Properties

Label 312.4.m.a.181.64
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.64
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.63

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.09150 + 1.90411i) q^{2} +3.00000i q^{3} +(0.748758 + 7.96488i) q^{4} -5.98228 q^{5} +(-5.71232 + 6.27450i) q^{6} -13.5739i q^{7} +(-13.6000 + 18.0843i) q^{8} -9.00000 q^{9} +(-12.5120 - 11.3909i) q^{10} -38.8640 q^{11} +(-23.8946 + 2.24627i) q^{12} +(-17.8282 - 43.3492i) q^{13} +(25.8461 - 28.3898i) q^{14} -17.9469i q^{15} +(-62.8787 + 11.9275i) q^{16} +10.7249 q^{17} +(-18.8235 - 17.1370i) q^{18} -50.0052 q^{19} +(-4.47928 - 47.6482i) q^{20} +40.7217 q^{21} +(-81.2842 - 74.0013i) q^{22} +58.0103 q^{23} +(-54.2528 - 40.7999i) q^{24} -89.2123 q^{25} +(45.2539 - 124.612i) q^{26} -27.0000i q^{27} +(108.115 - 10.1636i) q^{28} +140.989i q^{29} +(34.1727 - 37.5359i) q^{30} -49.2610i q^{31} +(-154.222 - 94.7813i) q^{32} -116.592i q^{33} +(22.4312 + 20.4214i) q^{34} +81.2029i q^{35} +(-6.73882 - 71.6839i) q^{36} -109.159 q^{37} +(-104.586 - 95.2152i) q^{38} +(130.048 - 53.4845i) q^{39} +(81.3588 - 108.185i) q^{40} -200.982i q^{41} +(85.1695 + 77.5384i) q^{42} +53.5585i q^{43} +(-29.0998 - 309.548i) q^{44} +53.8406 q^{45} +(121.329 + 110.458i) q^{46} -95.3945i q^{47} +(-35.7826 - 188.636i) q^{48} +158.749 q^{49} +(-186.588 - 169.870i) q^{50} +32.1748i q^{51} +(331.923 - 174.457i) q^{52} +385.163i q^{53} +(51.4109 - 56.4705i) q^{54} +232.496 q^{55} +(245.474 + 184.604i) q^{56} -150.016i q^{57} +(-268.459 + 294.879i) q^{58} -305.930 q^{59} +(142.945 - 13.4378i) q^{60} +164.474i q^{61} +(93.7981 - 103.029i) q^{62} +122.165i q^{63} +(-142.082 - 491.891i) q^{64} +(106.653 + 259.327i) q^{65} +(222.004 - 243.853i) q^{66} -962.386 q^{67} +(8.03037 + 85.4228i) q^{68} +174.031i q^{69} +(-154.619 + 169.836i) q^{70} +195.268i q^{71} +(122.400 - 162.759i) q^{72} +317.283i q^{73} +(-228.307 - 207.851i) q^{74} -267.637i q^{75} +(-37.4418 - 398.285i) q^{76} +527.537i q^{77} +(373.835 + 135.762i) q^{78} -221.141 q^{79} +(376.158 - 71.3539i) q^{80} +81.0000 q^{81} +(382.691 - 420.354i) q^{82} -445.937 q^{83} +(30.4907 + 324.344i) q^{84} -64.1596 q^{85} +(-101.981 + 112.018i) q^{86} -422.968 q^{87} +(528.549 - 702.828i) q^{88} -523.463i q^{89} +(112.608 + 102.518i) q^{90} +(-588.418 + 241.998i) q^{91} +(43.4357 + 462.045i) q^{92} +147.783 q^{93} +(181.641 - 199.518i) q^{94} +299.145 q^{95} +(284.344 - 462.667i) q^{96} -147.749i q^{97} +(332.024 + 302.275i) q^{98} +349.776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.09150 + 1.90411i 0.739457 + 0.673203i
\(3\) 3.00000i 0.577350i
\(4\) 0.748758 + 7.96488i 0.0935947 + 0.995610i
\(5\) −5.98228 −0.535072 −0.267536 0.963548i \(-0.586209\pi\)
−0.267536 + 0.963548i \(0.586209\pi\)
\(6\) −5.71232 + 6.27450i −0.388674 + 0.426926i
\(7\) 13.5739i 0.732922i −0.930433 0.366461i \(-0.880569\pi\)
0.930433 0.366461i \(-0.119431\pi\)
\(8\) −13.6000 + 18.0843i −0.601039 + 0.799220i
\(9\) −9.00000 −0.333333
\(10\) −12.5120 11.3909i −0.395663 0.360212i
\(11\) −38.8640 −1.06527 −0.532634 0.846346i \(-0.678798\pi\)
−0.532634 + 0.846346i \(0.678798\pi\)
\(12\) −23.8946 + 2.24627i −0.574816 + 0.0540369i
\(13\) −17.8282 43.3492i −0.380357 0.924840i
\(14\) 25.8461 28.3898i 0.493405 0.541964i
\(15\) 17.9469i 0.308924i
\(16\) −62.8787 + 11.9275i −0.982480 + 0.186368i
\(17\) 10.7249 0.153010 0.0765052 0.997069i \(-0.475624\pi\)
0.0765052 + 0.997069i \(0.475624\pi\)
\(18\) −18.8235 17.1370i −0.246486 0.224401i
\(19\) −50.0052 −0.603788 −0.301894 0.953341i \(-0.597619\pi\)
−0.301894 + 0.953341i \(0.597619\pi\)
\(20\) −4.47928 47.6482i −0.0500799 0.532723i
\(21\) 40.7217 0.423153
\(22\) −81.2842 74.0013i −0.787720 0.717142i
\(23\) 58.0103 0.525913 0.262956 0.964808i \(-0.415302\pi\)
0.262956 + 0.964808i \(0.415302\pi\)
\(24\) −54.2528 40.7999i −0.461430 0.347010i
\(25\) −89.2123 −0.713698
\(26\) 45.2539 124.612i 0.341347 0.939937i
\(27\) 27.0000i 0.192450i
\(28\) 108.115 10.1636i 0.729704 0.0685976i
\(29\) 140.989i 0.902795i 0.892323 + 0.451398i \(0.149074\pi\)
−0.892323 + 0.451398i \(0.850926\pi\)
\(30\) 34.1727 37.5359i 0.207969 0.228436i
\(31\) 49.2610i 0.285404i −0.989766 0.142702i \(-0.954421\pi\)
0.989766 0.142702i \(-0.0455791\pi\)
\(32\) −154.222 94.7813i −0.851966 0.523598i
\(33\) 116.592i 0.615033i
\(34\) 22.4312 + 20.4214i 0.113145 + 0.103007i
\(35\) 81.2029i 0.392166i
\(36\) −6.73882 71.6839i −0.0311982 0.331870i
\(37\) −109.159 −0.485018 −0.242509 0.970149i \(-0.577970\pi\)
−0.242509 + 0.970149i \(0.577970\pi\)
\(38\) −104.586 95.2152i −0.446476 0.406472i
\(39\) 130.048 53.4845i 0.533956 0.219599i
\(40\) 81.3588 108.185i 0.321599 0.427640i
\(41\) 200.982i 0.765564i −0.923839 0.382782i \(-0.874966\pi\)
0.923839 0.382782i \(-0.125034\pi\)
\(42\) 85.1695 + 77.5384i 0.312903 + 0.284868i
\(43\) 53.5585i 0.189944i 0.995480 + 0.0949721i \(0.0302762\pi\)
−0.995480 + 0.0949721i \(0.969724\pi\)
\(44\) −29.0998 309.548i −0.0997035 1.06059i
\(45\) 53.8406 0.178357
\(46\) 121.329 + 110.458i 0.388890 + 0.354046i
\(47\) 95.3945i 0.296058i −0.988983 0.148029i \(-0.952707\pi\)
0.988983 0.148029i \(-0.0472929\pi\)
\(48\) −35.7826 188.636i −0.107599 0.567235i
\(49\) 158.749 0.462826
\(50\) −186.588 169.870i −0.527749 0.480464i
