95i 1.02832i −0.857695 0.514158i \(-0.828104\pi\)
0.857695 0.514158i \(-0.171896\pi\)
\(138\) 453.346 637.426i 0.279648 0.393198i
\(139\) 733.234i 0.447425i 0.974655 + 0.223713i \(0.0718177\pi\)
−0.974655 + 0.223713i \(0.928182\pi\)
\(140\) −759.861 + 263.988i −0.458714 + 0.159365i
\(141\) −216.890 −0.129542
\(142\) 1328.70 1868.21i 0.785223 1.10406i
\(143\) 1300.34 + 574.278i 0.760422 + 0.335829i
\(144\) 451.930 357.120i 0.261534 0.206667i
\(145\) 36.9260i 0.0211485i
\(146\) −258.851 + 363.957i −0.146731 + 0.206310i
\(147\) 2009.02i 1.12722i
\(148\) 712.202 + 2049.99i 0.395558 + 1.13857i
\(149\) 2501.73 1.37550 0.687750 0.725948i \(-0.258598\pi\)
0.687750 + 0.725948i \(0.258598\pi\)
\(150\) −565.636 + 795.311i −0.307893 + 0.432912i
\(151\) 398.863i 0.214961i 0.994207 + 0.107480i \(0.0342782\pi\)
−0.994207 + 0.107480i \(0.965722\pi\)
\(152\) 205.738 705.265i 0.109787 0.376346i
\(153\) −301.285 −0.159199
\(154\) 1582.08 2224.47i 0.827840 1.16398i
\(155\) 1037.97i 0.537884i
\(156\) −1121.20 91.5855i −0.575434 0.0470045i
\(157\) 1705.02i 0.866720i −0.901221 0.433360i \(-0.857328\pi\)
0.901221 0.433360i \(-0.142672\pi\)
\(158\) 1837.02 + 1306.51i 0.924971 + 0.657852i
\(159\) 2000.02 0.997561
\(160\) −571.247 + 28.8902i −0.282257 + 0.0142748i
\(161\) 2933.49i 1.43597i
\(162\) 186.699 + 132.783i 0.0905462 + 0.0643977i
\(163\) −1303.86 −0.626542 −0.313271 0.949664i \(-0.601425\pi\)
−0.313271 + 0.949664i \(0.601425\pi\)
\(164\) −1157.03 + 401.973i −0.550909 + 0.191395i
\(165\) 287.482i 0.135639i
\(166\) 160.398 + 114.077i 0.0749959 + 0.0533381i
\(167\) 2448.11i 1.13437i 0.823590 + 0.567186i \(0.191968\pi\)
−0.823590 + 0.567186i \(0.808032\pi\)
\(168\) −604.948 + 2073.75i −0.277814 + 0.952340i
\(169\) 1479.86 + 1623.83i 0.673582 + 0.739113i
\(170\) 243.807 + 173.399i 0.109995 + 0.0782301i
\(171\) 292.210 0.130677
\(172\) 197.413 68.5845i 0.0875151 0.0304042i
\(173\) 2513.15i 1.10446i −0.833692 0.552229i \(-0.813777\pi\)
0.833692 0.552229i \(-0.186223\pi\)
\(174\) −80.8085 57.4721i −0.0352073 0.0250399i
\(175\) 3660.10i 1.58101i
\(176\) 1522.87 1203.39i 0.652222 0.515392i
\(177\) 1537.63i 0.652968i
\(178\) −2683.62 + 3773.30i −1.13003 + 1.58888i
\(179\) 2275.36i 0.950104i 0.879958 + 0.475052i \(0.157571\pi\)
−0.879958 + 0.475052i \(0.842429\pi\)
\(180\) −74.6608 214.903i −0.0309161 0.0889884i
\(181\) 3625.71i 1.48893i −0.667661 0.744466i \(-0.732704\pi\)
0.667661 0.744466i \(-0.267296\pi\)
\(182\) 3625.67 2157.14i 1.47666 0.878560i
\(183\) −1583.17 −0.639517
\(184\) −584.135 + 2002.40i −0.234038 + 0.802276i
\(185\) 857.158 0.340646
\(186\) 2271.49 + 1615.52i 0.895451 + 0.636857i
\(187\) −1015.24 −0.397016
\(188\) 546.342 189.808i 0.211947 0.0736340i
\(189\) −859.208 −0.330678
\(190\) −236.463 168.176i −0.0902887 0.0642146i
\(191\) 3729.40 1.41283 0.706414 0.707799i \(-0.250312\pi\)
0.706414 + 0.707799i \(0.250312\pi\)
\(192\) −825.874 + 1295.08i −0.310429 + 0.486793i
\(193\) 767.818i 0.286366i 0.989696 + 0.143183i \(0.0457338\pi\)
−0.989696 + 0.143183i \(0.954266\pi\)
\(194\) 1482.31 2084.20i 0.548576 0.771323i
\(195\) −179.499 + 406.442i −0.0659190 + 0.149261i
\(196\) −1758.16 5060.67i −0.640730 1.84427i
\(197\) −3005.02 −1.08680 −0.543398 0.839475i \(-0.682863\pi\)
−0.543398 + 0.839475i \(0.682863\pi\)
\(198\) 629.123 + 447.441i 0.225807 + 0.160597i
\(199\) −3534.47 −1.25906 −0.629528 0.776978i \(-0.716752\pi\)
−0.629528 + 0.776978i \(0.716752\pi\)
\(200\) 728.820 2498.38i 0.257677 0.883310i
\(201\) 2591.51i 0.909409i
\(202\) 936.083 1316.18i 0.326052 0.458445i
\(203\) 371.888 0.128579
\(204\) 758.931 263.665i 0.260469 0.0904914i
\(205\) 483.787i 0.164825i
\(206\) −803.712 571.611i −0.271831 0.193330i
\(207\) −829.646 −0.278572
\(208\) 2904.42 750.497i 0.968199 0.250181i
\(209\) 984.662 0.325888
\(210\) 695.292 + 494.502i 0.228475 + 0.162495i
\(211\) 2159.43i 0.704556i −0.935895 0.352278i \(-0.885407\pi\)
0.935895 0.352278i \(-0.114593\pi\)
\(212\) −5038.02 + 1750.29i −1.63213 + 0.567030i
\(213\) −2431.58 −0.782203