\(51\) 32.1748i 0.0883406i
\(52\) 331.923 174.457i 0.885180 0.465248i
\(53\) 385.163i 0.998231i 0.866535 + 0.499116i \(0.166342\pi\)
−0.866535 + 0.499116i \(0.833658\pi\)
\(54\) 51.4109 56.4705i 0.129558 0.142309i
\(55\) 232.496 0.569995
\(56\) 245.474 + 184.604i 0.585766 + 0.440514i
\(57\) 150.016i 0.348597i
\(58\) −268.459 + 294.879i −0.607765 + 0.667579i
\(59\) −305.930 −0.675063 −0.337531 0.941314i \(-0.609592\pi\)
−0.337531 + 0.941314i \(0.609592\pi\)
\(60\) 142.945 13.4378i 0.307568 0.0289136i
\(61\) 164.474i 0.345224i 0.984990 + 0.172612i \(0.0552207\pi\)
−0.984990 + 0.172612i \(0.944779\pi\)
\(62\) 93.7981 103.029i 0.192135 0.211044i
\(63\) 122.165i 0.244307i
\(64\) −142.082 491.891i −0.277505 0.960724i
\(65\) 106.653 + 259.327i 0.203519 + 0.494856i
\(66\) 222.004 243.853i 0.414042 0.454791i
\(67\) −962.386 −1.75484 −0.877419 0.479724i \(-0.840737\pi\)
−0.877419 + 0.479724i \(0.840737\pi\)
\(68\) 8.03037 + 85.4228i 0.0143210 + 0.152339i
\(69\) 174.031i 0.303636i
\(70\) −154.619 + 169.836i −0.264007 + 0.289990i
\(71\) 195.268i 0.326395i 0.986593 + 0.163198i \(0.0521808\pi\)
−0.986593 + 0.163198i \(0.947819\pi\)
\(72\) 122.400 162.759i 0.200346 0.266407i
\(73\) 317.283i 0.508701i 0.967112 + 0.254351i \(0.0818617\pi\)
−0.967112 + 0.254351i \(0.918138\pi\)
\(74\) −228.307 207.851i −0.358650 0.326516i
\(75\) 267.637i 0.412054i
\(76\) −37.4418 398.285i −0.0565114 0.601138i
\(77\) 527.537i 0.780758i
\(78\) 373.835 + 135.762i 0.542673 + 0.197077i
\(79\) −221.141 −0.314940 −0.157470 0.987524i \(-0.550334\pi\)
−0.157470 + 0.987524i \(0.550334\pi\)
\(80\) 376.158 71.3539i 0.525697 0.0997201i
\(81\) 81.0000 0.111111
\(82\) 382.691 420.354i 0.515380 0.566102i
\(83\) −445.937 −0.589734 −0.294867 0.955538i \(-0.595275\pi\)
−0.294867 + 0.955538i \(0.595275\pi\)
\(84\) 30.4907 + 324.344i 0.0396048 + 0.421295i
\(85\) −64.1596 −0.0818716
\(86\) −101.981 + 112.018i −0.127871 + 0.140456i
\(87\) −422.968 −0.521229
\(88\) 528.549 702.828i 0.640267 0.851383i
\(89\) 523.463i 0.623449i −0.950173 0.311724i \(-0.899093\pi\)
0.950173 0.311724i \(-0.100907\pi\)
\(90\) 112.608 + 102.518i 0.131888 + 0.120071i
\(91\) −588.418 + 241.998i −0.677835 + 0.278772i
\(92\) 43.4357 + 462.045i 0.0492226 + 0.523604i
\(93\) 147.783 0.164778
\(94\) 181.641 199.518i 0.199307 0.218922i
\(95\) 299.145 0.323070
\(96\) 284.344 462.667i 0.302299 0.491883i
\(97\) 147.749i 0.154656i −0.997006 0.0773278i \(-0.975361\pi\)
0.997006 0.0773278i \(-0.0246388\pi\)
\(98\) 332.024 + 302.275i 0.342240 + 0.311576i
\(99\) 349.776 0.355089
\(100\) −66.7984 710.565i −0.0667984 0.710565i
\(101\) 720.923i 0.710243i 0.934820 + 0.355122i \(0.115561\pi\)
−0.934820 + 0.355122i \(0.884439\pi\)
\(102\) −61.2642 + 67.2936i −0.0594712 + 0.0653241i
\(103\) −1277.90 −1.22248 −0.611240 0.791445i \(-0.709329\pi\)
−0.611240 + 0.791445i \(0.709329\pi\)
\(104\) 1026.40 + 267.138i 0.967760 + 0.251875i
\(105\) −243.609 −0.226417
\(106\) −733.392 + 805.570i −0.672013 + 0.738150i
\(107\) 1574.80i 1.42282i 0.702778 + 0.711409i \(0.251943\pi\)
−0.702778 + 0.711409i \(0.748057\pi\)
\(108\) 215.052 20.2165i 0.191605 0.0180123i
\(109\) 713.898 0.627330 0.313665 0.949534i \(-0.398443\pi\)
0.313665 + 0.949534i \(0.398443\pi\)
\(110\) 486.265 + 442.697i 0.421487 + 0.383722i
\(111\) 327.478i 0.280025i
\(112\) 161.903 + 853.510i 0.136593 + 0.720081i
\(113\) 504.714 0.420173 0.210086 0.977683i \(-0.432625\pi\)
0.210086 + 0.977683i \(0.432625\pi\)
\(114\) 285.646 313.758i 0.234677 0.257773i
\(115\) −347.034 −0.281401
\(116\) −1122.96 + 105.567i −0.898832 + 0.0844969i
\(117\) 160.454 + 390.143i 0.126786 + 0.308280i
\(118\) −639.853 582.523i −0.499180 0.454454i
\(119\) 145.579i 0.112145i
\(120\) 324.556 + 244.076i 0.246898 + 0.185675i
\(121\) 179.413 0.134796
\(122\) −313.175 + 343.997i −0.232406 + 0.255279i
\(123\) 602.946 0.441999
\(124\) 392.358 36.8845i 0.284151 0.0267123i
\(125\) 1281.48 0.916952
\(126\) −232.615 + 255.509i −0.164468 + 0.180655i
\(127\) −1704.14 −1.19069 −0.595347 0.803469i \(-0.702985\pi\)
−0.595347 + 0.803469i \(0.702985\pi\)
\(128\) 639.447 1299.33i 0.441560 0.897232i
\(129\) −160.676 −0.109664
\(130\) −270.722 + 745.463i −0.182645 + 0.502934i
\(131\) 1672.35i 1.11537i 0.830052 + 0.557686i \(0.188311\pi\)
−0.830052 + 0.557686i \(0.811689\pi\)
\(132\) 928.643 87.2993i 0.612333 0.0575638i
\(133\) 678.765i 0.442529i
\(134\) −2012.83 1832.49i −1.29763 1.18136i
\(135\) 161.522i 0.102975i
\(136\) −145.859 + 193.953i −0.0919652 + 0.122289i
\(137\) 1338.74i 0.834866i −0.908708 0.417433i \(-0.862930\pi\)
0.908708 0.417433i \(-0.137070\pi\)
\(138\) −331.374 + 363.986i −0.204409 + 0.224526i
\(139\) 1263.33i 0.770896i −0.922729 0.385448i \(-0.874047\pi\)
0.922729 0.385448i \(-0.125953\pi\)
\(140\) −646.772 + 60.8013i −0.390444 + 0.0367046i
\(141\) 286.184 0.170929
\(142\) −371.811 + 408.403i −0.219730 + 0.241355i
\(143\) 692.875 + 1684.73i 0.405183 + 0.985202i
\(144\) 565.909 107.348i 0.327493 0.0621226i
\(145\) 843.438i 0.483060i
\(146\) −604.141 + 663.598i −0.342459 + 0.376163i
\(147\) 476.248i 0.267213i
\(148\) −81.7338 869.441i −0.0453951 0.482889i
\(149\) 1083.84 0.595917 0.297959 0.954579i \(-0.403694\pi\)
0.297959 + 0.954579i \(0.403694\pi\)
\(150\) 509.609 559.763i 0.277396 0.304696i
\(151\) 2821.74i 1.52073i 0.649498 + 0.760363i \(0.274979\pi\)
−0.649498 + 0.760363i \(0.725021\pi\)
\(152\) 680.068 904.308i 0.362900 0.482559i
\(153\) −96.5243 −0.0510035
\(154\) −1004.49 + 1103.34i −0.525609 + 0.577337i
\(155\) 294.693i 0.152712i
\(156\) 523.372 + 995.768i 0.268611 + 0.511059i
\(157\) 142.839i 0.0726102i 0.999341 + 0.0363051i \(0.0115588\pi\)
−0.999341 + 0.0363051i \(0.988441\pi\)
\(158\) −462.516 421.075i −0.232885 0.212019i
\(159\) −1155.49 −0.576329
\(160\) 922.601 + 567.009i 0.455863 + 0.280162i
\(161\) 787.426i 0.385453i
\(162\) 169.412 + 154.233i 0.0821619 + 0.0748004i
\(163\) −2758.34 −1.32546 −0.662729 0.748860i \(-0.730602\pi\)
−0.662729 + 0.748860i \(0.730602\pi\)
\(164\) 1600.80 150.487i 0.762204 0.0716528i
\(165\) 697.487i 0.329087i
\(166\) −932.677 849.111i −0.436083 0.397011i
\(167\) 3245.29i 1.50376i 0.659300 + 0.751880i \(0.270853\pi\)
−0.659300 + 0.751880i \(0.729147\pi\)
\(168\) −553.813 + 736.423i −0.254331 + 0.338192i
\(169\) −1561.31 + 1545.68i −0.710656 + 0.703539i
\(170\) −134.190 122.167i −0.0605405 0.0551162i
\(171\) 450.047 0.201263
\(172\) −426.588 + 40.1024i −0.189110 + 0.0177778i
\(173\) 2974.07i 1.30702i −0.756918 0.653510i \(-0.773296\pi\)
0.756918 0.653510i \(-0.226704\pi\)
\(174\) −884.638 805.376i −0.385427 0.350893i
\(175\) 1210.96i 0.523085i
\(176\) 2443.72 463.552i 1.04660 0.198532i
\(177\) 917.790i 0.389748i
\(178\) 996.728 1094.82i 0.419708 0.461014i
\(179\) 3536.59i 1.47674i −0.674395 0.738371i \(-0.735595\pi\)
0.674395 0.738371i \(-0.264405\pi\)
\(180\) 40.3135 + 428.834i 0.0166933 + 0.177574i
\(181\) 2464.94i 1.01225i 0.862460 + 0.506125i \(0.168923\pi\)
−0.862460 + 0.506125i \(0.831077\pi\)
\(182\) −1691.47 614.272i −0.688901 0.250181i
\(183\) −493.421 −0.199315
\(184\) −788.938 + 1049.08i −0.316094 + 0.420320i
\(185\) 653.022 0.259519
\(186\) 309.088 + 281.394i 0.121846 + 0.110929i
\(187\) −416.814 −0.162997
\(188\) 759.806 71.4274i 0.294758 0.0277095i
\(189\) −366.495 −0.141051
\(190\) 625.663 + 569.604i 0.238897 + 0.217492i
\(191\) 4406.00 1.66914 0.834572 0.550898i \(-0.185715\pi\)
0.834572 + 0.550898i \(0.185715\pi\)
\(192\) 1475.67 426.247i 0.554674 0.160217i
\(193\) 204.930i 0.0764311i −0.999270 0.0382156i \(-0.987833\pi\)
0.999270 0.0382156i \(-0.0121674\pi\)
\(194\) 281.329 309.016i 0.104115 0.114361i
\(195\) −777.982 + 319.960i −0.285705 + 0.117501i
\(196\) 118.865 + 1264.42i 0.0433181 + 0.460794i
\(197\) 1230.05 0.444861 0.222430 0.974949i \(-0.428601\pi\)
0.222430 + 0.974949i \(0.428601\pi\)
\(198\) 731.558 + 666.011i 0.262573 + 0.239047i
\(199\) 188.319 0.0670832 0.0335416 0.999437i \(-0.489321\pi\)
0.0335416 + 0.999437i \(0.489321\pi\)
\(200\) 1213.28 1613.34i 0.428960 0.570402i
\(201\) 2887.16i 1.01316i
\(202\) −1372.71 + 1507.81i −0.478138 + 0.525195i
\(203\) 1913.77 0.661678
\(204\) −256.268 + 24.0911i −0.0879528 + 0.00826821i
\(205\) 1202.33i 0.409632i
\(206\) −2672.74 2433.26i −0.903973 0.822978i
\(207\) −522.093 −0.175304
\(208\) 1638.06 + 2513.10i 0.546054 + 0.837750i
\(209\) 1943.40 0.643196
\(210\) −509.508 463.857i −0.167426 0.152425i
\(211\) 2513.40i 0.820044i −0.912076 0.410022i \(-0.865521\pi\)
0.912076 0.410022i \(-0.134479\pi\)
\(212\) −3067.78 + 288.394i −0.993850 + 0.0934292i
\(213\) −585.804 −0.188444
\(214\) −2998.58 + 3293.69i −0.957846 + 1.05211i
\(215\) 320.402i 0.101634i
\(216\) 488.276 + 367.199i 0.153810 + 0.115670i
\(217\) −668.663 −0.209179
\(218\) 1493.12 + 1359.34i 0.463884 + 0.422321i
\(219\) −951.850 −0.293699
\(220\) 174.083 + 1851.80i 0.0533485 + 0.567493i
\(221\) −191.206 464.917i −0.0581986 0.141510i
\(222\) 623.552 684.920i 0.188514 0.207067i
\(223\) 1884.34i 0.565852i −0.959142 0.282926i \(-0.908695\pi\)
0.959142 0.282926i \(-0.0913051\pi\)
\(224\) −1286.55 + 2093.40i −0.383756 + 0.624424i
\(225\) 802.910 0.237899
\(226\) 1055.61 + 961.030i 0.310700 + 0.282862i
\(227\) −4267.64 −1.24781 −0.623906 0.781499i \(-0.714455\pi\)
−0.623906 + 0.781499i \(0.714455\pi\)
\(228\) 1194.86 112.325i 0.347067 0.0326269i
\(229\) 6270.47 1.80945 0.904725 0.425996i \(-0.140076\pi\)
0.904725 + 0.425996i \(0.140076\pi\)
\(230\) −725.823 660.790i −0.208084 0.189440i
\(231\) −1582.61 −0.450771
\(232\) −2549.69 1917.45i −0.721532 0.542615i
\(233\) 5767.97 1.62177 0.810885 0.585206i \(-0.198986\pi\)
0.810885 + 0.585206i \(0.198986\pi\)
\(234\) −407.285 + 1121.51i −0.113782 + 0.313312i
\(235\) 570.677i 0.158412i
\(236\) −229.067 2436.70i −0.0631823 0.672099i
\(237\) 663.422i 0.181831i
\(238\) 277.198 304.479i 0.0754961 0.0829262i
\(239\) 3607.47i 0.976351i 0.872745 + 0.488176i \(0.162337\pi\)
−0.872745 + 0.488176i \(0.837663\pi\)
\(240\) 214.062 + 1128.48i 0.0575734 + 0.303512i
\(241\) 1114.14i 0.297792i −0.988853 0.148896i \(-0.952428\pi\)
0.988853 0.148896i \(-0.0475720\pi\)
\(242\) 375.243 + 341.622i 0.0996758 + 0.0907450i
\(243\) 243.000i 0.0641500i
\(244\) −1310.01 + 123.151i −0.343709 + 0.0323112i
\(245\) −949.683 −0.247645
\(246\) 1261.06 + 1148.07i 0.326839 + 0.297555i
\(247\) 891.501 + 2167.69i 0.229655 + 0.558407i
\(248\) 890.849 + 669.947i 0.228101 + 0.171539i
\(249\) 1337.81i 0.340483i
\(250\) 2680.21 + 2440.07i 0.678047 + 0.617295i
\(251\) 5483.73i 1.37900i −0.724284 0.689502i \(-0.757829\pi\)