\(214\) −368.093 + 517.556i −0.117581 + 0.165324i
\(215\) 82.5437i 0.0261834i
\(216\) −586.495 171.091i −0.184750 0.0538946i
\(217\) −10453.6 −3.27022
\(218\) −2152.44 1530.85i −0.668725 0.475606i
\(219\) 473.711 0.146166
\(220\) −251.585 724.160i −0.0770994 0.221922i
\(221\) −1435.35 633.902i −0.436888 0.192945i
\(222\) 1334.09 1875.80i 0.403326 0.567096i
\(223\) 3677.94i 1.10445i −0.833694 0.552227i \(-0.813778\pi\)
0.833694 0.552227i \(-0.186222\pi\)
\(224\) −290.958 5753.14i −0.0867878 1.71606i
\(225\) 1035.14 0.306709
\(226\) −90.2023 64.1531i −0.0265494 0.0188823i
\(227\) 2985.71 0.872990 0.436495 0.899707i \(-0.356220\pi\)
0.436495 + 0.899707i \(0.356220\pi\)
\(228\) −736.070 + 255.723i −0.213804 + 0.0742792i
\(229\) −111.331 −0.0321264 −0.0160632 0.999871i \(-0.505113\pi\)
−0.0160632 + 0.999871i \(0.505113\pi\)
\(230\) 671.370 + 477.488i 0.192473 + 0.136890i
\(231\) −2895.28 −0.824656
\(232\) 253.851 + 74.0526i 0.0718367 + 0.0209560i
\(233\) 4372.15 1.22931 0.614654 0.788797i \(-0.289296\pi\)
0.614654 + 0.788797i \(0.289296\pi\)
\(234\) 610.080 + 1025.41i 0.170437 + 0.286466i
\(235\) 228.440i 0.0634120i
\(236\) 1345.63 + 3873.25i 0.371158 + 1.06834i
\(237\) 2390.99i 0.655322i
\(238\) −1746.34 + 2455.43i −0.475622 + 0.668747i
\(239\) 3323.79i 0.899573i 0.893136 + 0.449787i \(0.148500\pi\)
−0.893136 + 0.449787i \(0.851500\pi\)
\(240\) 376.138 + 475.997i 0.101165 + 0.128023i
\(241\) 1479.10i 0.395342i −0.980268 0.197671i \(-0.936662\pi\)
0.980268 0.197671i \(-0.0633377\pi\)
\(242\) −947.901 674.160i −0.251791 0.179077i
\(243\) 243.000i 0.0641500i
\(244\) 3987.98 1385.49i 1.04633 0.363512i
\(245\) −2116.00 −0.551782
\(246\) 1058.72 + 752.973i 0.274395 + 0.195154i
\(247\) 1392.12 + 614.808i 0.358617 + 0.158378i
\(248\) −7135.63 2081.59i −1.82707 0.532988i
\(249\) 208.768i 0.0531330i
\(250\) −1748.04 1243.23i −0.442223 0.314515i
\(251\) 3963.27i 0.996651i 0.866990 + 0.498325i \(0.166052\pi\)
−0.866990 + 0.498325i \(0.833948\pi\)
\(252\) 2164.33 751.923i 0.541031 0.187963i
\(253\) −2795.67 −0.694712
\(254\) 6118.46 + 4351.53i 1.51144 + 1.07496i
\(255\) 317.329i 0.0779292i
\(256\) 946.991 3985.02i 0.231199 0.972906i
\(257\) −4738.68 −1.15016 −0.575080 0.818097i \(-0.695029\pi\)
−0.575080 + 0.818097i \(0.695029\pi\)
\(258\) −180.638 128.472i −0.0435892 0.0310013i
\(259\) 8632.59i 2.07106i
\(260\) 96.4627 1180.90i 0.0230091 0.281679i
\(261\) 105.177i 0.0249436i
\(262\) −2446.54 + 3439.95i −0.576900 + 0.811149i
\(263\) 4228.54 0.991417 0.495709 0.868489i \(-0.334908\pi\)
0.495709 + 0.868489i \(0.334908\pi\)
\(264\) −1976.32 576.526i −0.460734 0.134404i
\(265\) 2106.53i 0.488314i
\(266\) 1693.73 2381.47i 0.390411 0.548936i
\(267\) 4911.16 1.12569
\(268\) 2267.92 + 6527.97i 0.516924 + 1.48791i
\(269\) 6051.15i 1.37154i 0.727817 + 0.685771i \(0.240535\pi\)
−0.727817 + 0.685771i \(0.759465\pi\)
\(270\) −139.854 + 196.642i −0.0315232 + 0.0443231i
\(271\) 3361.97i 0.753598i −0.926295 0.376799i \(-0.877025\pi\)
0.926295 0.376799i \(-0.122975\pi\)
\(272\) −1680.99 + 1328.33i −0.374724 + 0.296110i
\(273\) −4093.35 1807.77i −0.907476 0.400774i
\(274\) 2703.12 3800.71i 0.595991 0.837991i
\(275\) 3488.13 0.764881
\(276\) 2089.86 726.052i 0.455778 0.158345i
\(277\) 5266.13i 1.14228i 0.820853 + 0.571139i \(0.193498\pi\)
−0.820853 + 0.571139i \(0.806502\pi\)
\(278\) −1201.99 + 1690.05i −0.259319 + 0.364614i
\(279\) 2956.48i 0.634408i
\(280\) −2184.18 637.164i −0.466178 0.135992i
\(281\) 5935.42i 1.26006i 0.776570 + 0.630031i \(0.216958\pi\)
−0.776570 + 0.630031i \(0.783042\pi\)
\(282\) −499.917 355.548i −0.105566 0.0750800i
\(283\) 173.311i 0.0364038i 0.999834 + 0.0182019i \(0.00579417\pi\)
−0.999834 + 0.0182019i \(0.994206\pi\)
\(284\) 6125.10 2127.96i 1.27978 0.444618i
\(285\) 307.771i 0.0639676i
\(286\) 2055.79 + 3455.32i 0.425040 + 0.714397i
\(287\) −4872.31 −1.00210
\(288\) 1627.09 82.2884i 0.332908 0.0168364i
\(289\) −3792.35 −0.771901
\(290\) 60.5327 85.1118i 0.0122572 0.0172343i
\(291\) −2712.70 −0.546466
\(292\) −1193.27 + 414.561i −0.239146 + 0.0830834i
\(293\) −8551.32 −1.70503 −0.852515 0.522703i \(-0.824923\pi\)
−0.852515 + 0.522703i \(0.824923\pi\)
\(294\) −3293.38 + 4630.65i −0.653312 + 0.918588i
\(295\) 1619.51 0.319633
\(296\) −1718.97 + 5892.60i −0.337545 + 1.15710i
\(297\) 818.839i 0.159979i
\(298\) 5766.31 + 4101.08i 1.12092 + 0.797211i
\(299\) −3952.52 1745.57i −0.764482 0.337622i
\(300\) −2607.50 + 905.890i −0.501814 + 0.174339i
\(301\) 831.313 0.159190
\(302\) −653.856 + 919.352i −0.124587 + 0.175175i
\(303\) −1713.08 −0.324798
\(304\) 1630.35 1288.32i 0.307589 0.243060i
\(305\) 1667.48i 0.313049i
\(306\) −694.441 493.896i −0.129734 0.0922685i
\(307\) −8547.36 −1.58900 −0.794501 0.607263i \(-0.792267\pi\)
−0.794501 + 0.607263i \(0.792267\pi\)
\(308\) 7293.15 2533.76i 1.34924 0.468748i
\(309\) 1046.08i 0.192587i
\(310\) −1701.55 + 2392.46i −0.311746 + 0.438330i
\(311\) −5897.36 −1.07527 −0.537634 0.843178i \(-0.680682\pi\)
−0.537634 + 0.843178i \(0.680682\pi\)
\(312\) −2434.15 2049.08i −0.441687 0.371814i
\(313\) 2734.59 0.493829 0.246914 0.969037i \(-0.420583\pi\)
0.246914 + 0.969037i \(0.420583\pi\)
\(314\) 2795.03 3929.94i 0.502333 0.706304i
\(315\) 904.963i 0.161870i
\(316\) 2092.44 + 6022.84i 0.372496 + 1.07219i
\(317\) 571.593 0.101274 0.0506370 0.998717i \(-0.483875\pi\)
0.0506370 + 0.998717i \(0.483875\pi\)
\(318\) 4609.91 + 3278.63i 0.812928 + 0.578166i
\(319\) 354.416i 0.0622052i
\(320\) −1364.04 869.855i −0.238289 0.151957i
\(321\) 673.629 0.117129
\(322\) −4808.87 + 6761.50i −0.832260 + 1.17020i
\(323\) −1086.89 −0.187234
\(324\) 212.658 + 612.112i 0.0364640 + 0.104957i
\(325\) 4931.53 + 2177.94i 0.841698 + 0.371724i
\(326\) −3005.31 2137.42i −0.510579 0.363131i
\(327\) 2801.53i 0.473777i
\(328\) −3325.83 970.203i −0.559873 0.163325i
\(329\) 2300.67 0.385531
\(330\) −471.268 + 662.625i −0.0786135 + 0.110534i
\(331\) −606.517 −0.100717 −0.0503583 0.998731i \(-0.516036\pi\)
−0.0503583 + 0.998731i \(0.516036\pi\)
\(332\) 182.700 + 525.881i 0.0302017 + 0.0869322i
\(333\) −2441.46 −0.401775
\(334\) −4013.17 + 5642.71i −0.657458 + 0.924417i
\(335\) 2729.52 0.445163
\(336\) −4793.86 + 3788.16i −0.778352 + 0.615062i
\(337\) −2.45017 −0.000396051 −0.000198026 1.00000i \(-0.500063\pi\)
−0.000198026 1.00000i \(0.500063\pi\)
\(338\) 749.030 + 6168.75i 0.120538 + 0.992709i
\(339\) 117.404i 0.0188097i
\(340\) 277.706 + 799.346i 0.0442963 + 0.127502i
\(341\) 9962.47i 1.58211i
\(342\) 673.523 + 479.019i 0.106491 + 0.0757379i
\(343\) 10395.6i 1.63646i
\(344\) 567.453 + 165.536i 0.0889390 + 0.0259451i
\(345\) 873.827i 0.136363i
\(346\) 4119.80 5792.64i 0.640121 0.900041i
\(347\) 902.500i 0.139622i 0.997560 + 0.0698109i \(0.0222396\pi\)
−0.997560 + 0.0698109i \(0.977760\pi\)
\(348\) −92.0440 264.938i −0.0141784 0.0408109i
\(349\) 4953.37 0.759735 0.379868 0.925041i \(-0.375970\pi\)
0.379868 + 0.925041i \(0.375970\pi\)
\(350\) 5999.99 8436.27i 0.916323 1.28839i
\(351\) 511.271 1157.68i 0.0777482 0.176046i
\(352\) 5482.84 277.288i 0.830216 0.0419872i
\(353\) 4514.62i 0.680705i 0.940298 + 0.340352i \(0.110546\pi\)
−0.940298 + 0.340352i \(0.889454\pi\)
\(354\) 2520.63 3544.13i 0.378447 0.532114i
\(355\) 2561.07i 0.382895i
\(356\) −12371.1 + 4297.93i −1.84176 + 0.639859i
\(357\) 3195.88 0.473793
\(358\) −3730.00 + 5244.55i −0.550661 + 0.774255i
\(359\) 3303.93i 0.485724i 0.970061 + 0.242862i \(0.0780863\pi\)
−0.970061 + 0.242862i \(0.921914\pi\)
\(360\) 180.202 617.727i 0.0263818 0.0904363i
\(361\) −5804.85 −0.846311
\(362\) 5943.61 8357.00i 0.862954 1.21335i
\(363\) 1233.75i 0.178388i
\(364\) 11893.1 + 971.494i 1.71255 + 0.139890i
\(365\) 498.937i 0.0715495i
\(366\) −3649.11 2595.30i −0.521153 0.370651i
\(367\) 12769.7 1.81627 0.908134 0.418679i \(-0.137507\pi\)
0.908134 + 0.418679i \(0.137507\pi\)
\(368\) −4628.92 + 3657.82i −0.655704 + 0.518144i
\(369\) 1377.98i 0.194403i
\(370\) 1975.69 + 1405.14i 0.277598 + 0.197431i
\(371\) −21215.3 −2.96885
\(372\) 2587.32 + 7447.30i 0.360608 + 1.03797i