0.724284 0.689502i \(-0.242171\pi\)
\(252\) −973.031 + 91.4721i −0.243235 + 0.0228659i
\(253\) −2254.52 −0.560238
\(254\) −3564.21 3244.87i −0.880467 0.801579i
\(255\) 192.479i 0.0472686i
\(256\) 3811.47 1499.98i 0.930534 0.366205i
\(257\) 5673.89 1.37715 0.688576 0.725165i \(-0.258236\pi\)
0.688576 + 0.725165i \(0.258236\pi\)
\(258\) −336.053 305.943i −0.0810921 0.0738264i
\(259\) 1481.72i 0.355480i
\(260\) −1985.66 + 1043.65i −0.473635 + 0.248941i
\(261\) 1268.90i 0.300932i
\(262\) −3184.33 + 3497.72i −0.750873 + 0.824771i
\(263\) −2408.95 −0.564799 −0.282400 0.959297i \(-0.591130\pi\)
−0.282400 + 0.959297i \(0.591130\pi\)
\(264\) 2108.48 + 1585.65i 0.491546 + 0.369659i
\(265\) 2304.16i 0.534126i
\(266\) −1292.44 + 1419.64i −0.297912 + 0.327232i
\(267\) 1570.39 0.359948
\(268\) −720.594 7665.29i −0.164244 1.74714i
\(269\) 1125.02i 0.254995i 0.991839 + 0.127497i \(0.0406944\pi\)
−0.991839 + 0.127497i \(0.959306\pi\)
\(270\) −307.554 + 337.823i −0.0693228 + 0.0761453i
\(271\) 5686.90i 1.27474i −0.770557 0.637371i \(-0.780022\pi\)
0.770557 0.637371i \(-0.219978\pi\)
\(272\) −674.370 + 127.922i −0.150330 + 0.0285162i
\(273\) −725.994 1765.25i −0.160949 0.391348i
\(274\) 2549.11 2799.98i 0.562034 0.617348i
\(275\) 3467.15 0.760280
\(276\) −1386.14 + 130.307i −0.302303 + 0.0284187i
\(277\) 9173.89i 1.98991i −0.100307 0.994957i \(-0.531983\pi\)
0.100307 0.994957i \(-0.468017\pi\)
\(278\) 2405.52 2642.27i 0.518970 0.570045i
\(279\) 443.349i 0.0951347i
\(280\) −1468.50 1104.36i −0.313427 0.235707i
\(281\) 3169.15i 0.672796i −0.941720 0.336398i \(-0.890791\pi\)
0.941720 0.336398i \(-0.109209\pi\)
\(282\) 598.553 + 544.924i 0.126395 + 0.115070i
\(283\) 8235.73i 1.72991i −0.501853 0.864953i \(-0.667348\pi\)
0.501853 0.864953i \(-0.332652\pi\)
\(284\) −1555.29 + 146.208i −0.324962 + 0.0305489i
\(285\) 897.436i 0.186525i
\(286\) −1758.75 + 4842.92i −0.363626 + 1.00129i
\(287\) −2728.11 −0.561099
\(288\) 1388.00 + 853.032i 0.283989 + 0.174533i
\(289\) −4797.98 −0.976588
\(290\) 1606.00 1764.05i 0.325198 0.357202i
\(291\) 443.246 0.0892905
\(292\) −2527.12 + 237.568i −0.506468 + 0.0476118i
\(293\) 6334.32 1.26299 0.631493 0.775382i \(-0.282443\pi\)
0.631493 + 0.775382i \(0.282443\pi\)
\(294\) −906.826 + 996.073i −0.179888 + 0.197592i
\(295\) 1830.16 0.361207
\(296\) 1484.56 1974.07i 0.291515 0.387636i
\(297\) 1049.33i 0.205011i
\(298\) 2266.85 + 2063.75i 0.440656 + 0.401174i
\(299\) −1034.22 2514.70i −0.200035 0.486385i
\(300\) 2131.70 200.395i 0.410245 0.0385661i
\(301\) 726.998 0.139214
\(302\) −5372.89 + 5901.67i −1.02376 + 1.12451i
\(303\) −2162.77 −0.410059
\(304\) 3144.26 596.439i 0.593210 0.112527i
\(305\) 983.928i 0.184720i
\(306\) −201.881 183.793i −0.0377149 0.0343357i
\(307\) −1452.38 −0.270005 −0.135003 0.990845i \(-0.543104\pi\)
−0.135003 + 0.990845i \(0.543104\pi\)
\(308\) −4201.77 + 394.997i −0.777331 + 0.0730748i
\(309\) 3833.71i 0.705800i
\(310\) −561.127 + 616.351i −0.102806 + 0.112924i
\(311\) −1397.02 −0.254719 −0.127359 0.991857i \(-0.540650\pi\)
−0.127359 + 0.991857i \(0.540650\pi\)
\(312\) −801.414 + 3079.21i −0.145420 + 0.558736i
\(313\) −7577.17 −1.36833 −0.684164 0.729328i \(-0.739833\pi\)
−0.684164 + 0.729328i \(0.739833\pi\)
\(314\) −271.981 + 298.748i −0.0488814 + 0.0536921i
\(315\) 730.826i 0.130722i
\(316\) −165.581 1761.36i −0.0294767 0.313557i
\(317\) −9498.82 −1.68299 −0.841493 0.540268i \(-0.818323\pi\)
−0.841493 + 0.540268i \(0.818323\pi\)
\(318\) −2416.71 2200.18i −0.426171 0.387987i
\(319\) 5479.41i 0.961719i
\(320\) 849.977 + 2942.63i 0.148485 + 0.514056i
\(321\) −4724.40 −0.821464
\(322\) 1499.34 1646.90i 0.259488 0.285026i
\(323\) −536.302 −0.0923859
\(324\) 60.6494 + 645.156i 0.0103994 + 0.110623i
\(325\) 1590.49 + 3867.28i 0.271460 + 0.660056i
\(326\) −5769.06 5252.17i −0.980119 0.892302i
\(327\) 2141.69i 0.362189i
\(328\) 3634.62 + 2733.35i 0.611854 + 0.460134i
\(329\) −1294.88 −0.216987
\(330\) −1328.09 + 1458.80i −0.221542 + 0.243346i
\(331\) −6822.95 −1.13300 −0.566500 0.824062i \(-0.691703\pi\)
−0.566500 + 0.824062i \(0.691703\pi\)
\(332\) −333.899 3551.83i −0.0551960 0.587145i
\(333\) 982.433 0.161673
\(334\) −6179.37 + 6787.52i −1.01234 + 1.11197i
\(335\) 5757.27 0.938965
\(336\) −2560.53 + 485.710i −0.415739 + 0.0788620i
\(337\) 6372.16 1.03001 0.515005 0.857187i \(-0.327790\pi\)
0.515005 + 0.857187i \(0.327790\pi\)
\(338\) −6208.62 + 259.878i −0.999125 + 0.0418210i
\(339\) 1514.14i 0.242587i
\(340\) −48.0400 511.023i −0.00766275 0.0815122i
\(341\) 1914.48i 0.304032i
\(342\) 941.273 + 856.937i 0.148825 + 0.135491i
\(343\) 6810.69i 1.07214i
\(344\) −968.568 728.394i −0.151807 0.114164i
\(345\) 1041.10i 0.162467i
\(346\) 5662.95 6220.27i 0.879890 0.966485i
\(347\) 1212.23i 0.187539i 0.995594 + 0.0937697i \(0.0298917\pi\)
−0.995594 + 0.0937697i \(0.970108\pi\)
\(348\) −316.701 3368.89i −0.0487843 0.518941i
\(349\) 5662.28 0.868467 0.434234 0.900800i \(-0.357019\pi\)
0.434234 + 0.900800i \(0.357019\pi\)
\(350\) −2305.79 + 2532.72i −0.352142 + 0.386799i
\(351\) −1170.43 + 481.361i −0.177985 + 0.0731998i
\(352\) 5993.70 + 3683.58i 0.907572 + 0.557772i
\(353\) 8108.34i 1.22256i 0.791415 + 0.611279i \(0.209345\pi\)
−0.791415 + 0.611279i \(0.790655\pi\)
\(354\) 1747.57 1919.56i 0.262379 0.288202i
\(355\) 1168.15i 0.174645i
\(356\) 4169.32 391.947i 0.620712 0.0583515i
\(357\) 436.737 0.0647467
\(358\) 6734.03 7396.77i 0.994148 1.09199i
\(359\) 668.684i 0.0983058i −0.998791 0.0491529i \(-0.984348\pi\)
0.998791 0.0491529i \(-0.0156522\pi\)
\(360\) −732.229 + 973.668i −0.107200 + 0.142547i
\(361\) −4358.48 −0.635440
\(362\) −4693.50 + 5155.42i −0.681451 + 0.748517i
\(363\) 538.240i 0.0778244i
\(364\) −2368.07 4505.48i −0.340990 0.648768i
\(365\) 1898.08i 0.272192i
\(366\) −1031.99 939.526i −0.147385 0.134180i
\(367\) 0.283026 4.02556e−5 2.01278e−5 1.00000i \(-0.499994\pi\)
2.01278e−5 1.00000i \(0.499994\pi\)
\(368\) −3647.62 + 691.920i −0.516699 + 0.0980132i
\(369\) 1808.84i 0.255188i
\(370\) 1365.80 + 1243.42i 0.191904 + 0.174709i
\(371\) 5228.17 0.731626
\(372\) 110.654 + 1177.07i 0.0154224 + 0.164055i
\(373\) 2513.80i 0.348954i −0.984661 0.174477i \(-0.944177\pi\)
0.984661 0.174477i \(-0.0558234\pi\)
\(374\) −871.767 793.658i −0.120529 0.109730i
\(375\) 3844.44i 0.529402i
\(376\) 1725.14 + 1297.36i 0.236615 + 0.177942i
\(377\) 6111.78 2513.58i 0.834941 0.343385i
\(378\) −766.526 697.846i −0.104301 0.0949559i
\(379\) −2611.98 −0.354006 −0.177003 0.984210i \(-0.556640\pi\)
−0.177003 + 0.984210i \(0.556640\pi\)
\(380\) 223.987 + 2382.66i 0.0302376 + 0.321652i
\(381\) 5112.42i 0.687447i
\(382\) 9215.15 + 8389.48i 1.23426 + 1.12367i
\(383\) 3771.33i 0.503149i 0.967838 + 0.251575i \(0.0809484\pi\)
−0.967838 + 0.251575i \(0.919052\pi\)
\(384\) 3897.99 + 1918.34i 0.518017 + 0.254935i
\(385\) 3155.87i 0.417762i
\(386\) 390.209 428.612i 0.0514537 0.0565176i
\(387\) 482.027i 0.0633147i
\(388\) 1176.80 110.628i 0.153977 0.0144750i
\(389\) 3406.59i 0.444013i −0.975045 0.222006i \(-0.928739\pi\)
0.975045 0.222006i \(-0.0712606\pi\)
\(390\) −2236.39 812.165i −0.290369 0.105450i
\(391\) 622.157 0.0804701
\(392\) −2158.98 + 2870.87i −0.278176 + 0.369900i
\(393\) −5017.05 −0.643961
\(394\) 2572.65 + 2342.15i 0.328955 + 0.299482i
\(395\) 1322.93 0.168515
\(396\) 261.898 + 2785.93i 0.0332345 + 0.353531i
\(397\) 7698.79 0.973277 0.486639 0.873603i \(-0.338223\pi\)
0.486639 + 0.873603i \(0.338223\pi\)
\(398\) 393.869 + 358.579i 0.0496052 + 0.0451606i
\(399\) −2036.30 −0.255494
\(400\) 5609.55 1064.08i 0.701194 0.133010i
\(401\) 6769.22i 0.842990i 0.906831 + 0.421495i \(0.138494\pi\)
−0.906831 + 0.421495i \(0.861506\pi\)
\(402\) 5497.46 6038.50i 0.682060 0.749186i
\(403\) −2135.43 + 878.233i −0.263953 + 0.108556i
\(404\) −5742.07 + 539.797i −0.707126 + 0.0664750i
\(405\) −484.565 −0.0594524
\(406\) 4002.66 + 3644.03i 0.489283 + 0.445444i
\(407\) 4242.37 0.516674
\(408\) −581.858 437.576i −0.0706036 0.0530961i
\(409\) 15510.5i 1.87517i 0.347750 + 0.937587i \(0.386946\pi\)
−0.347750 + 0.937587i \(0.613054\pi\)
\(410\) −2289.37 + 2514.68i −0.275765 + 0.302905i
\(411\) 4016.23 0.482010
\(412\) −956.840 10178.3i −0.114418 1.21711i
\(413\) 4152.66i 0.494768i
\(414\) −1091.96 994.121i −0.129630 0.118015i
\(415\) 2667.72 0.315550
\(416\) −1359.20 + 8375.19i −0.160192 + 0.987086i
\(417\) 3790.00 0.445077
\(418\) 4064.63 + 3700.45i 0.475616 + 0.433002i
\(419\) 8562.24i 0.998312i 0.866512 + 0.499156i \(0.166357\pi\)
−0.866512 + 0.499156i \(0.833643\pi\)
\(420\) −182.404 1940.32i −0.0211914 0.225423i
\(421\) 9584.46 1.10954 0.554772 0.832003i \(-0.312806\pi\)
0.554772 + 0.832003i \(0.312806\pi\)
\(422\) 4785.78 5256.77i 0.552057 0.606388i
\(423\) 858.551i 0.0986860i
\(424\) −6965.40 5238.21i −0.797806 0.599976i
\(425\) −956.795 −0.109203
\(426\) −1225.21 1115.43i −0.139347 0.126861i
\(427\) 2232.55 0.253022
\(428\) −12543.1 + 1179.14i −1.41657 + 0.133168i
\(429\) −5054.18 + 2078.62i −0.568807 + 0.233932i
\(430\) 610.080 670.122i 0.0684202 0.0751539i
\(431\) 1393.38i 0.155724i 0.996964 + 0.0778618i \(0.0248093\pi\)
−0.996964 + 0.0778618i \(0.975191\pi\)
\(432\) 322.043 + 1697.73i 0.0358665 + 0.189078i
\(433\) 6186.20 0.686582 0.343291 0.939229i \(-0.388458\pi\)
0.343291 + 0.939229i \(0.388458\pi\)
\(434\) −1398.51 1273.21i −0.154679 0.140820i
\(435\) 2530.31 0.278895
\(436\) 534.537 + 5686.11i 0.0587148 + 0.624577i
\(437\) −2900.82 −0.317540
\(438\) −1990.80 1812.42i −0.217178 0.197719i
\(439\) −5154.74 −0.560416 −0.280208 0.959939i \(-0.590403\pi\)
−0.280208 + 0.959939i \(0.590403\pi\)
\(440\) −3161.93 + 4204.52i −0.342589 + 0.455551i
\(441\) −1428.74 −0.154275
\(442\) 485.345 1336.45i 0.0522296 0.143820i
\(443\) 245.694i 0.0263505i 0.999913 + 0.0131752i \(0.00419393\pi\)
−0.999913 + 0.0131752i \(0.995806\pi\)
\(444\) 2608.32 245.202i 0.278796 0.0262089i
\(445\) 3131.50i 0.333590i
\(446\) 3587.99 3941.11i 0.380934 0.418424i
\(447\) 3251.52i 0.344053i
\(448\) −6676.88 + 1928.61i −0.704136 + 0.203389i
\(449\) 1111.53i 0.116830i 0.998292 + 0.0584148i \(0.0186046\pi\)
−0.998292 + 0.0584148i \(0.981395\pi\)
\(450\) 1679.29 + 1528.83i 0.175916 + 0.160155i
\(451\) 7810.98i 0.815531i
\(452\) 377.909 + 4019.99i 0.0393260 + 0.418328i
\(453\) −8465.21 −0.877992
\(454\) −8925.78 8126.04i −0.922704 0.840031i
\(455\) 3520.08 1447.70i 0.362690 0.149163i
\(456\) 2712.92 + 2040.20i 0.278606 + 0.209520i
\(457\) 14132.1i 1.44655i 0.690560 + 0.723275i \(0.257364\pi\)
−0.690560 + 0.723275i \(0.742636\pi\)