\(373\) 8952.31i 1.24272i 0.783527 + 0.621358i \(0.213419\pi\)
−0.783527 + 0.621358i \(0.786581\pi\)
\(374\) −2340.07 1664.29i −0.323534 0.230102i
\(375\) 2275.18i 0.313306i
\(376\) 1570.43 + 458.122i 0.215396 + 0.0628347i
\(377\) −221.292 + 501.074i −0.0302310 + 0.0684525i
\(378\) −1980.41 1408.50i −0.269475 0.191654i
\(379\) −2688.52 −0.364380 −0.182190 0.983263i \(-0.558319\pi\)
−0.182190 + 0.983263i \(0.558319\pi\)
\(380\) −269.341 775.268i −0.0363603 0.104659i
\(381\) 7963.52i 1.07082i
\(382\) 8596.01 + 6113.60i 1.15134 + 0.818846i
\(383\) 12013.3i 1.60274i 0.598168 + 0.801371i \(0.295896\pi\)
−0.598168 + 0.801371i \(0.704104\pi\)
\(384\) −4026.60 + 1631.21i −0.535108 + 0.216777i
\(385\) 3049.46i 0.403676i
\(386\) −1258.68 + 1769.77i −0.165972 + 0.233365i
\(387\) 235.111i 0.0308820i
\(388\) 6833.24 2373.98i 0.894086 0.310620i
\(389\) 11974.3i 1.56073i −0.625325 0.780364i \(-0.715034\pi\)
0.625325 0.780364i \(-0.284966\pi\)
\(390\) −1080.01 + 642.568i −0.140227 + 0.0834300i
\(391\) 3085.93 0.399136
\(392\) 4243.51 14546.6i 0.546759 1.87428i
\(393\) 4477.30 0.574681
\(394\) −6926.37 4926.13i −0.885648 0.629885i
\(395\) 2518.31 0.320785
\(396\) 716.595 + 2062.64i 0.0909350 + 0.261746i
\(397\) −3566.63 −0.450891 −0.225446 0.974256i \(-0.572384\pi\)
−0.225446 + 0.974256i \(0.572384\pi\)
\(398\) −8146.72 5794.06i −1.02603 0.729723i
\(399\) −3099.62 −0.388910
\(400\) 5775.47 4563.83i 0.721933 0.570479i
\(401\) 7221.88i 0.899361i −0.893190 0.449680i \(-0.851538\pi\)
0.893190 0.449680i \(-0.148462\pi\)
\(402\) 4248.26 5973.26i 0.527075 0.741092i
\(403\) 6220.42 14085.0i 0.768886 1.74100i
\(404\) 4315.21 1499.18i 0.531410 0.184621i
\(405\) 255.940 0.0314019
\(406\) 857.177 + 609.636i 0.104781 + 0.0745215i
\(407\) −8227.00 −1.00196
\(408\) 2181.51 + 636.384i 0.264708 + 0.0772198i
\(409\) 4995.74i 0.603969i 0.953313 + 0.301984i \(0.0976491\pi\)
−0.953313 + 0.301984i \(0.902351\pi\)
\(410\) −793.071 + 1115.10i −0.0955292 + 0.134319i
\(411\) −4946.85 −0.593699
\(412\) −915.459 2635.05i −0.109469 0.315096i
\(413\) 16310.4i 1.94330i
\(414\) −1912.28 1360.04i −0.227013 0.161455i
\(415\) 219.885 0.0260090
\(416\) 7924.78 + 3031.37i 0.934000 + 0.357272i
\(417\) 2199.70 0.258321
\(418\) 2269.58 + 1614.15i 0.265571 + 0.188878i
\(419\) 4651.46i 0.542336i 0.962532 + 0.271168i \(0.0874099\pi\)
−0.962532 + 0.271168i \(0.912590\pi\)
\(420\) 791.965 + 2279.58i 0.0920094 + 0.264839i
\(421\) 4982.78 0.576831 0.288416 0.957505i \(-0.406871\pi\)
0.288416 + 0.957505i \(0.406871\pi\)
\(422\) 3539.95 4977.33i 0.408346 0.574154i
\(423\) 650.671i 0.0747913i
\(424\) −14481.5 4224.51i −1.65869 0.483869i
\(425\) −3850.29 −0.439450
\(426\) −5604.63 3986.09i −0.637430 0.453349i
\(427\) 16793.5 1.90327
\(428\) −1696.86 + 589.517i −0.191637 + 0.0665779i
\(429\) 1722.83 3901.03i 0.193891 0.439030i
\(430\) 135.314 190.257i 0.0151754 0.0213373i
\(431\) 1566.50i 0.175071i −0.996161 0.0875354i \(-0.972101\pi\)
0.996161 0.0875354i \(-0.0278991\pi\)
\(432\) −1071.36 1355.79i −0.119319 0.150997i
\(433\) 6832.62 0.758325 0.379163 0.925330i \(-0.376212\pi\)
0.379163 + 0.925330i \(0.376212\pi\)
\(434\) −24094.9 17136.6i −2.66496 1.89535i
\(435\) −110.778 −0.0122101
\(436\) −2451.72 7057.00i −0.269303 0.775158i
\(437\) −2992.97 −0.327628
\(438\) 1091.87 + 776.553i 0.119113 + 0.0847150i
\(439\) 11087.7 1.20543 0.602717 0.797955i \(-0.294085\pi\)
0.602717 + 0.797955i \(0.294085\pi\)
\(440\) 607.228 2081.56i 0.0657919 0.225533i
\(441\) 6027.06 0.650800
\(442\) −2269.23 3814.07i −0.244200 0.410445i
\(443\) 6400.66i 0.686467i 0.939250 + 0.343233i \(0.111522\pi\)
−0.939250 + 0.343233i \(0.888478\pi\)
\(444\) 6149.98 2136.61i 0.657354 0.228376i
\(445\) 5172.70i 0.551032i
\(446\) 6029.25 8477.40i 0.640119 0.900037i
\(447\) 7505.18i 0.794145i
\(448\) 8760.47 13737.5i 0.923869 1.44875i
\(449\) 1185.40i 0.124593i 0.998058 + 0.0622965i \(0.0198424\pi\)
−0.998058 + 0.0622965i \(0.980158\pi\)
\(450\) 2385.93 + 1696.91i 0.249942 + 0.177762i
\(451\) 4643.39i 0.484809i
\(452\) −102.744 295.737i −0.0106917 0.0307750i