\(458\) 13114.7 + 11939.6i 1.33801 + 1.21813i
\(459\) 289.573i 0.0294469i
\(460\) −259.845 2764.09i −0.0263376 0.280166i
\(461\) −11456.8 −1.15748 −0.578739 0.815513i \(-0.696455\pi\)
−0.578739 + 0.815513i \(0.696455\pi\)
\(462\) −3310.03 3013.46i −0.333326 0.303460i
\(463\) 15209.1i 1.52663i −0.646029 0.763313i \(-0.723571\pi\)
0.646029 0.763313i \(-0.276429\pi\)
\(464\) −1681.66 8865.23i −0.168252 0.886978i
\(465\) −884.079 −0.0881682
\(466\) 12063.7 + 10982.8i 1.19923 + 1.09178i
\(467\) 13191.1i 1.30709i 0.756887 + 0.653546i \(0.226719\pi\)
−0.756887 + 0.653546i \(0.773281\pi\)
\(468\) −2987.30 + 1570.12i −0.295060 + 0.155083i
\(469\) 13063.3i 1.28616i
\(470\) −1086.63 + 1193.57i −0.106644 + 0.117139i
\(471\) −428.517 −0.0419215
\(472\) 4160.63 5532.52i 0.405739 0.539523i
\(473\) 2081.50i 0.202341i
\(474\) 1263.23 1387.55i 0.122409 0.134456i
\(475\) 4461.08 0.430922
\(476\) 1159.52 109.003i 0.111652 0.0104961i
\(477\) 3466.47i 0.332744i
\(478\) −6869.01 + 7545.03i −0.657283 + 0.721970i
\(479\) 10982.4i 1.04760i 0.851843 + 0.523798i \(0.175485\pi\)
−0.851843 + 0.523798i \(0.824515\pi\)
\(480\) −1701.03 + 2767.80i −0.161752 + 0.263192i
\(481\) 1946.11 + 4731.97i 0.184480 + 0.448564i
\(482\) 2121.44 2330.22i 0.200475 0.220205i
\(483\) 2362.28 0.222541
\(484\) 134.337 + 1429.01i 0.0126162 + 0.134204i
\(485\) 883.874i 0.0827519i
\(486\) −462.698 + 508.235i −0.0431860 + 0.0474362i
\(487\) 933.005i 0.0868141i −0.999057 0.0434071i \(-0.986179\pi\)
0.999057 0.0434071i \(-0.0138212\pi\)
\(488\) −2974.39 2236.83i −0.275910 0.207493i
\(489\) 8275.01i 0.765253i
\(490\) −1986.26 1808.30i −0.183123 0.166715i
\(491\) 2730.02i 0.250925i 0.992098 + 0.125462i \(0.0400414\pi\)
−0.992098 + 0.125462i \(0.959959\pi\)
\(492\) 451.461 + 4802.40i 0.0413687 + 0.440059i
\(493\) 1512.10i 0.138137i
\(494\) −2262.93 + 6231.23i −0.206101 + 0.567523i
\(495\) −2092.46 −0.189998
\(496\) 587.562 + 3097.47i 0.0531901 + 0.280404i
\(497\) 2650.55 0.239222
\(498\) 2547.33 2798.03i 0.229214 0.251773i
\(499\) 17407.9 1.56169 0.780847 0.624723i \(-0.214788\pi\)
0.780847 + 0.624723i \(0.214788\pi\)
\(500\) 959.517 + 10206.8i 0.0858218 + 0.912926i
\(501\) −9735.86 −0.868196
\(502\) 10441.6 11469.2i 0.928350 1.01971i
\(503\) 9323.78 0.826495 0.413247 0.910619i \(-0.364394\pi\)
0.413247 + 0.910619i \(0.364394\pi\)
\(504\) −2209.27 1661.44i −0.195255 0.146838i
\(505\) 4312.77i 0.380031i
\(506\) −4715.32 4292.84i −0.414272 0.377154i
\(507\) −4637.03 4683.94i −0.406189 0.410298i
\(508\) −1275.99 13573.3i −0.111443 1.18547i
\(509\) −2250.01 −0.195933 −0.0979667 0.995190i \(-0.531234\pi\)
−0.0979667 + 0.995190i \(0.531234\pi\)
\(510\) 366.500 402.569i 0.0318214 0.0349531i
\(511\) 4306.77 0.372838
\(512\) 10827.8 + 4120.24i 0.934621 + 0.355645i
\(513\) 1350.14i 0.116199i
\(514\) 11867.0 + 10803.7i 1.01834 + 0.927103i
\(515\) 7644.78 0.654115
\(516\) −120.307 1279.76i −0.0102640 0.109183i
\(517\) 3707.42i 0.315381i
\(518\) −2821.35 + 3099.01i −0.239310 + 0.262863i
\(519\) 8922.21 0.754608
\(520\) −6140.23 1598.10i −0.517821 0.134771i
\(521\) −6504.14 −0.546932 −0.273466 0.961882i \(-0.588170\pi\)
−0.273466 + 0.961882i \(0.588170\pi\)
\(522\) 2416.13 2653.91i 0.202588 0.222526i
\(523\) 863.189i 0.0721695i −0.999349 0.0360847i \(-0.988511\pi\)
0.999349 0.0360847i \(-0.0114886\pi\)
\(524\) −13320.1 + 1252.18i −1.11048 + 0.104393i
\(525\) −3632.88 −0.302003
\(526\) −5038.32 4586.90i −0.417645 0.380225i
\(527\) 528.320i 0.0436698i
\(528\) 1390.66 + 7331.16i 0.114622 + 0.604257i
\(529\) −8801.80 −0.723416
\(530\) 4387.36 4819.15i 0.359575 0.394963i
\(531\) 2753.37 0.225021
\(532\) −5406.29 + 508.231i −0.440587 + 0.0414184i
\(533\) −8712.42 + 3583.14i −0.708024 + 0.291188i
\(534\) 3284.47 + 2990.19i 0.266166 + 0.242318i
\(535\) 9420.89i 0.761310i
\(536\) 13088.4 17404.1i 1.05473 1.40250i
\(537\) 10609.8 0.852597
\(538\) −2142.15 + 2352.98i −0.171663 + 0.188558i
\(539\) −6169.64 −0.493033
\(540\) −1286.50 + 120.941i −0.102523 + 0.00963788i
\(541\) 6178.96 0.491043 0.245522 0.969391i \(-0.421041\pi\)
0.245522 + 0.969391i \(0.421041\pi\)
\(542\) 10828.5 11894.2i 0.858160 0.942617i
\(543\) −7394.81 −0.584423
\(544\) −1654.02 1016.52i −0.130360 0.0801159i
\(545\) −4270.74 −0.335667
\(546\) 1842.82 5074.40i 0.144442 0.397737i
\(547\) 10494.5i 0.820319i 0.912014 + 0.410160i \(0.134527\pi\)
−0.912014 + 0.410160i \(0.865473\pi\)
\(548\) 10662.9 1002.39i 0.831201 0.0781390i
\(549\) 1480.26i 0.115075i
\(550\) 7251.55 + 6601.82i 0.562195 + 0.511823i
\(551\) 7050.20i 0.545097i
\(552\) −3147.23 2366.81i −0.242672 0.182497i
\(553\) 3001.74i 0.230826i
\(554\) 17468.1 19187.2i 1.33962 1.47146i
\(555\) 1959.06i 0.149834i
\(556\) 10062.3 945.931i 0.767512 0.0721518i
\(557\) −21135.1 −1.60776 −0.803882 0.594789i \(-0.797235\pi\)
−0.803882 + 0.594789i \(0.797235\pi\)
\(558\) −844.183 + 927.264i −0.0640450 + 0.0703481i
\(559\) 2321.72 954.851i 0.175668 0.0722467i
\(560\) −968.551 5105.94i −0.0730871 0.385295i
\(561\) 1250.44i 0.0941064i
\(562\) 6034.40 6628.28i 0.452928 0.497504i
\(563\) 2509.76i 0.187876i −0.995578 0.0939378i \(-0.970055\pi\)
0.995578 0.0939378i \(-0.0299455\pi\)
\(564\) 214.282 + 2279.42i 0.0159981 + 0.170179i
\(565\) −3019.34 −0.224823