\(453\) 1196.59 0.124108
\(454\) 6881.86 + 4894.47i 0.711414 + 0.505967i
\(455\) 1904.04 4311.34i 0.196182 0.444217i
\(456\) −2115.80 617.214i −0.217283 0.0633853i
\(457\) 10739.6i 1.09930i −0.835396 0.549648i \(-0.814762\pi\)
0.835396 0.549648i \(-0.185238\pi\)
\(458\) −256.610 182.504i −0.0261803 0.0186198i
\(459\) 903.855i 0.0919136i
\(460\) 764.717 + 2201.15i 0.0775111 + 0.223107i
\(461\) 18672.2 1.88645 0.943223 0.332159i \(-0.107777\pi\)
0.943223 + 0.332159i \(0.107777\pi\)
\(462\) −6673.42 4746.23i −0.672025 0.477954i
\(463\) 6961.59i 0.698775i 0.936978 + 0.349387i \(0.113610\pi\)
−0.936978 + 0.349387i \(0.886390\pi\)
\(464\) 463.714 + 586.823i 0.0463952 + 0.0587124i
\(465\) 3113.92 0.310547
\(466\) 10077.5 + 7167.25i 1.00178 + 0.712482i
\(467\) 8319.54i 0.824374i −0.911099 0.412187i \(-0.864765\pi\)
0.911099 0.412187i \(-0.135235\pi\)
\(468\) −274.756 + 3363.59i −0.0271381 + 0.332227i
\(469\) 27489.5i 2.70650i
\(470\) 374.482 526.539i 0.0367523 0.0516754i
\(471\) −5115.05 −0.500401
\(472\) −3247.83 + 11133.5i −0.316723 + 1.08572i
\(473\) 792.255i 0.0770146i
\(474\) 3919.54 5511.06i 0.379811 0.534032i
\(475\) 3734.31 0.360720
\(476\) −8050.36 + 2796.83i −0.775184 + 0.269312i
\(477\) 6000.07i 0.575942i
\(478\) −5448.68 + 7661.10i −0.521374 + 0.733077i
\(479\) 10801.1i 1.03030i −0.857100 0.515151i \(-0.827736\pi\)
0.857100 0.515151i \(-0.172264\pi\)
\(480\) 86.6705 + 1713.74i 0.00824156 + 0.162961i
\(481\) −11631.4 5136.82i −1.10259 0.486941i
\(482\) 2424.69 3409.23i 0.229132 0.322170i
\(483\) 8800.48 0.829059
\(484\) −1079.70 3107.79i −0.101399 0.291866i
\(485\) 2857.16i 0.267499i
\(486\) 398.349 560.098i 0.0371800 0.0522769i
\(487\) 11483.4i 1.06851i 0.845324 + 0.534255i \(0.179408\pi\)
−0.845324 + 0.534255i \(0.820592\pi\)
\(488\) 11463.3 + 3344.03i 1.06335 + 0.310199i
\(489\) 3911.59i 0.361734i
\(490\) −4877.24 3468.76i −0.449656 0.319801i
\(491\) 18363.8i 1.68787i −0.536443 0.843936i \(-0.680232\pi\)
0.536443 0.843936i \(-0.319768\pi\)
\(492\) 1205.92 + 3471.10i 0.110502 + 0.318068i
\(493\) 391.213i 0.0357390i
\(494\) 2200.88 + 3699.18i 0.200450 + 0.336911i
\(495\) 862.445 0.0783112
\(496\) −13034.8 16495.3i −1.18000 1.49327i
\(497\) 25793.0 2.32792
\(498\) 342.232 481.195i 0.0307948 0.0432989i
\(499\) −76.2986 −0.00684488 −0.00342244 0.999994i \(-0.501089\pi\)
−0.00342244 + 0.999994i \(0.501089\pi\)
\(500\) −1991.09 5731.12i −0.178088 0.512607i
\(501\) 7344.32 0.654930
\(502\) −6496.98 + 9135.06i −0.577638 + 0.812187i
\(503\) 2934.86 0.260157 0.130079 0.991504i \(-0.458477\pi\)
0.130079 + 0.991504i \(0.458477\pi\)
\(504\) 6221.25 + 1814.85i 0.549834 + 0.160396i
\(505\) 1804.31i 0.158991i
\(506\) −6443.82 4582.93i −0.566132 0.402641i
\(507\) 4871.49 4439.58i 0.426727 0.388893i
\(508\) 6969.16 + 20059.9i 0.608674 + 1.75200i
\(509\) −13001.0 −1.13214 −0.566069 0.824358i \(-0.691537\pi\)
−0.566069 + 0.824358i \(0.691537\pi\)
\(510\) 520.197 731.422i 0.0451661 0.0635057i
\(511\) −5024.89 −0.435006
\(512\) 8715.39 7632.80i 0.752284 0.658839i
\(513\) 876.629i 0.0754466i
\(514\) −10922.3 7768.11i −0.937283 0.666609i
\(515\) −1101.78 −0.0942727
\(516\) −205.754 592.239i −0.0175539 0.0505268i
\(517\) 2192.57i 0.186517i
\(518\) −14151.4 + 19897.5i −1.20034 + 1.68774i
\(519\) −7539.45 −0.637659
\(520\) 2158.19 2563.77i 0.182006 0.216209i
\(521\) 11843.0 0.995878 0.497939 0.867212i \(-0.334090\pi\)
0.497939 + 0.867212i \(0.334090\pi\)
\(522\) −172.416 + 242.425i −0.0144568 + 0.0203270i
\(523\) 5094.18i 0.425914i −0.977062 0.212957i \(-0.931691\pi\)
0.977062 0.212957i \(-0.0683094\pi\)
\(524\) −11278.2 + 3918.24i −0.940250 + 0.326659i
\(525\) −10980.3 −0.912798
\(526\) 9746.48 + 6931.83i 0.807921 + 0.574605i
\(527\) 10996.8i 0.908974i
\(528\) −3610.17 4568.62i −0.297562 0.376560i
\(529\) −3669.31 −0.301579
\(530\) −3453.23 + 4855.41i −0.283017 + 0.397935i
\(531\) −4612.89 −0.376991
\(532\) 7807.87 2712.58i 0.636304 0.221063i
\(533\) 2899.26 6564.83i 0.235612 0.533498i