\(566\) 15681.7 17225.0i 1.16458 1.27919i
\(567\) 1099.49i 0.0814357i
\(568\) −3531.28 2655.64i −0.260861 0.196176i
\(569\) −16497.7 −1.21550 −0.607751 0.794127i \(-0.707928\pi\)
−0.607751 + 0.794127i \(0.707928\pi\)
\(570\) −1708.81 + 1876.99i −0.125569 + 0.137927i
\(571\) 1739.60i 0.127496i 0.997966 + 0.0637478i \(0.0203053\pi\)
−0.997966 + 0.0637478i \(0.979695\pi\)
\(572\) −12899.9 + 6780.12i −0.942954 + 0.495614i
\(573\) 13218.0i 0.963681i
\(574\) −5705.85 5194.61i −0.414909 0.377733i
\(575\) −5175.23 −0.375343
\(576\) 1278.74 + 4427.02i 0.0925015 + 0.320241i
\(577\) 13777.0i 0.994011i 0.867747 + 0.497005i \(0.165567\pi\)
−0.867747 + 0.497005i \(0.834433\pi\)
\(578\) −10035.0 9135.86i −0.722145 0.657442i
\(579\) 614.791 0.0441275
\(580\) 6717.89 631.531i 0.480940 0.0452119i
\(581\) 6053.10i 0.432229i
\(582\) 927.049 + 843.987i 0.0660265 + 0.0601106i
\(583\) 14969.0i 1.06338i
\(584\) −5737.84 4315.04i −0.406564 0.305749i
\(585\) −959.879 2333.95i −0.0678395 0.164952i
\(586\) 13248.2 + 12061.2i 0.933924 + 0.850246i
\(587\) 10322.4 0.725814 0.362907 0.931825i \(-0.381784\pi\)
0.362907 + 0.931825i \(0.381784\pi\)
\(588\) −3793.26 + 356.594i −0.266040 + 0.0250097i
\(589\) 2463.30i 0.172324i
\(590\) 3827.78 + 3484.82i 0.267097 + 0.243166i
\(591\) 3690.15i 0.256840i
\(592\) 6863.79 1302.00i 0.476521 0.0903917i
\(593\) 13699.1i 0.948656i −0.880348 0.474328i \(-0.842691\pi\)
0.880348 0.474328i \(-0.157309\pi\)
\(594\) −1998.03 + 2194.67i −0.138014 + 0.151597i
\(595\) 870.896i 0.0600054i
\(596\) 811.534 + 8632.67i 0.0557747 + 0.593302i
\(597\) 564.956i 0.0387305i
\(598\) 2625.19 7228.77i 0.179519 0.494325i
\(599\) −27000.4 −1.84174 −0.920872 0.389865i \(-0.872522\pi\)
−0.920872 + 0.389865i \(0.872522\pi\)
\(600\) 4840.02 + 3639.85i 0.329322 + 0.247660i
\(601\) −28619.0 −1.94242 −0.971209 0.238228i \(-0.923434\pi\)
−0.971209 + 0.238228i \(0.923434\pi\)
\(602\) 1520.52 + 1384.28i 0.102943 + 0.0937195i
\(603\) 8661.48 0.584946
\(604\) −22474.8 + 2112.80i −1.51405 + 0.142332i
\(605\) −1073.30 −0.0721255
\(606\) −4523.44 4118.14i −0.303221 0.276053i
\(607\) 14875.0 0.994658 0.497329 0.867562i \(-0.334314\pi\)
0.497329 + 0.867562i \(0.334314\pi\)
\(608\) 7711.91 + 4739.56i 0.514407 + 0.316142i
\(609\) 5741.32i 0.382020i
\(610\) 1873.50 2057.89i 0.124354 0.136592i
\(611\) −4135.28 + 1700.71i −0.273806 + 0.112608i
\(612\) −72.2734 768.805i −0.00477366 0.0507796i
\(613\) −14835.8 −0.977510 −0.488755 0.872421i \(-0.662549\pi\)
−0.488755 + 0.872421i \(0.662549\pi\)
\(614\) −3037.65 2765.49i −0.199658 0.181769i
\(615\) −3607.00 −0.236501
\(616\) −9540.12 7174.47i −0.623997 0.469266i
\(617\) 4086.98i 0.266670i 0.991071 + 0.133335i \(0.0425687\pi\)
−0.991071 + 0.133335i \(0.957431\pi\)
\(618\) 7299.79 8018.21i 0.475147 0.521909i
\(619\) −1121.89 −0.0728475 −0.0364238 0.999336i \(-0.511597\pi\)
−0.0364238 + 0.999336i \(0.511597\pi\)
\(620\) −2347.20 + 220.654i −0.152041 + 0.0142930i
\(621\) 1566.28i 0.101212i
\(622\) −2921.86 2660.07i −0.188354 0.171478i
\(623\) −7105.43 −0.456939
\(624\) −7539.29 + 4914.19i −0.483675 + 0.315264i
\(625\) 3485.36 0.223063
\(626\) −15847.7 14427.7i −1.01182 0.921163i
\(627\) 5830.21i 0.371349i
\(628\) −1137.70 + 106.952i −0.0722914 + 0.00679593i
\(629\) −1170.72 −0.0742128
\(630\) 1391.57 1528.52i 0.0880024 0.0966633i
\(631\) 9262.65i 0.584375i −0.956361 0.292187i \(-0.905617\pi\)
0.956361 0.292187i \(-0.0943831\pi\)
\(632\) 3007.50 3999.17i 0.189291 0.251706i
\(633\) 7540.19 0.473453
\(634\) −19866.8 18086.8i −1.24450 1.13299i
\(635\) 10194.7 0.637106
\(636\) −865.182 9203.35i −0.0539414 0.573799i
\(637\) −2830.21 6881.66i −0.176039 0.428040i
\(638\) 10433.4 11460.2i 0.647432 0.711150i
\(639\) 1757.41i 0.108798i
\(640\) −3825.35 + 7772.96i −0.236266 + 0.480083i
\(641\) −16241.4 −1.00078 −0.500388 0.865801i \(-0.666809\pi\)
−0.500388 + 0.865801i \(0.666809\pi\)
\(642\) −9881.08 8995.75i −0.607438 0.553013i
\(643\) −23823.8 −1.46115 −0.730574 0.682834i \(-0.760747\pi\)
−0.730574 + 0.682834i \(0.760747\pi\)
\(644\) 6271.76 589.592i 0.383761 0.0360763i
\(645\) 961.207 0.0586783
\(646\) −1121.68 1021.18i −0.0683154 0.0621945i
\(647\) 11713.0 0.711723 0.355861 0.934539i \(-0.384188\pi\)
0.355861 + 0.934539i \(0.384188\pi\)
\(648\) −1101.60 + 1464.83i −0.0667821 + 0.0888022i
\(649\) 11889.7 0.719122
\(650\) −4037.20 + 11116.9i −0.243619 + 0.670832i
\(651\) 2005.99i 0.120770i
\(652\) −2065.33 21969.8i −0.124056 1.31964i
\(653\) 29517.9i 1.76895i −0.466587 0.884475i \(-0.654516\pi\)
0.466587 0.884475i \(-0.345484\pi\)
\(654\) −4078.01 + 4479.36i −0.243827 + 0.267824i
\(655\) 10004.5i 0.596805i
\(656\) 2397.22 + 12637.5i 0.142676 + 0.752152i
\(657\) 2855.55i 0.169567i
\(658\) −2708.23 2465.58i −0.160453 0.146077i
\(659\) 12155.7i 0.718541i 0.933234 + 0.359270i \(0.116974\pi\)
−0.933234 + 0.359270i \(0.883026\pi\)
\(660\) −5555.40 + 522.249i −0.327642 + 0.0308008i
\(661\) −24245.7 −1.42670 −0.713349 0.700809i \(-0.752822\pi\)
−0.713349 + 0.700809i \(0.752822\pi\)
\(662\) −14270.2 12991.6i −0.837806 0.762739i
\(663\) 1394.75 573.618i 0.0817009 0.0336010i
\(664\) 6064.72 8064.45i 0.354453 0.471327i
\(665\) 4060.57i 0.236785i
\(666\) 2054.76 + 1870.66i 0.119550 + 0.108839i
\(667\) 8178.84i 0.474791i