\(534\) 11319.9 + 8050.86i 0.917340 + 0.652425i
\(535\) 709.502i 0.0573354i
\(536\) −5473.87 + 18764.3i −0.441111 + 1.51212i
\(537\) 6826.09 0.548543
\(538\) −9919.63 + 13947.5i −0.794918 + 1.11769i
\(539\) 20309.4 1.62299
\(540\) −644.708 + 223.982i −0.0513775 + 0.0178494i
\(541\) 4124.52 0.327776 0.163888 0.986479i \(-0.447596\pi\)
0.163888 + 0.986479i \(0.447596\pi\)
\(542\) 5511.27 7749.10i 0.436770 0.614119i
\(543\) −10877.1 −0.859635
\(544\) −6052.09 + 306.078i −0.476988 + 0.0241231i
\(545\) −2950.72 −0.231917
\(546\) −6471.42 10877.0i −0.507237 0.852551i
\(547\) 6416.94i 0.501588i −0.968040 0.250794i \(-0.919308\pi\)
0.968040 0.250794i \(-0.0806917\pi\)
\(548\) 12461.0 4329.16i 0.971365 0.337468i
\(549\) 4749.52i 0.369225i
\(550\) 8039.90 + 5718.09i 0.623314 + 0.443309i
\(551\) 379.429i 0.0293361i
\(552\) 6007.20 + 1752.40i 0.463194 + 0.135122i
\(553\) 25362.4i 1.95031i
\(554\) −8632.75 + 12138.1i −0.662041 + 0.930860i
\(555\) 2571.47i 0.196672i
\(556\) −5541.00 + 1925.04i −0.422646 + 0.146834i
\(557\) 14142.7 1.07585 0.537924 0.842994i \(-0.319209\pi\)
0.537924 + 0.842994i \(0.319209\pi\)
\(558\) 4846.55 6814.48i 0.367690 0.516989i
\(559\) −494.672 + 1120.09i −0.0374282 + 0.0847492i
\(560\) −3989.89 5049.14i −0.301078 0.381009i
\(561\) 3045.73i 0.229217i
\(562\) −9729.92 + 13680.7i −0.730306 + 1.02684i
\(563\) 3830.12i 0.286714i −0.989671 0.143357i \(-0.954210\pi\)
0.989671 0.143357i \(-0.0457898\pi\)
\(564\) −569.425 1639.03i −0.0425126 0.122368i
\(565\) −123.656 −0.00920749
\(566\) −284.109 + 399.470i −0.0210989 + 0.0296660i
\(567\) 2577.62i 0.190917i
\(568\) 17606.3 + 5136.06i 1.30061 + 0.379409i
\(569\) 22320.1 1.64448 0.822238 0.569144i \(-0.192725\pi\)
0.822238 + 0.569144i \(0.192725\pi\)
\(570\) −504.528 + 709.390i −0.0370743 + 0.0521282i
\(571\) 19368.3i 1.41951i −0.704449 0.709754i \(-0.748806\pi\)
0.704449 0.709754i \(-0.251194\pi\)
\(572\) −925.850 + 11334.3i −0.0676778 + 0.828518i
\(573\) 11188.2i 0.815696i
\(574\) −11230.3 7987.17i −0.816629 0.580798i
\(575\) −10602.5 −0.768965
\(576\) 3885.23 + 2477.62i 0.281050 + 0.179226i
\(577\) 3965.92i 0.286141i −0.989712 0.143071i \(-0.954302\pi\)
0.989712 0.143071i \(-0.0456976\pi\)
\(578\) −8741.10 6216.79i −0.629034 0.447378i
\(579\) 2303.45 0.165334
\(580\) 279.047 96.9456i 0.0199772 0.00694043i
\(581\) 2214.50i 0.158129i
\(582\) −6252.59 4446.93i −0.445324 0.316720i
\(583\) 20218.5i 1.43630i
\(584\) −3429.99 1000.59i −0.243037 0.0708982i
\(585\) 1219.33 + 538.497i 0.0861760 + 0.0380583i
\(586\) −19710.2 14018.2i −1.38946 0.988200i
\(587\) −1149.02 −0.0807926 −0.0403963 0.999184i \(-0.512862\pi\)
−0.0403963 + 0.999184i \(0.512862\pi\)
\(588\) −15182.0 + 5274.49i −1.06479 + 0.369925i
\(589\) 10665.6i 0.746125i
\(590\) 3732.86 + 2654.86i 0.260474 + 0.185253i
\(591\) 9015.07i 0.627463i
\(592\) −13621.8 + 10764.1i −0.945700 + 0.747302i
\(593\) 6509.04i 0.450749i −0.974272 0.225374i \(-0.927639\pi\)
0.974272 0.225374i \(-0.0723606\pi\)
\(594\) 1342.32 1887.37i 0.0927208 0.130370i
\(595\) 3366.07i 0.231925i
\(596\) 6568.05 + 18905.4i 0.451406 + 1.29932i
\(597\) 10603.4i 0.726917i
\(598\) −6248.77 10502.8i −0.427310 0.718211i
\(599\) 11194.9 0.763622 0.381811 0.924240i \(-0.375301\pi\)
0.381811 + 0.924240i \(0.375301\pi\)
\(600\) −7495.14 2186.46i −0.509979 0.148770i
\(601\) −2151.98 −0.146058 −0.0730292 0.997330i \(-0.523267\pi\)
−0.0730292 + 0.997330i \(0.523267\pi\)
\(602\) 1916.12 + 1362.77i 0.129726 + 0.0922630i
\(603\) −7774.54 −0.525048
\(604\) −3014.18 + 1047.18i −0.203055 + 0.0705448i
\(605\) −1299.45 −0.0873225
\(606\) −3948.53 2808.25i −0.264683 0.188246i
\(607\) −7666.01 −0.512609 −0.256305 0.966596i \(-0.582505\pi\)
−0.256305 + 0.966596i \(0.582505\pi\)
\(608\) 5869.79 296.858i 0.391532 0.0198013i
\(609\) 1115.67i 0.0742349i
\(610\) 2733.50 3843.43i 0.181437 0.255108i
\(611\) −1369.01 + 3099.86i −0.0906451 + 0.205249i
\(612\) −790.995 2276.79i −0.0522453 0.150382i
\(613\) −3102.78 −0.204437 −0.102219 0.994762i \(-0.532594\pi\)
−0.102219 + 0.994762i \(0.532594\pi\)
\(614\) −19701.1 14011.7i −1.29490 0.920952i
\(615\) 1451.36 0.0951618
\(616\) 20963.8 + 6115.50i 1.37119 + 0.400001i
\(617\) 3290.36i 0.214692i −0.994222 0.107346i \(-0.965765\pi\)
0.994222 0.107346i \(-0.0342353\pi\)
\(618\) −1714.83 + 2411.14i −0.111619 + 0.156942i
\(619\) −28037.4 −1.82054 −0.910272 0.414011i \(-0.864127\pi\)
−0.910272 + 0.414011i \(0.864127\pi\)
\(620\) −7843.89 + 2725.10i −0.508094 + 0.176520i
\(621\) 2488.94i 0.160834i
\(622\) −13593.0 9667.53i −0.876254 0.623204i
\(623\) −52095.2 −3.35016
\(624\) −2251.49 8713.27i −0.144442 0.558990i
\(625\) 11980.7 0.766762
\(626\) 6303.05 + 4482.81i 0.402429 + 0.286213i
\(627\) 2953.99i 0.188151i
\(628\) 12884.7 4476.36i 0.818719 0.284437i
\(629\) 9081.17 0.575660
\(630\) 1483.50 2085.88i 0.0938163 0.131910i
\(631\) 19986.5i 1.26094i 0.776216 + 0.630468i \(0.217137\pi\)
−0.776216 + 0.630468i \(0.782863\pi\)
\(632\) −5050.32 + 17312.4i −0.317865 + 1.08963i
\(633\) −6478.29 −0.406775
\(634\) 1317.48 + 937.011i 0.0825298 + 0.0586963i
\(635\) 8387.61 0.524176
\(636\) 5250.87 + 15114.0i 0.327375 + 0.942313i
\(637\) 28713.5 + 12680.9i 1.78598 + 0.788752i
\(638\) −580.993 + 816.904i −0.0360529 + 0.0506920i
\(639\) 7294.75i 0.451605i
\(640\) −1718.08 4241.03i −0.106114 0.261940i
\(641\) −20297.4 −1.25070 −0.625350 0.780344i \(-0.715044\pi\)
−0.625350 + 0.780344i \(0.715044\pi\)
\(642\) 1552.67 + 1104.28i 0.0954500 + 0.0678854i
\(643\) −9815.56 −0.602003 −0.301002 0.953624i \(-0.597321\pi\)
−0.301002 + 0.953624i \(0.597321\pi\)
\(644\) −22168.2 + 7701.61i −1.35644 + 0.471251i
\(645\) −247.631 −0.0151170
\(646\) −2505.22 1781.74i −0.152580 0.108517i
\(647\) −4770.57 −0.289877 −0.144938 0.989441i \(-0.546298\pi\)
−0.144938 + 0.989441i \(0.546298\pi\)
\(648\) −513.272 + 1759.48i −0.0311161 + 0.106665i
\(649\) −15544.1 −0.940152
\(650\) 7796.54 + 13104.2i 0.470470 + 0.790754i
\(651\) 31360.9i 1.88806i
\(652\) −3423.16 9853.20i −0.205616 0.591842i
\(653\) 23058.8i 1.38187i 0.722918 + 0.690933i \(0.242800\pi\)
−0.722918 + 0.690933i \(0.757200\pi\)
\(654\) −4592.54 + 6457.33i −0.274591 + 0.386088i
\(655\) 4715.73i 0.281311i
\(656\) −6075.36 7688.28i −0.361590 0.457587i
\(657\) 1421.13i 0.0843891i
\(658\) 5302.87 + 3771.48i 0.314176 + 0.223446i
\(659\) 8574.94i 0.506878i 0.967351 + 0.253439i \(0.0815616\pi\)
−0.967351 + 0.253439i \(0.918438\pi\)
\(660\) −2172.48 + 754.756i −0.128127 + 0.0445134i
\(661\) 23616.3 1.38967 0.694833 0.719171i \(-0.255478\pi\)
0.694833 + 0.719171i \(0.255478\pi\)
\(662\) −1397.98 994.263i −0.0820756 0.0583733i
\(663\) −1901.71 + 4306.06i −0.111397 + 0.252237i
\(664\) −440.965 + 1511.62i −0.0257722 + 0.0883467i
\(665\) 3264.68i 0.190374i
\(666\) −5627.39 4002.28i −0.327413 0.232860i
\(667\) 1077.28i 0.0625374i
\(668\) −18500.2 + 6427.27i −1.07155 + 0.372273i
\(669\) −11033.8 −0.637657
\(670\) 6291.35 + 4474.50i 0.362770 + 0.258007i
\(671\) 16004.5i 0.920786i
\(672\) −17259.4 + 872.875i −0.990769 + 0.0501070i
\(673\) −14768.2 −0.845874 −0.422937 0.906159i \(-0.639001\pi\)
−0.422937 + 0.906159i \(0.639001\pi\)
\(674\) −5.64747 4.01656i −0.000322749 0.000229543i
\(675\) 3105.43i 0.177079i
\(676\) −8385.95 + 15446.4i −0.477125 + 0.878835i
\(677\) 23267.6i 1.32089i −0.750872 0.660447i \(-0.770367\pi\)
0.750872 0.660447i \(-0.229633\pi\)
\(678\) −192.459 + 270.607i −0.0109017 + 0.0153283i
\(679\) 28775.0 1.62634
\(680\) −670.273 + 2297.68i −0.0377997 + 0.129576i
\(681\) 8957.14i 0.504021i
\(682\) 16331.5 22962.8i 0.916956 1.28928i
\(683\) 13908.6 0.779206 0.389603 0.920983i \(-0.372612\pi\)
0.389603 + 0.920983i \(0.372612\pi\)
\(684\) 767.169 + 2208.21i 0.0428851 + 0.123440i
\(685\) 5210.28i 0.290620i
\(686\) 17041.4 23961.0i 0.948461 1.33358i
\(687\) 333.993i 0.0185482i
\(688\) 1036.58 + 1311.77i 0.0574406 + 0.0726903i
\(689\) 12624.1 28584.9i 0.698027 1.58055i
\(690\) 1432.46 2014.11i 0.0790333 0.111124i
\(691\) 13598.7 0.748651 0.374326 0.927297i \(-0.377874\pi\)
0.374326 + 0.927297i \(0.377874\pi\)
\(692\) 18991.7 6598.04i 1.04329 0.362456i