\(668\) −25848.3 + 2429.93i −1.49716 + 0.140744i
\(669\) 5653.03 0.326695
\(670\) 12041.3 + 10962.5i 0.694325 + 0.632114i
\(671\) 6392.11i 0.367756i
\(672\) −6280.19 3859.66i −0.360511 0.221562i
\(673\) 8527.42 0.488422 0.244211 0.969722i \(-0.421471\pi\)
0.244211 + 0.969722i \(0.421471\pi\)
\(674\) 13327.4 + 12133.3i 0.761649 + 0.693406i
\(675\) 2408.73i 0.137351i
\(676\) −13480.2 11278.3i −0.766965 0.641689i
\(677\) 6576.03i 0.373320i −0.982425 0.186660i \(-0.940234\pi\)
0.982425 0.186660i \(-0.0597662\pi\)
\(678\) −2883.09 + 3166.83i −0.163310 + 0.179383i
\(679\) −2005.52 −0.113350
\(680\) 872.567 1160.28i 0.0492080 0.0654334i
\(681\) 12802.9i 0.720425i
\(682\) −3645.37 + 4004.14i −0.204675 + 0.224819i
\(683\) 20606.9 1.15447 0.577234 0.816579i \(-0.304132\pi\)
0.577234 + 0.816579i \(0.304132\pi\)
\(684\) 336.976 + 3584.57i 0.0188371 + 0.200379i
\(685\) 8008.74i 0.446713i
\(686\) 12968.3 14244.6i 0.721766 0.792800i
\(687\) 18811.4i 1.04469i
\(688\) −638.822 3367.69i −0.0353995 0.186616i
\(689\) 16696.5 6866.76i 0.923204 0.379685i
\(690\) 1982.37 2177.47i 0.109373 0.120137i
\(691\) −21339.5 −1.17481 −0.587403 0.809294i \(-0.699850\pi\)
−0.587403 + 0.809294i \(0.699850\pi\)
\(692\) 23688.1 2226.86i 1.30128 0.122330i
\(693\) 4747.83i 0.260253i
\(694\) −2308.22 + 2535.39i −0.126252 + 0.138677i
\(695\) 7557.62i 0.412485i
\(696\) 5752.35 7649.07i 0.313279 0.416577i
\(697\) 2155.52i 0.117139i
\(698\) 11842.7 + 10781.6i 0.642194 + 0.584655i
\(699\) 17303.9i 0.936329i
\(700\) −9645.14 + 906.715i −0.520789 + 0.0489580i
\(701\) 11788.5i 0.635155i −0.948232 0.317578i \(-0.897131\pi\)
0.948232 0.317578i \(-0.102869\pi\)
\(702\) −3364.52 1221.86i −0.180891 0.0656922i
\(703\) 5458.53 0.292848
\(704\) 5521.89 + 19116.9i 0.295617 + 1.02343i
\(705\) −1712.03 −0.0914593
\(706\) −15439.1 + 16958.6i −0.823031 + 0.904030i
\(707\) 9785.74 0.520553
\(708\) 7310.09 687.202i 0.388037 0.0364783i
\(709\) 10555.8 0.559140 0.279570 0.960125i \(-0.409808\pi\)
0.279570 + 0.960125i \(0.409808\pi\)
\(710\) 2224.28 2443.19i 0.117571 0.129142i
\(711\) 1990.27 0.104980
\(712\) 9466.44 + 7119.07i 0.498272 + 0.374717i
\(713\) 2857.64i 0.150098i
\(714\) 913.437 + 831.594i 0.0478775 + 0.0435877i
\(715\) −4144.97 10078.5i −0.216802 0.527154i
\(716\) 28168.5 2648.05i 1.47026 0.138215i
\(717\) −10822.4 −0.563697
\(718\) 1273.25 1398.55i 0.0661798 0.0726930i
\(719\) −13395.8 −0.694826 −0.347413 0.937712i \(-0.612940\pi\)
−0.347413 + 0.937712i \(0.612940\pi\)
\(720\) −3385.43 + 642.185i −0.175232 + 0.0332400i
\(721\) 17346.1i 0.895983i
\(722\) −9115.77 8299.01i −0.469881 0.427780i
\(723\) 3342.41 0.171930
\(724\) −19632.9 + 1845.64i −1.00781 + 0.0947414i
\(725\) 12578.0i 0.644323i
\(726\) −1024.87 + 1125.73i −0.0523917 + 0.0575479i
\(727\) 29111.3 1.48512 0.742558 0.669782i \(-0.233613\pi\)
0.742558 + 0.669782i \(0.233613\pi\)
\(728\) 3626.10 13932.3i 0.184605 0.709292i
\(729\) −729.000 −0.0370370
\(730\) 3614.14 3969.83i 0.183240 0.201274i
\(731\) 574.411i 0.0290634i
\(732\) −369.453 3930.04i −0.0186549 0.198440i
\(733\) 890.638 0.0448792 0.0224396 0.999748i \(-0.492857\pi\)
0.0224396 + 0.999748i \(0.492857\pi\)
\(734\) 0.591949 + 0.538911i 2.97673e−5 + 2.71002e-5i
\(735\) 2849.05i 0.142978i
\(736\) −8946.48 5498.30i −0.448059 0.275367i
\(737\) 37402.2 1.86937
\(738\) −3444.22 + 3783.19i −0.171793 + 0.188701i
\(739\) −13313.5 −0.662715 −0.331358 0.943505i \(-0.607507\pi\)
−0.331358 + 0.943505i \(0.607507\pi\)
\(740\) 488.955 + 5201.24i 0.0242897 + 0.258380i
\(741\) −6503.06 + 2674.50i −0.322397 + 0.132592i
\(742\) 10934.7 + 9954.99i 0.541006 + 0.492533i
\(743\) 30168.6i 1.48961i −0.667282 0.744805i \(-0.732543\pi\)
0.667282 0.744805i \(-0.267457\pi\)
\(744\) −2009.84 + 2672.55i −0.0990381 + 0.131694i
\(745\) −6483.84 −0.318859
\(746\) 4786.55 5257.62i 0.234917 0.258037i
\(747\) 4013.43 0.196578
\(748\) −312.093 3319.87i −0.0152557 0.162282i
\(749\) 21376.2 1.04281
\(750\) −7320.22 + 8040.64i −0.356395 + 0.391470i
\(751\) −12030.7 −0.584562 −0.292281 0.956333i \(-0.594414\pi\)
−0.292281 + 0.956333i \(0.594414\pi\)
\(752\) 1137.82 + 5998.29i 0.0551757 + 0.290871i
\(753\) 16451.2 0.796168
\(754\) 17568.9 + 6380.32i 0.848571 + 0.308166i
\(755\) 16880.4i 0.813698i
\(756\) −274.416 2919.09i −0.0132016 0.140432i
\(757\) 4839.04i 0.232335i −0.993230 0.116168i \(-0.962939\pi\)
0.993230 0.116168i \(-0.0370610\pi\)
\(758\) −5462.96 4973.49i −0.261773 0.238318i
\(759\) 6763.55i 0.323453i
\(760\) −4068.36 + 5409.83i −0.194178 + 0.258204i
\(761\) 10293.1i 0.490309i −0.969484 0.245155i \(-0.921161\pi\)
0.969484 0.245155i \(-0.0788388\pi\)
\(762\) 9734.60 10692.6i 0.462792 0.508338i
\(763\) 9690.38i 0.459784i
\(764\) 3299.02 + 35093.2i 0.156223 + 1.66182i
\(765\) 577.436 0.0272905
\(766\) −7181.02 + 7887.75i −0.338722 + 0.372057i
\(767\) 5454.17 + 13261.8i 0.256765 + 0.624325i
\(768\) 4499.93 + 11434.4i 0.211429 + 0.537244i
\(769\) 29234.3i 1.37089i 0.728124 + 0.685445i \(0.240392\pi\)
−0.728124 + 0.685445i \(0.759608\pi\)
\(770\) 6009.12 6600.51i 0.281238 0.308917i
\(771\) 17021.7i 0.795099i
\(772\) 1632.25 153.443i 0.0760956 0.00715355i
\(773\) 9451.29 0.439766 0.219883 0.975526i \(-0.429432\pi\)
0.219883 + 0.975526i \(0.429432\pi\)
\(774\) 917.830 1008.16i