\(693\) 8685.85i 0.476115i
\(694\) −1479.47 + 2080.20i −0.0809219 + 0.113780i
\(695\) 2316.84i 0.126450i
\(696\) 222.158 761.552i 0.0120990 0.0414749i
\(697\) 5125.49i 0.278539i
\(698\) 11417.2 + 8120.04i 0.619120 + 0.440327i
\(699\) 13116.4i 0.709741i
\(700\) 27659.1 9609.24i 1.49345 0.518850i
\(701\) 12703.4i 0.684453i 0.939617 + 0.342227i \(0.111181\pi\)
−0.939617 + 0.342227i \(0.888819\pi\)
\(702\) 3076.22 1830.24i 0.165391 0.0984016i
\(703\) −8807.63 −0.472526
\(704\) 13092.1 + 8348.87i 0.700891 + 0.446960i
\(705\) −685.321 −0.0366109
\(706\) −7400.80 + 10405.9i −0.394522 + 0.554717i
\(707\) 18171.5 0.966633
\(708\) 11619.8 4036.90i 0.616804 0.214288i
\(709\) 3667.61 0.194273 0.0971367 0.995271i \(-0.469032\pi\)
0.0971367 + 0.995271i \(0.469032\pi\)
\(710\) 4198.36 5903.09i 0.221918 0.312027i
\(711\) −7172.96 −0.378350
\(712\) −35560.1 10373.5i −1.87173 0.546016i
\(713\) 30281.9i 1.59055i
\(714\) 7366.29 + 5239.01i 0.386101 + 0.274601i
\(715\) 4108.78 + 1814.58i 0.214908 + 0.0949111i
\(716\) −17194.8 + 5973.75i −0.897484 + 0.311801i
\(717\) 9971.37 0.519369
\(718\) −5416.13 + 7615.34i −0.281516 + 0.395824i
\(719\) 13537.6 0.702181 0.351090 0.936342i \(-0.385811\pi\)
0.351090 + 0.936342i \(0.385811\pi\)
\(720\) 1427.99 1128.41i 0.0739140 0.0584076i
\(721\) 11096.3i 0.573158i
\(722\) −13379.8 9515.87i −0.689672 0.490504i
\(723\) −4437.31 −0.228251
\(724\) 27399.2 9518.95i 1.40647 0.488631i
\(725\) 1344.11i 0.0688540i
\(726\) −2022.48 + 2843.70i −0.103390 + 0.145372i
\(727\) 11439.0 0.583561 0.291780 0.956485i \(-0.405752\pi\)
0.291780 + 0.956485i \(0.405752\pi\)
\(728\) 25820.2 + 21735.6i 1.31451 + 1.10656i
\(729\) −729.000 −0.0370370
\(730\) −817.907 + 1150.02i −0.0414686 + 0.0583068i
\(731\) 874.510i 0.0442475i
\(732\) −4156.47 11963.9i −0.209874 0.604099i
\(733\) −29164.6 −1.46960 −0.734802 0.678281i \(-0.762725\pi\)
−0.734802 + 0.678281i \(0.762725\pi\)
\(734\) 29433.2 + 20933.3i 1.48011 + 1.05267i
\(735\) 6348.01i 0.318571i
\(736\) −16665.6 + 842.843i −0.834649 + 0.0422114i
\(737\) −26197.9 −1.30938
\(738\) 2258.92 3176.15i 0.112672 0.158422i
\(739\) −31446.7 −1.56534 −0.782671 0.622436i \(-0.786143\pi\)
−0.782671 + 0.622436i \(0.786143\pi\)
\(740\) 2250.39 + 6477.48i 0.111792 + 0.321780i
\(741\) 1844.42 4176.35i 0.0914394 0.207047i
\(742\) −48899.7 34778.1i −2.41936 1.72068i
\(743\) 574.677i 0.0283753i −0.999899 0.0141876i \(-0.995484\pi\)
0.999899 0.0141876i \(-0.00451622\pi\)
\(744\) −6244.76 + 21406.9i −0.307721 + 1.05486i
\(745\) 7904.86 0.388740
\(746\) −14675.5 + 20634.4i −0.720252 + 1.01271i
\(747\) −626.303 −0.0306763
\(748\) −2665.43 7672.13i −0.130291 0.375028i
\(749\) −7145.53 −0.348587
\(750\) −3729.69 + 5244.12i −0.181586 + 0.255318i
\(751\) −10250.8 −0.498080 −0.249040 0.968493i \(-0.580115\pi\)
−0.249040 + 0.968493i \(0.580115\pi\)
\(752\) 2868.74 + 3630.35i 0.139112 + 0.176044i
\(753\) 11889.8 0.575417
\(754\) −1331.47 + 792.177i −0.0643094 + 0.0382618i
\(755\) 1260.31i 0.0607516i
\(756\) −2255.77 6492.98i −0.108521 0.312364i
\(757\) 873.168i 0.0419232i 0.999780 + 0.0209616i \(0.00667277\pi\)
−0.999780 + 0.0209616i \(0.993327\pi\)
\(758\) −6196.86 4407.29i −0.296939 0.211187i
\(759\) 8387.00i 0.401092i
\(760\) 650.083 2228.47i 0.0310276 0.106362i
\(761\) 25191.5i 1.19999i −0.800004 0.599995i \(-0.795169\pi\)
0.800004 0.599995i \(-0.204831\pi\)
\(762\) 13054.6 18355.4i 0.620627 0.872631i
\(763\) 29717.3i 1.41001i
\(764\) 9791.19 + 28182.8i 0.463656 + 1.33458i
\(765\) −951.988 −0.0449924
\(766\) −19693.3 + 27689.8i −0.928916 + 1.30610i
\(767\) −21976.3 9705.49i −1.03457 0.456903i
\(768\) −11955.1 2840.97i −0.561708 0.133483i
\(769\) 21012.5i 0.985347i 0.870214 + 0.492673i \(0.163980\pi\)
−0.870214 + 0.492673i \(0.836020\pi\)
\(770\) 4998.98 7028.80i 0.233962 0.328962i
\(771\) 14216.1i 0.664045i
\(772\) −5802.35 + 2015.83i −0.270507 + 0.0939785i
\(773\) 12118.6 0.563874 0.281937 0.959433i \(-0.409023\pi\)
0.281937 + 0.959433i \(0.409023\pi\)
\(774\) −385.416 + 541.914i −0.0178986 +